
COSC 1020

Yves Lesp érance

Lecture Notes

Week 12 — Implementing Classes II

Recommended Readings:
Horstmann: Ch. 7 and Ch. 2 Sec. 8
Lewis & Loftus: Ch. 5 Sec. 0 to 2

Class Methods

Suppose we want to add a method isLegal(int

no) to the CreditCard class to allow users to check
whether the passed number would be a legal credit
card number (before calling the constructor):

public static boolean isLegal(int no)

{ return (0 < no && no <= 999999);

}

This cannot be an instance method because there is
no instance yet. We can make it a class method. It
would belong to the class, not to one of its instances.
The method must be called on the class, e.g.

if (CreditCard.isLegal(703)) ...

In Java, class methods (and attributes) are declared
static .

1

Similarly, for the class Person discussed earlier, we
could define a class method that returned the maxi-
mum legal age:

public static int getUpperAgeLimit()

{ return 150;

}

To use it, you write for e.g.
if (a > Person.getUpperAgeLimit())

2

Class Attributes

Suppose we wanted to add a counter to the class
Person to keep track of how many Person objects
have been created. This counter would have to be a
class attribute/variable.

To declare it, we would add

private static int count = 0;

to the class definition. We would also change the con-
structors to increment the counter, e.g.

public Person()

{ ... // as before

count++;

}

And we would add a method:

public static int getCount()

{ return count;

}

3

Then, we could use these as follows:

IO.println("Person count is "
+ Person.getCount());

Person p1 = new Person();
IO.println("Person count is "

+ Person.getCount());
Person p2 = new Person();
IO.println("Person count is "

+ Person.getCount());

4

Class Constants

A class may also define some constants for its users.
For e.g., the class Stock defines the constant TSE URL,
to store the URL used by the refresh method to estab-
lish a connection with the TSE. To declare TSE URL

for e.g., we would write

public static final String TSE_URL =

"http://tse.com";

to the Stock class definition.

These are constant attributes of the class, not of its in-
stances. You must refer to them using the class name,
e.g.

IO.println(Stock.TSE URL);

5

Why Define a Class?

There are two cases where defining a class is useful.

1. Your program needs to work with some kind of data,
e.g. Persons. You want to group together the data and
the operations that manipulate it.

You also want to hide the details of how the data is
represented and how the operations are implemented
from users of the class. The class will make some op-
erations public, i.e. available to the users, and provide
information on how to use them. This is the class’s
interface. The rest of the class’s definition is private
and hidden from users.

When such a class allows many different possible im-
plementations, one says that the class defines an ab-
stract data type; e.g. stack, list, binary tree, etc.

6

2. You want to group together a set of related opera-
tions in a module, e.g. the Math class. In this case,
class users won’t create instances of the class. The
methods are associated with the class itself. In Java,
they are labeled static .

Here too, the class supplies some public operations
to users and provides information on how to use them
in its interface. The rest of its definition is private.

In both cases, we say that the class encapsulates, i.e.
hides, the details of its definition.

7

javadoc : A Documentation Utility

Important to have good documentation of classes’ APIs.

Can use javadoc utility to help produce this.

You put special comments in the class’s file and then
run javadoc on it to produce an HTML API documen-
tation file.

javadoc comments start with /** . Put one immedi-
ately before each method, non-private field, and be-
fore the class itself.

Special tags (must start line):

@paramparameter-name description

@return description

@exception fully-qualified-class-name description

etc.

8

Can include other HTML tags e.g. <code> , <it> ,
etc.

See lab handbook and Horstmann for examples.

javadoc automatically adds links to existing classes.

When designing a class, document API using javadoc

before writing code.

Use normal comments to document class implemen-
tation.

9

Steps to Class Implementation

Study API.

Write 1st version of class with fields and methods re-
quired by API, leaving out implementation for now;
document using javadoc .

Write test harness that tests every feature of the class.

Identify private attributes and declare them.

Implement constructors, accessors, mutators, stan-
dard methods, specialized methods. Avoid redundancy
by delegating and defining private methods.

Add new test cases as you implement methods. Test
methods as early as possible. Fix bugs and run all
tests again (bug fix may introduce new bugs).

10

Algorithms

As we saw in week 1, an algorithm is an unambigu-
ous, executable, and terminating method for solving a
problem.

There may be many different algorithms for solving a
given problem, some efficient and some not.

Developing algorithms and analysing their efficiency
is an important part of computer science.

11

E.g. Problem: Finding GCD

An integer d is a divisor of an integer n iff there exists
an integer k such that n = d� k.

g is the greatest common divisor of n and m iff g is a
divisor of both n and m and there is no g0 > g that is
also a divisor of both n and m.

E.g. gcd(15;55) = 5

Why?
Identify prime factors:
15 = 3� 5

55 = 5� 11

12

Obvious Algorithm for Finding GCD

Try all integers between smallest of n and m and 1;
first one that is a divisor of both n and mis gcd .

i = min(n,m);
while(n % i != 0 | | m % i != 0)
{ i--;
}
gcd = i;

Running time is proportional to k , where k = min(n,m) .

13

Euclid’s Algorithm for Finding GCD

Observe that gcd(n;m) = gcd(m;n mod m).

while(true)
{ r = n % m;

if(r == 0)
{ break;
}
n = m;
m = r;

}
gcd = m;

Running time is proportional to less than log(k) , where
k = min(n,m) .

14

E.g. Problem: Checking whether an
Integer is Prime

A positive integer n is prime iff it has exactly 2 different
divisors, 1 and n itself.

E.g. primes: 2, 3, 5, 7, 11, 13, etc.

15

Obvious Algorithm for Primality Testing

Count number of divisors of n between 1 and n itself.

divisors = 0;
for(i = 1; i <= n; i++)
{ if(n % i == 0)

{ divisors++;
}

}
isPrime = (divisors == 2);

Running time is proportional to n, O(n).

16

A Better Algorithm for Primality Testing

Only check 2 and odd numbers.

Only check up to
p
n

Return false as soon as an extra divisor is found.

if(n <= 1)
{ isPrime = false;
}
else if(n == 2)
{ isPrime = true;
}
else if(n % 2 == 0)
{ isPrime = false;
}
else
{ isPrime = true;

limit = (int) (Math.sqrt(n)+1);
for(i = 3; i <= limit; i+= 2)
{ if(n % i == 0)

{ isPrime = false;
break;

}
}

}

Running time is proportional to
p
n, O(

p
n).

17

