
CSE 1030

Yves Lespérance

Lecture Notes

Week 7 — Implementing Graphical User Interfaces

Recommended Readings:

Van Breugel & Roumani Ch. 6 and Savitch Ch. 17 and 18, and Sec.

13.2

Graphical User Interfaces

Graphical user interfaces (GUIs) allow the user to interract with an ap-

plication in a more natural and efficient way.

To implement GUIs in Java, we generally use classes from the Java

libraries, especially javax.swing. The classes in these libraries are

complex, with many components and methods, and are organized in

complex hierarchies.

2

The Model-View-Controller Pattern

Helps organize a GUI program.

The model represents the data and supports its manipulation.

The view specifies the graphical representation of the model.

The controller translates the user’s interactions with the view (e.g. se-
lecting a menu item, pressing a button, dragging the mouse, etc.) into

actions on the model.

3

E.g. a window with dynamic menu, from Van Breugel & Roumani’s.

Can define the View class as a subclass of JFrame.

A JFrame is a kind of window component. It has a JMenuBar and a

title (inherited from parent Frame).

We can add JMenus to the JMenuBar.

Then, we can add JMenuItems to a JMenu.

Most GUI elements are Components. Some components are Containers

that can contain other components, e.g. a Frame.

4



Event-Driven Programming

User interactions with components of a GUI (e.g. selecting a menu

item, pressing a button, draging the mouse, etc.) manifest themselves

as events.

A program can set up listeners that watch for a particular class of

events in a particular component, and execute an appropriate reac-

tion when the event occurs, for instance to update the model and then

the view.

5

To react to ActionEvents (e.g. a menu item being selected), one

adds action listeners to the associated components.

An action listener is an instance of a class that implements the

ActionListener interface. To do this, it must provide the method

public void actionPerformed(ActionEvent event)

Can make the Controller class implement the ActionListener

interface. It defines the actionPerformed method to handle the

events we want to deal with. When such an event occurs it calls the

appropriate method to update the model.

6

Commonly Used Component Classes

JLabel: used to display uneditable text; the text is generated by the

program.

JTextField: used to display a boxed area where the user can enter

text; an action event is triggered when the user hits “enter/return”.

JPasswordField: similar to JTextField, but text entered is not

shown.

JButton: displays a boxed area which triggers an action event when

clicked on.

JCheckBox: displays a box that is either selected or not selected; can

react to event with ItemListener.

JRadioButton: like JCheckBox, but it does not allow multiple selec-

tions in a group of related buttons; can react to event with ItemListener.

7

Commonly Used Component Classes (cont.)

JComboBox: displays a drop-down list of items from which user can

make a selection by clicking an item; react with ItemListener.

JList: displays a list of items, from which the user can select sev-

eral by clicking the mouse once; double clicking an item generates an

action event.

JTextArea: displays many lines of uneditable text; if the size of the

text is larger than the JTextArea, scroll bars are automatically gener-

ated.

JPanel: a subcontainer, where GUI components can be put (more

about this later).

See GUIComponentsEg which illustrates howmany of these are used.

Also shows different ways of defining event listeners and associating

them with components.

8



Layout Managers

Organizing items/components on the screen requires layout managers.

Java provides a variety of classes for this purpose, all of which imple-

ment the interface LayoutManager.

Layout managers automatically rearrange the layout according to their

type when the window is resized!

9

Commonly Used Layout Managers

FlowLayout: components are placed left to right, row after row, in the

order of addition.

BorderLayout: objects are placed in 5 possible places: North, S, W,

E, or Center.

GridLayout: objects are placed in a grid/2-dimensional array; you

specify desired number of rows & columns.

CardDeckLayout: objects are placed on different stacked “cards” of

a deck.

Can use JPanel containers to makemore complex GUIs. Each JPanel

can have a different layout manager.

10

GUIComponentsEg illustrates use of FlowLayout.

See GUIBorderLayoutEg for example using BorderLayout.

GUIPanelEg illustrates use of JPanel to build more complex GUIs.

11

Drawing

Can also draw various shapes or display strings. Done by defining the

component’s void paint(Graphics g) method.

Graphics class provides various methods for drawing.

drawRect(int x, int y, int width, int height): draws an

empty rectangle; (x,y) are the coordinates of the upper left corner; all

arguments are in pixels.

fillRect(int x, int y, int width, int height): draws a

filled rectangle.

drawOval(int x, int y, int width, int height): draws an

oval.

drawString(String str, int x, int y): draws a string; (x,y)

is the baseline of the leftmost charcter.

12



Colours

Colours are represented by instances of the Color class. These are

defined using RGB values. There are many constants for commonly

used colours, e.g. Color.blue.

When drawing, can set the colour to be used using the Graphics

class’s setColor(Color c) method.

GraphicsShowColorsEg illustrates drawing and the use of colours..

13


