
CSE 1030

Yves Lespérance

Lecture Notes

Week 6 — Implementing Inheritance

Recommended Readings:

Van Breugel & Roumani Ch. 5 and Savitch Ch. 7, 8, and 9 and Sec.

13.1

Inheritance

Often, we need to define a class that is similar to an existing class;

it just adds a few new attributes or methods, or implements existing

methods differently.

Instead of having to define the new class from scratch, OOP supports

declaring the new class as a subclass or specialization of the old one.

Then the subclass inherits all the attributes and methods of the original

class, can add new ones, as well as override the implementation of

existing methods.

This is called inheritance.

We say that the subclass is a the superclass.

2

Code reuse is important in software engineering. This saves time and

you don’t have to keep track of all the places where the same code

appears so you keep them “in sync”.

E.g. RewardCard is a CreditCard.

Can represent is-a/subclass relationships in UML class diagrams.

3

E.g. a hierarchy of related classes:

Undergrad

Grad

MSC PHD

Student

dependency (uses)

inheritance (subclass)

The class Undergrad is a subclass or specialization of Student.

Inversely, we say that Student is a superclass or generalization of

Undergrad.

Every instance of a class is also an instance of all it superclasses

(similar to sets). So an instance of Undergrad is also an instance

of Student. An instance of MSC is also an instance of Grad and

Student.

4

public class Student
{ // instance attributes

private String name;
private long number;
//constructor
public Student(String aName, long aNumber)
{ this.setName(aName);

this.setNumber(aNumber);
}
// instance methods
public void setName(String aName)
{ this.name = aName;
}
public String getName()
{ return this.name;
}
public void setNumber(long aNumber)
{ this.number = aNumber;
}
public long getNumber()
{ return this.number;
}
public String toString()
{ return "Student[name=" + this.getName() +

",number=" + this.getNumber() + "]";
}

}

5

public class Undergrad extends Student
{ // instance attributes

// name and number are inherited from Student
private String major;
private int year;
//constructor
public Undergrad(String aName, long aNumber,

String aMajor, int aYear)
{ ...
}
// instance methods
// setName, getName, setNumber, & getNumbers
// are inherited from superclass Student
// new methods
public void setMajor(String aMajor)
{ this.major = aMajor;
}
public String getMajor()
{ return this.major;
}
public void setYear(int aYear)
{ this.year = aYear;
}
public int getYear()
{ return this.year;
}
// need to override toString method from Student

}

6

public class Eg
{ public static void main(String[] args)

{ Student s1 = new Student("John",202123456);
System.out.println("s1 is " + s1.getName());
Undergrad s2 = new Undergrad(

"Mary",201234567,"compsci",1);
System.out.println("s2 is "+s2.getName());//inherited
s2.setName("Mary Ellen");//inherited
System.out.println("s2’s year is " +

s2.getYear());//new method
}

}

7

Overriding Methods

Sometimes when we define a subclass, a method inherited from the

superclass is inappropriate and we want to change it (e.g., toString).

We can do this by providing a new definition for the method in the

subclass. The new definition overrides, i.e. replaces the inherited one.

E.g.

public class Undergrad extends Student
{ ...

// override toString method from Student
public String toString()
{ return "Undergrad[name=" + this.getName() +

",number=" + this.getNumber() +
",major=" + this.getMajor() +
",year=" + this.getYear() + "]";

}
...

}

8

public class Eg
{ public static void main(String[] args)

{ Student s1 = new Student("John",202123456);
System.out.println(s1.toString());//calls Student’s
Undergrad s2 = new Undergrad(

"Mary",201234567,"compsci",1);
System.out.println(s2.toString());//calls Undergrad’s

}
}

Note that the private attributes of the superclass, e.g. name, are not

visible in the subclass; you must use a public method to retrieve their

value, e.g. getName().

9

The keyword super refers to the object as an instance of the super-

class. It can be used to invoke overridden methods. E.g. another way

to define toString in Undergrad:

public class Undergrad extends Student
{ ...

// override toString method from Student
public String toString()
{ // call superclass’s method

String s = super.toString();
// make appropriate changes & return
s = s.substring(s.indexOf("["),s.length()-1);
return "Undergrad" + s +

",major=" + this.getMajor() +
",year=" + this.getYear() + "]";

}
...

}

10

Overloaded vs Overridden Methods

It is important to distinguish between overloaded and overridden meth-

ods. As we have seen earlier, we can define several versions of a

method that work with different types of arguments. This is called over-

loading the methods. E.g. the overloaded constructors:

public Person(){...}
public Person(String n, int a){...}

Another e.g.: we already have

public void setYear(int aYear)
{ this.year = aYear;
}

11

We could add:

public void setYear(){
this.setYear(1); // default value

}

Then the user can write:

s1.setYear(); // sets year to 1
s1.setYear(n); // sets year to n

12

The signature of a method is the number and types of its parameters

and their ordering. E.g.

1st Person constructor: Person()

2nd Person constructor: Person(String,int)

original setYear: setYear(int)

2nd setYear: setYear()

perhaps a 3rd setYear: setYear(String)

When overloading methods, you are defining several methods with the

same name that will be available in the same class. This is only possi-

ble when the signatures of the methods are different.

To decide which overloaded method to call, the compiler looks at the

number and types of the arguments. If the signatures are the same, it

cannot determine which method is called.

13

In contrast, overriddenmethods have the same signature. The method

in the subclass replaces that in the superclass (even though the super-

class’s version is still available using super). E.g.

public class Parent
{ public void meth() // #1

{ ...
}
public void meth(int n) // #2, overloads #1
{ ...
}
...

}
public class Offspring extends Parent
{ public void meth(int n) // #3, overrides #2

{ ...
}
...

}
...
// in main
Parent o1 = new Parent();
Offspring o2 = new Offspring();
o1.meth(); // calls #1
o1.meth(31); // calls #2
o2.meth(); // calls #1
o2.meth(29); // calls #3

14

Inheritance and Attributes

As we saw previously, attributes defined in a superclass are inher-

ited by the subclass, but are not directly accessible (assuming they

are private). They can only be accessed through inherited public

methods.

You can also redefine an attribute in the subclass, but unlike for meth-

ods, the new attribute does not replace the original one. Instead, you

will have two attributes with the same name, with the one defined in

the subclass shadowing the one defined in the superclass. E.g.

15

public class Parent
{ private int att; ...

public setAtt(int n)
{ att = n;
} ...

}
public class Offspring extends Parent
{ private int att; ...

public void meth()
{ att = 4;// sets Offspring’s att

setAtt(3);// sets Parent’s att
} ...

}
// in main
Offspring o = new Offspring();
o.meth();

If the superclass’s attribute is not private, you can refer to it as super.att.

16

Constructors and Inheritance

An instance of a class C in a hierarchy is also an instance of all of C’s

superclasses (all the way to the top). This fits with the view of classes

as sets and the specialization relation as subset.

If an object is to be an instance of a class, then the class’s constructor

should be called when the object is created. For an instance of a class

C in a hierarchy, the constructor of C and the constructors of all of C’s

superclasses should be called. Java requires this.

You can call a constructor of C’s superclass by putting super(...)

in C’s constructor. This must be the first statement in C’s constructor.

E.g.

17

public class Student
{

private String name;
ptivate long number;

public Student()
{ this("UNKNOWN",-1);
}
public Student(String aName, long aNumber)
{ this.setName(aName);

this.setNumber(aNumber);
}
...

}

18

public class Undergrad extends Student
{ private String major;

private int year;

public Undergrad()
{ super();// calls Student’s 0 args constructor

this.setMajor("general");
this.setYear(1);

}
public Undergrad(String aName, long aNumber,

String aMajor, int aYear)
{ super(aName, aNumber);// calls Student’s

// 2 args constructor
this.setMajor(aMajor);
this.setYear(aYear);

} ...
}

// in main
Undergrad u = new Undergrad(

"John", 201234567, "compsci", 1);

19

If you leave out the call to the superclass’s constructor, Java automat-

ically inserts super() at the beginning of the subclass’s constructor,

i.e. a call to the superclass’s 0 arguments constructor.

If there are more than one superclass, each ancestor class’s construc-

tor is called in turn. E.g.

20

public class PartTimeUndergrad extends Undergrad
{ private double courseLoad;

//constructors
public PartTimeUndergrad()
{ super();// calls Undergrad’s 0 args constructor

this.setCourseLoad(2.5);
}
public PartTimeUndergrad(String aName, long

aNumber, String aMajor, int aYear, double aLoad)
{ super(aName, aNumber, aMajor, aYear);

// calls Undergrad’s 4 args constructor
this.setCourseLoad(aLoad);

}
...

}
// in main
PartTimeUndergrad p = new PartTimeUndergrad(

"John", 201234567, "compsci", 1, 3.5);

21

Constructors are never inherited.

However, if you don’t define a constructor for a class, Java automat-

ically provides a default 0 arguments constructor that initializes the

attributes to default values, 0 for numbers, false for boolean, and

null for objects.

22

Problem: define a method

public double calculateFees(

double courseload)

for Student and Undergrad which returns the fees to be paid by the

student depending on on his/her courseload.

Suppose that for students generally, the fees are $800 per course

and that for undergraduates, there is an additional incidental charge

of $100 for first year students and $150 for students in later years.

23

public class Student
{ ...

public double calculateFees(double courseload)
{ final double FEE_PER_COURSE = 800;

return FEE_PER_COURSE * courseload;
}
...

}
public class Undergrad extends Student
{ ...

// override Student’s calculateFees method
public double calculateFees(double courseload)
{ final double INCIDENTAL_FEE_Y1 = 100;

final double INCIDENTAL_FEE_Y_GT_1 = 150;
double fee = super.calculateFees(courseload);
if (year == 1)
{ fee = fee + INCIDENTAL_FEE_Y1;
} else
{ fee = fee + INCIDENTAL_FEE_Y_GT_1;
}
return fee;

}
...

}
// in main
Student s = new Student("Mary", 202345678);
System.out.println(s + " fees: " + s.calculateFees(4.5));
Undergrad u = new Undergrad(

"John", 201234567, "compsci", 1);
System.out.println(u + " fees: " + u.calculateFees(4.5));

24

We can use delegation in defining equals. E.g. in Rectangle, we

have:

public boolean equals(Object object)
{

boolean equal;
if (object != null && this.getClass() == object.getClass())
{

Rectangle other = (Rectangle) object;
equal = (this.getWidth() == other.getWidth()) &&

(this.getHeight() == other.getHeight());
}
else
{
equal = false;
}
return equal;

}

25

In GoldenRectangle,we can override this with:

public boolean equals(Object object)
{

boolean equal;
if (object != null && this.getClass() == object.getClass())
{

GoldenRectangle other = (GoldenRectangle) object;
equal = super.equals(other) &&

this.getWeight() == other.getWeight();
}
else
{

equal = false;
}
return equal;

}

26

Polymorphism

In OOP, classes correspond to types. When a class Co is a subclass of

a class Cp, then the type Co is a subtype of Cp. If you have a reference

to an instance of Co, it can be assigned to a variable of type Cp and

manipulated as if it were an instance of the class Cp. E.g.

Student s1;

s1 = new Undergrad(

"Mary",201234567,"compsci",1);

The ability to use a value of a more specific type where one of a more

general type is expected is called polymorphism, since the general

type comes in “many forms”.

You can also assign a reference to an instance of superclass (a super-

type) to a variable of a subclass (a subtype) provided you perform a

type cast. E.g.

27

Student s1;

s1 = new Undergrad(

"Mary",201234567,"compsci",1);

Undergrad u1;

u1 = (Undergrad) s1;

Note that if the object being cast does not belong to the type given

(e.g. s1 is not an instance of Undergrad or one of it’s subclasses) an

exception will be thrown when the program is run.

To be safe, you can check whether the object belongs to the right class

using the instanceof operator before you perform the cast, e.g.

if (s1 instanceof Undergrad)

u1 = (Undergrad) s1;

But note that using instanceof in defining equals destroys symme-

try; see lecture notes p. 107.

28

Dynamic Method Binding

When you call an overridden method on a reference of polymorphic

type (e.g. s1.toString()), the version of the method that gets called

depends on the actual type of the object referred to at run time; it is not

necessarily that of the declared type. E.g.

Student s1;
s1 = new Student("John",202123456);
System.out.println(s1.toString());// calls Student’s
s1 = new Undergrad(
"Mary",201234567,"compsci",1);

System.out.println(s1.toString());// calls Undergrad’s

This approach to selecting which version of an overridden method to

call is named dynamic or late method binding. The term polymorphism

is often used to refer to this specific feature of polymorphic method

calls.

29

But note that dynamic method binding searches for method signature

determined at compilation time, so it may not get the expected version

of a method. E.g. from the type library:

CreditCard provides isSimilar(CreditCard)

RewardCard overloads this with isSimilar(RewardCard)

CreditCard c1 = new RewardCard(9, "adam");
CreditCard c2 = new RewardCard(9, "adam");
c1.charge(100);
c1.pay(100);
System.out.println(c1.isSimilar(c2)); // CreditCard version
System.out.println(c1.isSimilar((RewardCard)c2)); // CreditCard version!!
System.out.println(((RewardCard)c1).isSimilar(c2)); // CreditCard version
System.out.println(((RewardCard)c1).isSimilar((RewardCard)c2)); // RewardCard version

See Java By Abstraction p. 341-343.

30

Abstract Classes

Abstract classes are “incompletely defined” classes. They contain a

partial definition, a sort of template, that will be completed when we

define concrete subclases. This is often useful to avoid code duplica-

tion.

Abstract classes can contain abstract methods, i.e. methods for

which we only provide the signature, not the code. The code will be

provided by the subclasses. Abstract classes can also contain normal

method definitions and attribute declarations like ordinary classes. If a

class contains even one abstract methods, the class must be declared

abstract.

Because they are “incomplete”, abstract classes cannot have any di-

rect instances, i.e. instances that are not also instances of some con-

crete subclass.

31

See for example the abstract class RightPrism class from lecture

notes.

It does not make sense to create instances of RightPrism because

it does not specify what the shape is really like.

But we define it as an abstract class to collect code that is common

between its concrete subclasses RightRectangularPrism

and RightTriangularPrism.

We can include a method declaration

public abstract int getBaseArea();

that needs to be defined by the concrete subclasses.

This method can even be used by another method getVolume().

32

Inheritance and Preconditions/Postcontitions

In a subclass, if we override a method from the superclass, we can

weaken its precondition, but not strenghten it. The method of the sub-

class should work whenever the superclass’s version would because

an instance of the subclass is an instance of the superclass.

For a postcondition, we have the opposite: if in a subclass we override

a method from the superclass, we can strenghten its postcondition, but

not weaken it. The new verson should achieve all the effects guaran-

teed by the superclass’s version and possibly more.

33

