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Week 8 — Recursion

Recommended Readings:

Van Breugel & Roumani Ch. 7 and Savitch Ch. 11 and Sec. 12.2

Recursive Methods

Consider the factorial function in maths:

0! = 1
1! = 1
2! = 2 × 1 = 2
3! = 3 × 2 × 1 = 6
4! = 4 × 3 × 2 × 1 = 24
. . .
n! = n × (n − 1) × . . . × 1 (*)

A simple Java method that uses a loop to compute the function is:

public static int factorial(int n)

{ int prod = 1;

for(int i = 1; i <= n; i++)

prod = prod * i;

return (prod);

}
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In mathematics, it is common to give a recursive definition to such

functions:

n! =

{

1 if n = 0
n × (n − 1)! otherwise

Notice that the function is mentioned on the right hand side of the

definition! Yet it is not circular; we can use it to find the value of the

function for any argument, e.g.:

4! = 4×3!

3! = 3×2!

2! = 2×1!

1! = 1×0!

0! = 1

1! = 1 × 1 = 1

2! = 2 × 1 = 2

3! = 3 × 2 = 6

4! = 4 × 6 = 24
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In contrast to (*), this definition precisely specifies n! for arbitrarily large

n’s. Recursive definitions are also called inductive definitions.

This kind of approach is often used in computer algorithms and pro-

grams. We can write a Java method that computes n! by recursion:

public static int factorial(int n)

{ if (n == 0) // base case

return (1);

else // n != 0 recursive case

return (n * factorial(n - 1));

}

4



Here is a call trace of factorial(4):

factorial(4) calls factorial(3)

factorial(3) calls factorial(2)

factorial(2) calls factorial(1)

factorial(1) calls factorial(0)

factorial(0) returns 1

factorial(1) returns 1 * factorial(0) i.e. 1

factorial(2) returns 2 * factorial(1) i.e. 2

factorial(3) returns 3 * factorial(2) i.e. 6

factorial(4) returns 4 * factorial(3) i.e. 24
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This is implemented using an execution stack which keeps track of

what methods are called, what the values of their parameters/local

variables are, and where the methods will resume.

With recursive methods, the execution stack will contain several entries

for the same method, e.g. the recursive calls to factorial.

When recursion is not allowed (as in Fortran), there can never be more

than one call of a method that is active. So storage for the local vari-

ables of methods can be allocated at compile time (statically). But

when recursion is allowed as in all modern languages , a stack must

be used to accomodate an arbitrary number of calls.
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Recursion: Definitions

A procedure/method is recursive iff it calls itself from within its own

body either directly or indirectly (e.g. method m1 calls method m2 which

calls m1).

A recursive solution to a problem involves two components:

1. a direct solution to some simple instances of the problem; these

are called base cases;

2. a solution to the general case of the problem that involves solving

a simpler instance(s) of the problem and performing some opera-

tions on the result; this is called the recursive case.

The measure of problem size you are using is what you are doing

recursion over; e.g. for factorial, it is n; first thing you need for designing
a recursive solution.
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Proof of Correctness by Induction: E.g. factorial

Show base case is correct: factorial(0) returns 1 which is 0!;

correct.

For recursive case, assume the recursive calls, if they terminate, are

correct, and prove that the recursive case is correct given this assump-

tion.

So assume factorial(n-1) (if it terminates) correctly returns (n−

1)!.

Then factorial(n) returns n * factorial(n-1).

Since factorial(n-1) is correct by our assumption, n *

factorial(n-1) = n ∗ (n− 1)!, which is n!.

So the recursive case is correct and thus the method is correct.
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Proof of Termination: E.g. factorial

Define the size of each invocation of the method. This must be a nat-

ural number.

Then show that each recursive invocation has a smaller size than the

original invocation.

If this is the case the method must terminate.

For factorial:

Let size(factorial(n)) = n.

factorial(n) only makes the recursive call factorial(n-1).

size(factorial(n-1)) = (n− 1) < size(factorial(n)) = n.

So the method terminates.
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A Combined Proof by Induction of Correctness and
Termination: E.g. factorial

We prove correctness and termination of the factorial method by in-

duction on the value of the argument n.

1) Base case n = 0: then factorial(0) terminates and returns

1 = 0!, which is correct.

2) For the recursive case: Assume that factorial(n) is correct and

terminates for all n ≤ k. This is the induction hypothesis.

We must prove that that the method is correct for n = k + 1.

Then factorial(n) returns (k + 1)∗factorial(k).

Since factorial(k) is correct by our assumption, (k+1)∗factorial(k)
= (k + 1) ∗ k! = (k + 1)!.

So for all natural numbers n factorial(n) is correct and terminates.
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E.g. Computing Terms of Fibonacci Sequence
Recursively

The Fibonacci sequence can given a recursive definition as follows:

fibo(n) =











0 if n = 0
1 if n = 1
fibo(n − 1) + fibo(n − 2) otherwise
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This can be translated directly into a recursive Java method:

public static int fibo(int n)

{ if (n == 0)

return 0;

else if (n == 1)

return 1;

else

return fibo(n - 1) + fibo(n - 2);

}
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Call tree for fibo(5):

[Draw on board]
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Call trace for fibo(5):

fibo(5) calls fibo(4)

fibo(4) calls fibo(3)

fibo(3) calls fibo(2)

fibo(2) calls fibo(1)

fibo(1) returns 1

fibo(2) calls fibo(0)

fibo(0) returns 0

fibo(2) returns fibo(1) + fibo(0) i.e. 1

fibo(3) calls fibo(1)

fibo(1) returns 1

fibo(3) returns fibo(2) + fibo(1) i.e. 2

fibo(4) calls fibo(2)

fibo(2) calls fibo(1)

fibo(1) returns 1

fibo(2) calls fibo(0)

fibo(0) returns 0

fibo(2) returns fibo(1) + fibo(0) i.e. 1

fibo(4) returns fibo(3) + fibo(2) i.e. 3
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fibo(5) calls fibo(3)

fibo(3) calls fibo(2)

fibo(2) calls fibo(1)

fibo(1) returns 1

fibo(2) calls fibo(0)

fibo(0) returns 0

fibo(2) returns fibo(1) + fibo(0) i.e. 1

fibo(3) calls fibo(1)

fibo(1) returns 1

fibo(3) returns fibo(2) + fibo(1) i.e. 2

fibo(5) returns fibo(4) + fibo(3) i.e. 5
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Problem: Write a recursive version of a method

isPalindrome(String word) that returns true iff word is a palin-

drome, i.e. reads the same backwards and forwards; e.g. noon and

dad are palindromes.
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Recursive Methods for List Processing

E.g. a method contains(T element, List<T> list) that searches

list to see if element appears in it.

Note that version below is more efficient than Van Breugel and Roumani’s

because doesn’t make copy of rest of list.
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public static <T> boolean contains(T element, List<T> list)

{

boolean contains;

if (list.size() == 0)

{

contains = false;

}

else

{

if (element.equals(list.get(0)))

{

contains = true;

}

else

{

List<T> rest = list.subList(1, list.size());

contains = MyClass.contains(element, rest);

}

}

return contains;

}
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Proof of Correctness by Induction:

Base case list.size() = 0: Correct, since element cannot be

contained in an empty list.

For recursive case list.size() ≥ 1:

Induction hypothesis: Assume the recursive call, if it terminates, is

correct.

list has at least one element. If element is equal to the first element

of list we return true. Correct.

19

If element is not equal to the first element of list, it is contained in

list iff it is contained in the rest of the list.

In this case, the method return the result of a recursive call on the rest

of the list. By the induction hypotesis, this recursive call is correct (if it

terminates).

So if it terminates, the method returns the correct answer in the recur-

sive case.
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Proof of Termination

Let size(contains(element, list)) = list.size().

This is a natural number.

Show size of recursive invocation is smaller.

list.subList(1, list.size()).size() < list.size()

So size(contains(element, rest))< size(contains(element,
list)).

So the method terminates.

See other list processing examples in Van Breugel and Roumani.
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Pitfalls of Recursion

One pitfall of recursion is infinite regress, i.e. a chain of recursive
calls that never stops. E.g. if you forget the base case “n == 0” in

factorial. Make sure you have enough base cases.

Anything that can be done using a loop can be done by recursion.

However, recursion can be less efficient than an iterative implementa-

tion. This can happen because there is recalculation of intermediate

results as in fibo. Or there can be extra memory use because recur-

sive calls must be stored on the execution stack, e.g. factorial.
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Advantages of Recursion

But some algorithms can be coded much more simply using recursion

and there is no loss of efficiency. E.g., traversing a tree and printing

the labels on the nodes. Another e.g.: Mergesort algorithm to sort an

array/collection.

Also some types of recursion do not require the use of additional stack

memory and good compilers can take advantage of this. These tech-

niques are studied in “functional programming” .
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