CSE 1030

Yves Lespérance

Lecture Notes
Week 12 — Linked Data Structures

Recommended Readings:
Savitch Ch. 15

Linked Data Structures
Linked data structures provide an alternative.
They store each data item in a small packet called a node.

Nodes are linked to other nodes by storing references to the related
nodes in the source node.

Storage is allocated one piece at a time, as needed.

Motivation: Issues Using Arrays

Arrays store their elements contiguously in one memory block and the
location of each element is known in advance.

Any element can be accessed in constant time.

But, inserting an element requires shifting subsequent elements, which
is O(n) in general.

When array gets full, insertion requires getting a larger array and copy-
ing content of old array into the new one.

Linked Lists
A list of items can be represented by a linked list data structure.
E.g. a shopping list as in Savitch’s Display 15.1.

A simple linked list can be represented by an object with an attribute
head that stores a reference to the first node in the list.

Each node in the list contains a data item and a link/reference to the
next node in the list. Nodes are instances of an inner class:

private class Node<T>

{
private T item;
private Node<t> link;

// constructors omitted

The link of the last node in the list is set to null to indicate the end of
the list.

To represent an empty list, we set the head attribute to null.

See LinkedList2 code in Savitch’s Display 15.7.

To Delete the Item at the Front of a Linked List

To delete the item at the front of a linked list you simply make the head
point to it’'s successor:

head = head.link;

The list must not be empty!

Adding a New Item at the Front of a Linked List

To add a new item at the front of a linked list you create a new node,
set its data, make its link point to the current head node, and make the
head of the list point to it.

Node n = new Node();
n.item = data;
n.link = head;

head = n;

Note that this works even if the list is empty.

Traversing a Linked List

To traverse a linked list, you set a reference to the head, process a
node, and then advance the reference to the next node, and so on,
until you reach the end of the list (indicated by null).

Node position = head;
while (position != null)
{
<PROCESS NODE AT position>
position = position.link; %advance to next node

Iterators for Linked Lists

To allow the client to traverse and manipulate a linked list at will, we
can define a linked list iterator class.

The iterator has an attibute position that points to the current node
in the linked list. Initially, position points to the head node.

One advances the iterator by calling the method next (), which does
position = position.link

This is only allowed if there is a next node. One can check this by
calling the boolean method hasNext ().

To make deletion and insertion easier, it is convenient to keep a refer-
ence to the predecessor of the current node in an attribute previous.

Innext (), wedoprevious = position before advancing position.

See Savitch’s Display 15.17.

Inserting a New Item at the Current Position

To add a new item at the current position, you create a new node, set
its data, make its link point to the current node, and make the curent
node’s predecessor point to it:

Node n = new Node();
n.item = data;
n.link = position;
previous.link = n;

Insertion at the head must be handled as a special case, as seen ear-
lier.

Deleting the Node at the Current Position

To delete the node at the current position you simply make the current
node’s predecessor point to its successor, i.e.

previous.link = position.link;
The successor of the current node becomes the new current node.

Deletion of the head node must be handled as a special case, as we
have seen earlier.

Making a Copy

We traverse the existing list, making a copy of each node, and linking
them up.

public LinkedList(LinkedList otherList)
{
if (otherList == null)
throw new NullPointerException();
if (otherList.head == null)
head = null;
else
head = copyOf (otherList.head);

Making a Shallow Copy

private Node copyOf (Node otherHead)
{
Node position = otherHead;//moves down other’s list.
Node newHead; //will point to head of the copy list.
Node end = null; //positioned at end of new growing list.

newHead = new Node(position.data, null); // copy lst node
end = newHead;
position = position.link;
while (position != null)
{//copy node at position to end of new list.
end.link = new Node(position.data, null);
end = end.link;
position = position.link;
}

return newHead;

Generic Linked List

Can also define a generic LinkedList<T> where the data item type
is a parameter T. See Savitch Display 15.8.

Making a Deep Copy

private Node copyOf (Node otherHead)

{

Node position = otherHead;//moves down other’s list.
Node newHead; //will point to head of the copy list.
Node end = null; //positioned at end of new growing list.

newHead = new Node(new DataClass(position.data), null);

end = newHead; //use appropriate data class e.g. Student, Date
position = position.link;
while (position != null)

{//copy node at position to end of new list.
end.link = new Node(new DataClass(position.data), null);
end = end.link;
position = position.link;

}

return newHead;

Variations on Linked Lists

There are many!

A doubly linked list stores links to both the successor and predecessor

nodes in each node. This means that they can be traversed forwards
and backwards. Insertion and deletion also become easier.

A Stack is a list where one can only insert (push) and remove (pop)
at the front. This can be implemented using a linked list with restricted
operations. It can also be implemented using an array.

A Queue is a list where one can only insert at the back and remove at
the front. This can be implemented using a linked list that keeps both

head and tail references. An array implementation is also possible.

16

Trees
A tree is a data structure made of nodes.
Each node stores a data item.
Each node has zero or more children nodes.

Each node has exactly one parent, except the root node, which has no
parent.

Trees have a recursive structure. Each child of a node is also a tree.
Tree algorithms are naturally defined by recursion.

Binary Search Trees

A binary search treee is a special kind of binary tree where:

1. all data items in the left child are < the data item in the root;

2. all data items in the right child are > the root data item;

3. the left child and the right child are binary search trees, i.e., also
satisfy 1. and 2.

Binary Trees
A binary tree is a tree where each node has at most two children.

Three common ways of traversing a binary tree:

preorder: process root, then traverse left child, then traverse right
child;

inorder: traverse left child, then process root, then traverse right child;

postorder: traverse left child, then traverse right child, then process
root.

Can be used to represent a set.

Searching such a tree can be done very efficiently if all branches are
more or less the same length.

Adding an data item is also straightforward and can be done efficiently.
Deleting an item is more complicated, as the tree must be rearranged
while preserving the binary search tree property.

See IntTree example in Savitch Display 15.40.

Much more on data structures in CSE 2011!

20

