
COSC 1020

Yves Lesp érance

Lecture Notes

Week 1 — Computer Hardware

Recommended Readings:
Horstmann: Ch. 1 Sec. 1 to 3, & Ch. 3 Sec. 1, 3, 7, 9
Lewis & Loftus: Ch. 1 Sec. 0 to 2, & Ch. 2 Sec. 0 to 4

What This Course Is About

Computers are different from devices built for a spe-
cific purpose (e.g. a car). They basically process data,
but they can be programmed to accomplish a wide
range of data processing tasks.

A program is essentially a list of instructions telling
the computer what operations need to be performed.
It is analogous to a recipe for cooking a dish. But
computers are stupid and the instructions have to be
much more detailed.

In this course, we will learn how to write programs.
We will use a particular programming language, Java,
but the focus will be on general principles.

Writing and maintaining programs — software — is
very expensive. Software systems can be very large
and complex. Much of what we will learn will be tech-
niques for managing this, what is called software en-
gineering. We will also learn computer science tech-
niques for ensuring that our programs are efficient and
correct.

1

Computer Hardware

Here are the main hardware components of a typical
computer:

See Horstmann p. 8, Fig. 6.

2

Central Processing Unit (CPU): the brain of the com-
puter, does all arithmetic and logical operations, keeps
track of next instruction in program.

Main Memory — RAM & ROM: stores data and pro-
grams in binary notation; fast access, limited capacity,
non-persistent.

Secondary Storage — hard disk, floppy disk, CD-ROM,
tape, etc.: slower access, large capacity, persistent.

Bus: thick set of wires, allows data to be moved be-
tween CPU, memory, and other components.

Input/Output Devices — keyboard, mouse, monitor,
speakers, printer, etc.: allows interaction with humans.

Network Connection.

3



Algorithms

Before you can write a program to solve a problem,
you need to develop a method that can be used to
solve it. E. g.

Problem

Determine how many months it takes to pay back a
loan given the loan amount, monthly payment amount,
and interest rate.

Solution Method

1. Initialize months required to 0.

2. Repeat (a), (b), and (c) while amount owed is
greater than 0:
(a) Add monthly interest to amount owed.
(b) Subtract monthly payment from

amount owed.
(c) Increment months required by 1.

3. Report months required as the answer.

4

In general, a good solution method should be:

� unambiguous, i.e., leave no doubt as to which op-
eration needs to be done a t each step,

� executable, i.e., doable on the computer, and

� terminating, i.e., be guaranteed to eventually come
to an end.

A method with these properties is called an algorithm.
You must have an algorithm to solve your problem be-
fore you can implement it in a program.

5

Variables

Programs (and algorithms) use variables. E.g. amount
and numQuarters in:

int amount, numQuarters;
amount = 78;
numQuarters = amount / 25;
amount = amount - numQuarters * 25;
...

These are somewhat like variables in mathematics —
they can have a value.

But a variable in a program (algorithm) has a particu-
lar value at a given time, and it changes as the pro-
gram is executed.

This is not the case in math. E.g.

x+ y = 13

Variables x and y can have different values, but there
is no concept of their current value.

6

To understand how variables in a program work, it is
helpful to know a bit about computer memory.

Programs that are being executed and their data are
stored in the computer’s main memory.

Can think of main memory as a bunch of boxes that
can hold values, which are represented as sequences
of bits (binary digits). Each memory location (byte)
has an address.

11
amount ! 12

13
14
15

numQuarters ! 16

17

7



When a program is loaded into memory, each variable
is associated with a particular memory location and its
value will be stored there. The variable’s name can be
viewed as standing for the address of the associated
memory location.

How much space is allocated for a variable depends
on the type of value it can store. In Java, integers get
4 bytes, characters get 2 bytes, etc.

8

Variables in Java

Each variable has three important attributes:

� a name that you chose;

� a value that you give it and that you can change;
and

� a type, which limits what kind of value it can hold.

A variable name (identifier) can be any sequence of
letters, digits, $,or _, but it cannot start with a digit
and cannot be a reserved word. It’s case sensitive.
Follow style guide and use descriptive names!

The type can be a Java primitive type such as int
(integers) or boolean (true/false), or an object/non-
primitive type defined by a class, such as Point or
String , or an array or interface .

A variable also corresponds to a particular location in
memory, but you don’t have to know which location
that is.

9

Declaring a Variable

When you want to use a variable in a Java program,
you must first tell Java what its name and type are.
This is called declaring the variable. E.g.

int age;

This declaration does the following:

� it reserves a storage location for the variable;

� it gives that location the name “age ” (so you can
refer to it later);

� it specifies what sort of values can be stored there,
in this case, integers only.

Similarly,

Point p1;

declares a variable p1 of type Point ; its value can
only be an object that is an instance of the class Point .

10

Initializing Variables

A variable must be given a value before you try to use
it (otherwise your program will produce nonsense).
E.g.

int age;

IO.println(age);

Giving a variable a first value to start from is called
initializing it.

You can declare a variable and initialize it in one state-
ment. E.g.

int age = 28;

11



Abstraction

In Computer Science/IT, we work a lot with abstrac-
tions.

An abstraction is a set of operations that is provided
to some users. How the operations are implemented
is hidden from the users. This is called information
hiding or encapsulation. All that the user knows is
how to invoke the operations (their names, parame-
ters, etc.) and what results and effects the operations
have. This is called the abstraction’s API (application
programming interface). A user can use the abstrac-
tion without knowing the details of its implementation.

When developing software systems that may involve
millions of lines of code, abstraction is very important.

12

Abstract Data Types

An abstract data type (ADT) is:

� a set of values that belong to the data type, e.g.
integers, strings, trees, etc.;

� a set of operations on these values, e.g. addition
for integers, concatenation for strings, etc.

Users of the ADT are told:

� how the operations can be invoked (name, pa-
rameters, etc.);

� what the operation’s preconditions are — what is
required for the operation to be possible, e.g. for
division, the divisor must not be 0;

� what the operation’s postconditions are — what
effects it has and what results it returns.

This is the API of the ADT.

How the ADT is implemented is kept hidden from the
users.

13

Primitive Numerical Data Types

The main primitive numerical data types in Java are:

� int , for positive and negative whole numbers,
e.g. 33, 0, -100001 .

An int is stored in a block of 4 bytes of memory
(32 bits). Since there is a fixed amount of space,
arbitrarily large (small) numbers cannot be repre-
sented. The range of values that can be stored in
an int goes from �231 (or �2;147;483;648)
to +231 � 1 (or +2;147;483;647). The num-
bers are stored in binary notation. These limits
are denoted by the constants Integer.MIN VALUE

and Integer.MAX VALUE.

14

� double , for positive and negative numbers with
a decimal fraction, possibly written in exponential
notation; actually called double-precision floating-
point numbers, e.g. 1002.5, -5.3507 ,
8.55e248 (i.e. 8:55� 10248), 3.76e-7 .

A double occupies 8 bytes of storage (64 bits).
The number is first normalized (i.e. written so that
the first non-zero digit comes immediately after
the decimal point, e.g. 246:55 becomes 0:24655
� 103), and the exponent is stored separately
from the significant digits (in reality, this is done
in binary notation). This allows a range of values
from approximately �1:7308 to +1:7308 with 15
significant decimal digits of accuracy.

So the range of values allowed is large, but preci-
sion is limited!

15



There are also several other primitive whole number
data types in Java; the whole set is:

type name storage range
byte 1 byte �27 to +27 � 1

short 2 byte �215 to +215 � 1

int 4 byte �231 to +231 � 1

long 8 byte �263 to +263 � 1

byte and short are used when memory use is a
concern. long is used to to get a larger range than
int . To write a long literal, append L, e.g. 3000000000L .

There is also another floating-point type: float , single-
precision floating-point, which uses less space but pro-
vides less precision than double . It occupies 4 bytes
of storage and provides approximately 7 significant
decimal digits of accuracy. To write a float literal,
append F, e.g. 2.3F .

16

Defining Constants

Sometimes, a program has to use a special value, e.g.

5280 (feet per mile)
40 (number of students in a class)

Just using the value in a program is confusing to the
reader. It looks like a “magic number”. We would like
to give the value a meaningful name.

In Java, constants are declared like variables, but the
final keyword is added, e.g.

final int FEET_PER_MILE = 5280;

final int N_STUDENTS = 40;

final double CAN_US_EXCH_RATE 1.5152;

final means that once the variable has been as-
signed a value, it cannot be changed.

17

So what we do is define the constant once at the be-
ginning, and then whenever we want to refer to the
value, we use the constant’s meaningful name instead.

Not only do such definitions make your program more
readable, but they can save a lot of trouble. If the
value needs to be changed, only one line needs to be
edited.

18

Characters

The basic building blocks of strings and text data are
characters. In Java, these are the values of the prim-
itive data type char . They include symbols such as
letters, digits, and special characters such as “space”,
“newline”, “backspace”, etc.

There are several commonly used character sets. Java
uses the Unicode character set (see Horstmann, app.
3), which employs 2 bytes per character and can rep-
resent the alphabets of most languages in common
use.

Other commonly used character sets are ASCII and
ISO-Latin-1 which use 1 byte per character. These
are essentially a subset of Unicode.

Input/output methods will generally convert automati-
cally between the different different sets as necessary.
But reading/printing of non-ASCII/ISO-Latin-1 charac-
ters may not be supported.

19



Letters, digits, and other printable characters can be
referred to by writing the character between single
quotes, e.g. ’a’, ’B’, ’9’, ’>’ .

Some special characters can be represented by an
escape sequence, e.g. newline by ’\n’ , tab by ’\t’ ,
etc.

Other characters are represented using their hexadec-
imal code, e.g. ’\u00E9’ for é.

The Character class supplies many useful methods
including toLowerCase(c) , toUpperCase(c) ,
isLetter(c) , isDigit(c) , isLowerCase(c) ,
isUpperCase(c) , isWhitespace(c) , etc.

Note that the char data type can also be used to store
unsigned integers in the range 0 to 216 � 1.

20

Character Strings

A character string is a sequence of 0 or more charac-
ters. A string can contain a word, a sentence, or any
amount of text.

In Java, character strings are objects that are instances
of the predefined class String . So String is not a
primitive data type like int .

String literals are written between double-quotes,
e.g. "Hi there!" , "R2d2" , "Yves\nLesperance" ,
" " , "" .

E.g.

double temperature = 21.5;

IO.print("The temperature today is ");

IO.println(temperature);

21


