
COSC 1020

Yves Lesp érance

Lecture Notes

Week 9 — Inheritance & Polymorphism

Recommended Readings:
Horstmann: Ch. 9 Sec. 1 to 3 & Ch. 11
Lewis & Loftus: Ch. 7 Sec. 0 to 4

Inheritance

Often, we need to define a class that is similar to
an existing class; it just adds a few new attributes or
methods, or implements existing methods differently.

Instead of having to define the new class from scratch,
OOP supports declaring the new class as a subclass
or specialization of the old one.

Then the subclass inherits all the attributes and meth-
ods of the original class, can add new ones, as well
as override the implementation of existing methods.

This is called inheritance.

We say that the subclass is a the superclass.

Code reuse is important in software engineering. This
saves time and you don’t have to keep track of all the
places where the same code appears so you keep
them “in sync”.

1

Can represent is-a/subclass relationships in UML class
diagrams.

E.g. RewardCard is a CreditCard ,
GlobalCredit has a collection of CreditCard .

E.g. a hierarchy of classes:
Undergrad is a Student ,
Grad is a Student ,
MSCis a Grad ,
PHDis a Grad .

The class Undergrad is a subclass or specialization
of Student . Inversely, we say that Student is a su-
perclass or generalization of Undergrad .

Every instance of a class is also an instance of all
it superclasses (similar to sets). So an instance of
Undergrad is also an instance of Student . An in-
stance of MSCis also an instance of Grad and Student .

2

Since RewardCard is a subclass of CreditCard , it
inherits CreditCard ’s methods, e.g. pay, getNumber ,
etc., and fields (including encapsulated attributes).

RewardCard also defines some new methods, e.g.
getRewardPoints and fields/attributes.

3



import type.lang.*;
import type.lib.*;
public class CardTest
{ public static void main(String[] args)

{ CreditCard cc1 = new CreditCard(703,"John");
IO.println("name: " + cc1.getName());
IO.println("bal: " + cc1.getBalance());
IO.println(cc1.toString());
cc1.charge(120.0);
cc1.charge(70.0);
IO.println(cc1.getBalance());
cc1.pay(50.0);
IO.println(cc1.getBalance());
IO.println();
RewardCard rc1 = new RewardCard(704,"Paul",2000.0);
IO.println("name: " + rc1.getName());
IO.println("bal: " + rc1.getBalance());
IO.println(rc1.toString());
rc1.charge(120.0);
IO.println("bal: " + rc1.getBalance());
IO.println("points: " + rc1.getRewardPoints());
rc1.charge(70.0);
IO.println("bal: " + rc1.getBalance());
IO.println("points: " + rc1.getRewardPoints());
rc1.pay(50.0);
IO.println("bal: " + rc1.getBalance());
IO.println("points: " + rc1.getRewardPoints());
rc1.credit(70.0);
IO.println("bal: " + rc1.getBalance());
IO.println("points: " + rc1.getRewardPoints());
rc1.redeemPoints();
IO.println("bal: " + rc1.getBalance());
IO.println("points: " + rc1.getRewardPoints());

}
}

4

zebra 315 % java CardTest
name: John
bal: 0.0
CARD [NO=000703-8, BALANCE=0.00]
190.0
140.0

name: Paul
bal: 0.0
RWRD [NO=000704-7, BALANCE=0.00, POINTS=0]
bal: 120.0
points: 6.0
bal: 190.0
points: 9.0
bal: 140.0
points: 9.0
bal: 70.0
points: 6.0
bal: 70.0
points: 0.0
zebra 316 %

5

Overriding Methods

Sometimes when we define a subclass, a method in-
herited from the superclass is inappropriate and we
want to change it. We can do this by providing a new
definition for the method in the subclass. The new
definition overrides, i.e. replaces the inherited one.

E.g. in RewardCard :
toString is overridden to display the reward points,
charge is overridden to increment the reward points,
credit is overridden to decrement the reward points.

6

Overloaded vs Overridden Methods

It is important to distinguish between overloaded and
overridden methods. As we have seen earlier, we can
define several versions of a method that work with dif-
ferent types of arguments. This is called overloading
the methods. E.g. the overloaded constructors:
CreditCard(int no, java.lang.String aName)
CreditCard(int no, java.lang.String aName, double aLimit)

Another e.g.:

We already have

boolean setLimit(double newLimit)

We could add:

boolean setLimit()

which sets the limit to a default value.

Then the user could write:

cc1.setLimit(2000.0);
cc1.setLimit();

7



The signature of a method is the number and types of
its parameters and their ordering. E.g.

1st CreditCard constructor: (int,String)
2nd CreditCard constructor: (int,String,double)

original setLimit : (double)
2nd setLimit : ()
perhaps a 3rd setLimit : (String)

When overloading methods, you are defining several
methods with the same name that will be available in
the same class. This is only possible when the signa-
tures of the methods are different.

To decide which overloaded method to call, the com-
piler looks at the number and types of the arguments.
If the signatures are the same, it cannot determine
which method is called.

8

In contrast, overridden methods have the same sig-
nature. The method in the subclass replaces that in
the superclass (even though the superclass’s version
is still available using super ). E.g.

class Parent with methods:

void meth() #1
void meth(int n) #2, overloads #1

class Offspring extends Parent with methods:

void meth(int n) #3, overrides #2

In an app, can write:

Parent o1 = new Parent();
Offspring o2 = new Offspring();
o1.meth(); // calls #1
o1.meth(31); // calls #2
o2.meth(); // calls #1
o2.meth(29); // calls #3

Note: constructors are never inherited.

9

Polymorphism

In OOP, classes correspond to types. When a class
Co is a subclass of a class Cp, then the type Co is a
subtype of Cp. If you have a reference to an instance
of Co, it can be assigned to a variable of type Cp and
manipulated as if it were an instance of the class Cp.
E.g.

CreditCard cc1;
cc1 = new RewardCard(704,"Paul",1000.0);

Student s1;
s1 = new Undergrad(

"Mary",201234567,"compsci",1);

The ability to use a value of a more specific type where
one of a more general type is expected is called poly-
morphism, since the general type comes in “many
forms”.

You can also assign a variable declared as belonging
to a superclass (a supertype) to a variable of a sub-
class (a subtype) provided you perform a type cast.
E.g.

10

CreditCard cc1;

cc1 = new RewardCard(704,"Paul",1000.0);

RewardCard rc1;

rc1 = (RewardCard) cc1;

Student s1 = new Undergrad(

"Mary",201234567,"compsci",1);

Undergrad u1 = (Undergrad) s1;

Note that if the object being cast does not belong to
the type given (e.g. s1 is not an instance of Undergrad

or one of it’s subclasses) an exception will be thrown
when the program is run.

To be safe, you can check whether the object belongs
to the right class using the instanceof operator be-
fore you perform the cast, e.g.

if (s1 instanceof Undergrad)

u1 = (Undergrad) s1;

11



import type.lang.*;
import type.lib.*;
public class GlobalCreditEg
{ public static void main(String[] args)

{ GlobalCredit yc = new GlobalCredit("York Credit",10);
IO.println(yc.toString());
yc.issue(703,"John",2000.0,’O’);
CreditCard cc1 = yc.getFirst();
IO.println(yc.toString());
yc.issue(704,"Paul",1000.0,’R’);
CreditCard cc2 = yc.getNext();
yc.issue(705,"Jane",2500.0,’R’);
CreditCard cc3 = yc.getNext();
IO.println(yc.toString());
boolean res;
res = yc.charge(cc2.getNumber(),500.0);
IO.println("charging 500.0 to 704 = " + res);
res = yc.charge(cc1.getNumber(),600.0);
IO.println("charging 600.0 to 703 = " + res);
for(CreditCard cc = yc.getFirst(); cc != null;

cc = yc.getNext())
{ IO.println(cc.toString());
}
res = yc.charge(cc2.getNumber(),800.0);
IO.println("charging 800.0 to 704 = " + res);
res = yc.charge(cc2.getNumber(),400.0);
IO.println("charging 400.0 to 704 = " + res);
for(CreditCard cc = yc.getFirst(); cc != null;

cc = yc.getNext())
{ IO.println(cc.toString());
}

12

res = yc.pay(cc1.getNumber(),200.0);
IO.println("paying 200.0 to 703 = " + res);
res = yc.redeemPoints(cc2.getNumber());
IO.println("redeeming points on 704 = " + res);
for(CreditCard cc = yc.getFirst(); cc != null;

cc = yc.getNext())
{ IO.println(cc.toString());
}
res = yc.charge(cc3.getNumber(),800.0);
IO.println("charging 800.0 to 705 = " + res);
for(CreditCard cc = yc.getFirst(); cc != null;

cc = yc.getNext())
{ if(cc instanceof RewardCard)

{ RewardCard rc = (RewardCard) cc;
IO.println(rc.getNumber() + " " +

rc.getRewardPoints());
}

}
res = yc.getFirst().charge(200.0);
IO.println("charging 200.0 directly to 703 = " + res);
IO.println(yc.getFirst().toString());

}
}

13

zebra 325 % java GlobalCreditEg
Global Credit Company [York Credit]: CARDS=0/10
Global Credit Company [York Credit]: CARDS=1/10
Global Credit Company [York Credit]: CARDS=3/10
charging 500.0 to 704 = true
charging 600.0 to 703 = true
CARD [NO=000703-8, BALANCE=600.00]
RWRD [NO=000704-7, BALANCE=500.00, POINTS=25]
RWRD [NO=000705-6, BALANCE=0.00, POINTS=0]
charging 800.0 to 704 = false
charging 400.0 to 704 = true
CARD [NO=000703-8, BALANCE=600.00]
RWRD [NO=000704-7, BALANCE=900.00, POINTS=45]
RWRD [NO=000705-6, BALANCE=0.00, POINTS=0]
paying 200.0 to 703 = true
redeeming points on 704 = true
CARD [NO=000703-8, BALANCE=400.00]
RWRD [NO=000704-7, BALANCE=900.00, POINTS=0]
RWRD [NO=000705-6, BALANCE=0.00, POINTS=0]
charging 800.0 to 705 = true
000704-7 0.0
000705-6 40.0
charging 200.0 directly to 703 = true
CARD [NO=000703-8, BALANCE=600.00]
zebra 326 %

14

Dynamic Method Binding

When you call an overridden method on a reference
of polymorphic type (e.g. cc1.toString() ), the ver-
sion of the method that gets called depends on the
actual type of the object referred to at run time; it is
not necessarily that of the declared type. E.g.

CreditCard cc1;
cc1 = new CreditCard(703,"John",2000.0);
IO.println(cc1.toString());// calls CreditCard’s
cc1 = new RewardCard(704,"Paul",1000.0);
IO.println(cc1.toString());// calls RewardCard’s

This approach to selecting which version of an over-
ridden method to call is named dynamic or late method
binding. The term polymorphism is often used to refer
to this specific feature of polymorphic method calls.

15



The Class Object

There is a root to the class hierarchy in Java, a class
called Object . Every class that is defined without a
superclass being specified is automatically made to
be a subclass of Object .

Because it is so general, the class Object does not
provide much. Its most useful methods are discussed
below. It is generally a good idea to override these
when you define a class.

String toString() generates a string represent-
ing the object, by default ClassOfObject@AddressOfObject,
e.g. type.lib.StockNS@86d4c1 . This is not very
meaningful and we have seen how it is overriden in
Stock .

16

boolean equals(Object other) tests whether this
instance is equal to other . By default it returns true
iff this and other are the same reference. It is bet-
ter to override it to make a comparison based on the
objects’ attributes, e.g. as done in Stock .

Object clone() returns a new object which is a
copy of this instance. By default this is a shallow copy,
i.e. attributes which are themselves objects are not
cloned, only their references are copied. If an object
has attributes which are mutable objects, it is gener-
ally better to make a deep copy.

The Object class is also useful for defining very gen-
eral data structures, e.g. a queue whose elements
are of type Object , a Vector of Object s, etc. If
you have such a data structure, then you can put any
kind of object into it, Stock s, Student s, Integer s
(wrapper class), etc.

17


