
An IndiGolog Robot Control Exercise
Yves Lespérance

Department of Computer Science
York University

April 30, 2003

Write an IndiGolog program to control a simulated robot that delivers packages on a floor of a
building. Your controller will use a simple graph representation of the area in which the robot
moves. To test your program, use the following graph (representing the department’s old 2nd floor
lab area in CCB):

h

h

h

h

h h

h

h

h h

@
@
@

XXXXXXXXXXXXX

4

5

ccb270

labDoorS

ulyaOffice

referenceRoomDoor

referenceRoom

ulyaOfficeDoor

2 2

6

6

2 6

1
4

ccb270Door

labDoorN

roboticsLab graphicsLab

Assume that the robot can perform the following primitive actions:

� goTo(Place) , i.e. move the robot to the place specified, which need not be adjacent to
where the robot is currenty locate (in onegoTo action, the robot can move several edges
away);

� pickUp(Package) , have the robot pick up the specified package; the package must be at
the place where the robot is currently located for this action to be possible; the robot may
have several packages on board at the same time;

� dropOff(Package) , have the robot drop off the specified package at the place where
the robot is currently located; the package must be on board the robot for this action to be
possible.

Implement an appropriate action theory. Your program should use the following fluents:

� locatedAt(RobotOrPackage) , a functional fluent whose value is the place where the
robot or package specified is located in the situation;

1



� onBoard(Package) , a predicate fluent that holds iff the specified package is on board the
robot in the situation;

� deliveryOrdered(Package,FromPlace,ToPlace) , a predicate fluent that holds
iff the package must be delivered by the robot from the origin place to the destination place
specified;

� delivered(Package) , a predicate fluent that holds iff the package has been delivered by
the robot;

� distanceTravelled , a functional fluent whose value is the total distance travelled so far
by the robot.

Note that IndiGolog does not really support predicate fluents, and that these have to be implemented
as binary-valued functional fluents, which may take the valuestrue or false .

Use the following initial situation axioms to test your program:

initially(locatedAt(robot),roboticsLab).
initially(locatedAt(package1),graphicsLab).
initially(locatedAt(package2),ccb270).
initially(locatedAt(package3),ulyaOffice).
initially(deliveryOrdered(package1,graphicsLab,ulyaOffice),true).
initially(deliveryOrdered(package2,ccb270,graphicsLab),true).
initially(deliveryOrdered(package3,ulyaOffice,referenceRoom),true).
initially(distanceTravelled,0).

Your program should include two procedures for the robot to perform its task:

� A proceduredeliverRandom that gets the robot to make all the deliveries that have been
ordered, without trying to minimize the distance travelled by the robot; the procedure simply
chooses packages at ramdom (i.e. non-deterministically) and delivers them.

� A proceduredeliverOptimal(Increment) that gets the robot to make all the deliv-
eries that have been orderred and minimizes the distance travelled by the robot, so that it is
no more thanIncrement – 1 units from the optimal distance. This procedure should be
implemented by performing iterative deepening search. In this method, one sets an initial
limit for the paths to be considered, in this case, a distance travelled of 0, and searches for a
path (sequence of action) that achieves the objective; if a path is found, it is returned; if none
is found the limit is increased by the specified increment and the search is performed again.
Thus, progressively longer path/sequence of actions are considered. (See the URL below for
examples involving search.)

Note that in implementing these procedures, you need to determine whether a place (a node in
the graph) is reachable from another place, and what is the shortest distance/path between the two
places (we assume that thegoTo(Place) action uses the shortest path). You should implement a

2



Prolog predicatedistanceBetween(Place1,Place2,Dist) to compute the shortest dis-
tanceDist betweenPlace1 andPlace2 . Thus, you don’t need to compute shortest paths in
IndiGolog, you can do it in Prolog. But indeliverOptimal(Increment) , your program
must use IndiGolog search to find the best sequence of order pick up and drop off to deliver all the
orders in the shortest distance.

Test both procedures on the initial situation (and graph) specified above. Hand in a trace that
shows the sequence of actions performed and the total distance travelled. You can obtain this by
running:

indigolog([deliverRandom,?(distanceTravelled = Dist)]).

In addition, your program should also include a third procedureplan(Goal) that finds a
sequence of actions that achieves the given goal and executes it. The goal can be an arbitrary
IndiGolog condition. This procedure should also use iterative deepening search, but here you should
only minimize the number of actions performed. Perform the following tests:

indigolog(plan(onBoard(package1)=true)).
indigolog(plan(and((onBoard(package1)=true),

(locatedAt(package1)=roboticsLab)))).

Finally, modify the program to handle new orders while the program is running. For this add a
new exogenous action

makeNewOrder(PackageID,PickUpLocation,DropOffLocation)

and modify the program to deal with it. When a new order is made,deliverOptimal should
compute a new shortest delivery route to deliver the new order as well as the old orders. Test this
feature.

Implement your program using the implementation of IndiGolog found in
http://www.cs.yorku.ca/˜lesperan/IndiGolog/ ; see this URL for the interpreter,
some examples, and instructions on how to write and run programs. Hand in a listing of your
program’s code with appropriate documentation and your test runs.

3


