
COSC 1020

Yves Lesp érance

Lecture Notes

Week 3 — API & Static Features

Recommended Readings:
Horstmann: Ch. 7 Sec. 6 & 7, Ch. 5 Sec. 2 & 4
Lewis & Loftus: Ch. 2 Sec. 6 & 7, Ch. 3 Sec. 2 & 4
Horstmann may be hard to follow!

Modules

When you program an app, you use various compo-
nents that have already been implemented by other
programmers, e.g. in MkChange, we use IO .

These components are abstractions that you can use
without knowing how they have been implemented. In
Java, abstractions are defined as classes.

The simplest kind of class is called a module, e.g. IO .
A module provides:

� static methods, i.e., operations that belong to
the class and can be called by users (without them
knowing their implementation), e.g. IO.println ;

� static constants, whose values can be retrieved
by users, e.g. Integer.MAX INT ;

� static variables, whose values can be retrieved
and changed by users, e.g. IO.fillChar .

1

All of these features are static and belong to the
class. You refer to them by
ClassName:constantOrV ariableName

ClassName:methodName(parameters)

The methods and fields of a class are related, e.g. for
IO all are for doing input/output and formatting. The
class serves to group them together.

The class also hides the details of how the opera-
tions are implemented from users of the class. The
class may contain other methods and fields that are
not public, i.e. not made available to the users. Infor-
mation on the public methods and fields is collected
in the class’s API, which the users can consult. The
rest of the class’s definition is private and hidden from
users.

2

There is also another kind of class where the user
creates many instances or customized versions of the
class template. These instances are called objects.
Such classes have non-static methods and fields.

This week we only look at modules. Let’s go over the
API of the IO class.

3

Methods Descriptions/Headers

A method description/header in an API specifies:

� the name of the method,

� the names and types of parameters it takes,

� the type of result it returns — if there is none,
void is used,

� whether it is an instance or class (static) method.

E.g.
static void println(double value)

static void println(double value,

java.lang.String fd)

static double readDouble()

4

Parameters

When we call a method, often need to pass some
data to it. The method can support this by taking pa-
rameters. E.g. we pass the number to be printed to
println through its value parameter.

The parameters are declared in the header of the method
which appears in the API. Both the parameter name
and its type are given.

5

When you call a method, you supply an argument or
actual parameter for each formal parameter in the
method header. Arguments are associated to param-
eters by the order in which they appear. The number
and type of arguments must be compatible with that
of the parameters. E.g.

double radius, circumference;

IO.print("Enter circle radius: ");

radius = IO.readDouble();

circumference = 2 * Math.PI * radius;

IO.print("The circle’s circumference is ");

IO.println(circumference, ".2");

When a method is called, first the values of the ar-
guments are assigned to the formal parameters, and
then the method is executed.

6

Method Signature

The signature of a method is the number and types of
its parameters and their ordering. E.g.

repeat : (int, char)

1st IO.println : ()
7th IO.println : (double)
8th IO.println : (double, String)
11th IO.println : (long)
12th IO.println : (long, String)
etc.

A class may provide several methods with the same
name if the signatures of the methods are different.
This is called overloading.

To decide which overloaded method to call, the com-
piler looks at the number and types of the arguments.

7

Formatted Output

The IO class’s print and println methods allow
you to print data in a specified format. The desired
format is specified as an additional string argument.

IO.print(x," w.d") will print x right-justified with d
decimal places in a field of w characters; e.g.

double y = 4.3333333;

IO.print(y,"8.3");

will print 4.333 .

You can leave out the w or .d part of the format, e.g.

IO.print(y,".1");

will print 4.3 .

8

You get thousands separators by putting a comma in
the format descriptor, e.g.

IO.print(1234567,"12,");

will print 1,234,567 .

To left-justify the output, use the L format flag, e.g.

IO.print(1234567,"L12,");

will print 1,234,567 .

IO.print("John Smith","L20");

will print John Smith .

See the type package documentation for other fea-
tures.

9

Boolean Expressions

Often, our programs will have to perform different ac-
tions depending on whether some condition is true or
false, e.g.

if (age <= 17)

fare = 5.0;

else

fare = 8.0;

or verify that a required condition holds at some point
in the program, e.g. in input validation

IO.print("Enter the amount in cents: ");

int amount = IO.readInt();

IO.require(amount < 100,

"Amount must be less than 100");

The condition may be quite complex. Such conditions
are represented by boolean expressions.

10

Relational Operators

Simple boolean expressions can be obtained by com-
paring two numerical or char values using a relational
operator, e.g.

x < y

x >= 0

age == 17

The relational operators are:

== equal to
!= not equal to
< less than
<= less than or equal to
> greater than
>= greater than or equal to

Note: you cannot compare strings or objects using
these.

11

Comparing Floating-Point Numbers

Note that because floating-point numbers have lim-
ited precision, you have to be careful when testing for
equality. You probably want to consider two such num-
bers x and y equal if they are close enough, i.e. if

jx� yj � �:

You may want to divide by the magnitude because
precision decreases with it:

jx� yj

max(jxj; jyj)
� �:

This can be coded as

Math.abs(x-y) <=
EPSILON * Math.max(Math.abs(x),Math.abs(y))

12

Logical Operators

More complex boolean expressions can be built using
logical operators, e.g.

13 <= age && age <= 17
(13 <= age && age <= 17) || age >= 65
!(13 <= age && age <= 17)

The logical operators are:

&& conjunction - and
|| disjunction - or
! negation - not

Note that as in logic, ! has higher precedence than
&&, which has higher precedence than || . So

p && q || !p && r

is interpreted as

(p && q) || ((!p) && r)

If you don’t want this interpretation, you must add paren-
theses.

13

The && and || operators are evaluated left to right
and the evaluation stops as soon as the answer can
be determined; this is called lazy or short-circuit eval-
uation, e.g.

teen || student

It can be used to avoid errors such as division by 0,
e.g.

d != 0 && n/d > 1

There is a primitive type boolean and you can also
declare boolean variables (flags), e.g.

boolean senior = age >= 65;

boolean child = age < 13;

boolean discount = senior || child;

But avoid the excessive use of boolean variables!

14

