
ITEC 1630

Yves Lespérance

Lecture Notes

Week 3 — Inheritance, Interfaces, & Polymorphism

Readings: Horstmann Ch. 13 and 11

Inheritance

Often, we need to define a class that is similar to an existing class;

it just adds a few new attributes or methods, or implements existing

methods differently.

Instead of having to define the new class from scratch, OOP supports

declaring the new class as a subclass or specialization of the old one.

Then the subclass inherits all the attributes and methods of the original
class, can add new ones, as well as override the implementation of
existing methods.

This is called inheritance.

Code reuse is important in software engineering. This saves time and
you don’t have to keep track of all the places where the same code

appears so you keep them “in sync”.

2

E.g. a hierarchy of related classes:

Undergrad

Grad

MSC PHD

Student

dependency (uses)

inheritance (subclass)

The class Undergrad is a subclass or specialization of Student.

Inversely, we say that Student is a superclass or generalization of
Undergrad.

Every instance of a class is also an instance of all its superclasses

(similar to sets). So an instance of Undergrad is also an instance

of Student. An instance of MSC is also an instance of Grad and

Student.

3

public class Student
{ //constructor

public Student(String aName, long aNumber)
{ name = aName;

number = aNumber;
}
// instance methods
public void setName(String aName)
{ name = aName;
}
public String getName()
{ return name;
}
public void setNumber(long aNumber)
{ number = aNumber;
}
public long getNumber()
{ return number;
}
public String toString()
{ return "Student[name=" + name +

",number=" + number + "]";
}
// instance attributes
private String name;
private long number;

}

4

public class Undergrad extends Student
{ //constructor

public Undergrad(String aName, long aNumber,
String aMajor, int aYear)

{ ...
}
// instance methods
// setName, getName, setNumber, & getNumbers
// are inherited from superclass Student
// new methods
public void setMajor(String aMajor)
{ major = aMajor;
}
public String getMajor()
{ return major;
}
public void setYear(int aYear)
{ year = aYear;
}
public int getYear()
{ return year;
}
// need to override toString method from Student

// instance attributes
// name and number are inherited from Student
private String major;
private int year;

}

5

public class Eg
{ public static void main(String[] args)

{ Student s1 = new Student("John",202123456);
System.out.println("s1 is " + s1.getName());
Undergrad s2 = new Undergrad(

"Mary",201234567,"ITEC",1);
System.out.println("s2 is "+s2.getName());//inherited
s2.setName("Mary Ellen");//inherited
System.out.println("s2’s year is " +

s2.getYear());//new method
}

}

6

Overriding Methods

Sometimes when we define a subclass, a method inherited from the

superclass is inappropriate and we want to change it (e.g., toString).

We can do this by providing a new definition for the method in the

subclass. The new definition overrides, i.e. replaces the inherited one.
E.g.

public class Undergrad extends Student
{ ...

// override toString method from Student
public String toString()
{ return "Undergrad[name=" + getName() +

",number=" + getNumber() +
",major=" + major +
",year=" + year + "]";

}
...

}

7

public class Eg
{ public static void main(String[] args)

{ Student s1 = new Student("John",202123456);
System.out.println(s1.toString());//calls Student’s
Undergrad s2 = new Undergrad(

"Mary",201234567,"ITEC",1);
System.out.println(s2.toString());//calls Undergrad’s

}
}

8

Note that the private attributes of the superclass, e.g. name, are not
visible in the subclass; you must use a public method to retrieve their
value, e.g. getName().

The keyword super refers to the object as an instance of the super-

class. It can be used to invoke overridden methods. E.g. another way

to define toString in Undergrad:

public class Undergrad extends Student
{ ...

// override toString method from Student
public String toString()
{ // call superclass’s method

String s = super.toString();
// make appropriate changes & return
s = s.substring(s.indexOf("["),s.length()-1);
return "Undergrad" + s +

",major=" + major +
",year=" + year + "]";

}
...

}

9

Overloaded vs Overridden Methods

It is important to distinguish between overloaded and overridden meth-

ods. As we have seen earlier, we can define several versions of a

method that work with different types of arguments. This is called over-
loading the methods. E.g. the overloaded constructors:

public Person(){...}
public Person(String n, int a){...}

10

Another e.g.: we already have

public void setYear(int aYear)
{ year = aYear;
}

We could add:

public void setYear(){
setYear(1); // default value

}

Then the user can write:

s1.setYear(); // sets year to 1
s1.setYear(n); // sets year to n

11

The signature of a method is the number and types of its parameters
and their ordering. E.g.

1st Person constructor: ()

2nd Person constructor: (String,int)

original setYear: (int)

2nd setYear: ()

perhaps a 3rd setYear: (String)

When overloading methods, you are defining several methods with the

same name that will be available in the same class. This is only possi-
ble when the signatures of the methods are different.

To decide which overloaded method to call, the compiler looks at the

number and types of the arguments. If the signatures are the same, it

cannot determine which method is called.

12

In contrast, overriddenmethods have the same signature. The method
in the subclass replaces that in the superclass (even though the super-

class’s version is still available using super). E.g.

public class Parent
{ public void meth() // #1

{ ...
}
public void meth(int n) // #2, overloads #1
{ ...
}
...

}
public class Offspring extends Parent
{ public void meth(int n) // #3, overrides #2

{ ...
}
...

}
...
// in main
Parent o1 = new Parent();
Offspring o2 = new Offspring();
o1.meth(); // calls #1
o1.meth(31); // calls #2
o2.meth(); // calls #1
o2.meth(29); // calls #3

13

Inheritance and Attributes

As we saw previously, attributes defined in a superclass are inher-

ited by the subclass, but are not directly accessible (assuming they

are private). They can only be accessed through inherited public

methods.

You can also redefine an attribute in the subclass, but unlike for meth-

ods, the new attribute does not replace the original one. Instead, you

will have two attributes with the same name, with the one defined in

the subclass shadowing the one defined in the superclass. E.g.

14

public class Parent
{ ...

public setAtt(int n)
{ att = n;
}
private int att;

}
public class Offspring extends Parent
{ public void meth()

{ att = 4;// sets Offspring’s att
setAtt(3);// sets Parent’s att

}
private int att;

}
// in main
Offspring o = new Offspring();
o.meth();

If the superclass’s attribute is not private, you can refer to it as super.att.

15

Constructors and Inheritance

An instance of a class C in a hierarchy is also an instance of all of C’s

superclasses (all the way to the top). This fits with the view of classes

as sets and the specialization relation as subset.

If an object is to be an instance of a class, then the class’s constructor

should be called when the object is created. For an instance of a class

C in a hierarchy, the constructor of C and the constructors of all of C’s
superclasses should be called. Java requires this.

You can call a constructor of C’s superclass by putting super(...)

in C’s constructor. This must be the first statement in C’s constructor.

E.g.

16

public class Student
{ public Student()

{ name = "UNKNOWN";
number = -1;

}
public Student(String aName, long aNumber)
{ name = aName;

number = aNumber;
} ...
private String name;
private long number;

}
public class Undergrad extends Student
{ public Undergrad()

{ super();// calls Student’s 0 args constructor
major = "general";
year = 1;

}
public Undergrad(String aName, long aNumber, String aMajor, int aYear)
{ super(aName, aNumber);// calls Student’s

// 2 args constructor
major = aMajor;
year = aYear;

} ...
private String major;
private int year;

}
// in main
Undergrad u = new Undergrad("John", 201234567, "ITEC", 1);

17

If you leave out the call to the superclass’s constructor, Java automat-

ically inserts super() at the beginning of the subclass’s constructor,

i.e. a call to the superclass’s 0 arguments constructor.

If there are more than one superclass, each ancestor class’s construc-

tor is called in turn. E.g.

public class PartTimeUndergrad extends Undergrad
{ //constructors

public PartTimeUndergrad()
{ super();// calls Undergrad’s 0 args constructor

courseLoad = 2.5;
}
public PartTimeUndergrad(String aName, long

aNumber, String aMajor, int aYear, double aLoad)
{ super(aName, aNumber, aMajor, aYear);

// calls Undergrad’s 4 args constructor
courseLoad = aLoad;

}
...
private double courseLoad;

}
// in main
PartTimeUndergrad p = new PartTimeUndergrad(

"John", 201234567, "ITEC", 1, 3.5);

18

Constructors are never inherited.

However, if you don’t define a constructor for a class, Java automat-

ically provides a default 0 arguments constructor that initializes the

attributes to default values, 0 for numbers, false for boolean, and

null for objects.

19

Problem: define a method

public double calculateFees(

double courseload)

for Student and Undergrad which returns the fees to be paid by the

student depending on on his/her courseload.

Suppose that for students generally, the fees are $800 per course

and that for undergraduates, there is an additional incidental charge

of $100 for first year students and $150 for students in later years.

20

public class Student
{ ...

public double calculateFees(double courseload)
{ final double FEE_PER_COURSE = 800;

return FEE_PER_COURSE * courseload;
}
...

}
public class Undergrad extends Student
{ ...

// override Student’s calculateFees method
public double calculateFees(double courseload)
{ final double INCIDENTAL_FEE_Y1 = 100;

final double INCIDENTAL_FEE_Y_GT_1 = 150;
double fee = super.calculateFees(courseload);
if (year == 1)

fee = fee + INCIDENTAL_FEE_Y1;
else

fee = fee + INCIDENTAL_FEE_Y_GT_1;
return fee;

}
...

}
// in main
Student s = new Student("Mary", 202345678);
System.out.println(s + " fees: " + s.calculateFees(4.5));
Undergrad u = new Undergrad("John", 201234567, "ITEC", 1);
System.out.println(u + " fees: " + u.calculateFees(4.5));

21

Polymorphism

In OOP, classes correspond to types. When a class Co is a subclass of

a class Cp, then the type Co is a subtype of Cp. If you have a reference

to an instance of Co, it can be assigned to a variable of type Cp and

manipulated as if it were an instance of the class Cp. E.g.

Student s1;

s1 = new Undergrad("Mary",201234567,"ITEC",1);

The ability to use a value of a more specific type where one of a more

general type is expected is called polymorphism, since the general
type comes in “many forms”.

You can also assign a reference to an instance of superclass (a super-

type) to a variable of a subclass (a subtype) provided you perform a

type cast. E.g.

22

Student s1;

s1 = new Undergrad("Mary",201234567,"ITEC",1);

Undergrad u1;

u1 = (Undergrad) s1;

Note that if the object being cast does not belong to the type given

(e.g. s1 is not an instance of Undergrad or one of it’s subclasses) an

exception will be thrown when the program is run.

To be safe, you can check whether the object belongs to the right class

using the instanceof operator before you perform the cast, e.g.

if (s1 instanceof Undergrad)

u1 = (Undergrad) s1;

23

Dynamic Method Binding

When you call an overridden method on a reference of polymorphic

type (e.g. s1.toString()), the version of the method that gets called

depends on the actual type of the object referred to at run time; it is not

necessarily that of the declared type. E.g.

Student s1;
s1 = new Student("John",202123456);
System.out.println(s1.toString());// calls Student’s
s1 = new Undergrad("Mary",201234567,"ITEC",1);
System.out.println(s1.toString());// calls Undergrad’s

This approach to selecting which version of an overridden method to

call is named dynamic or late method binding. The term polymorphism
is often used to refer to this specific feature of polymorphic method

calls.

24

In this e.g. the compiler could have determined the actual type of the

object, but in general, this is not the case, e.g.

import java.util.Scanner;
...
Scanner in = new Scanner(System.in);
Student s1;
System.out.print("Enter student’s name: ");
String name = in.nextLine();
System.out.print("Enter student’s number: ");
long number = in.nextLong();
System.out.print("Is student an undergrad (y/n)? ");
String ans = in.nextLine();
if (ans.equals("y"))
{ System.out.print("Enter student’s major: ");

String major = in.nextLine();
System.out.print("Enter student’s year: ");
int year = in.nextInt();
s1 = new Undergrad(name,number,major,year);

} else
s1 = new Student(name,number);

System.out.println(s1.toString());// polymorphic call

25

In C++, the programmer specifies whether calls to a method should

be interpreted statically or dynamically. Methods that are selected dy-

namically are called virtual methods.

Note that even though Java uses dynamic method binding, the com-

piler requires that for every method call, the method invoked must be

defined for the reference’s declared type. E.g.

Student s1;

s1 = new Undergrad(

"Mary",201234567,"ITEC",1);

String m = s1.getMajor(); // error

// getMajor is not defined for Student

26

Polymorphism and Heterogenous Collections

Polymorphism is particularly useful for dealing with heterogenous col-

lections of objects, i.e., collections that contain objects of different

types. Here is an e.g. that uses an array to store an heterogenous

collection of students:

Student[] stuGroup = new Student[5];
stuGroup[0] = new Student("John",201234567));
stuGroup[1] = new Undergrad("Mary",202123456,"ITEC",1));
stuGroup[2] = new Student("Ellen",203456789));
stuGroup[3] = new Undergrad("Paul",202123456,"ITEC",2));
for (int i = 0, i < 4, i++)

System.out.println(stuGroup[i].toString());
// calls Student or Undergrad toString method
// according to type of each object

This works even if the data is read in and the types of the objects

created depend on the input — the method selection is done at run

time.

27

Abstract Classes

Abstract classes are “incompletely defined” classes. They contain a
partial definition, a sort of template, that will be completed when we

define concrete subclases.

Abstract classes can contain abstract methods, i.e. methods for

which we only provide the signature, not the code. The code will be

provided by the subclasses. Abstract classes can also contain normal

method definitions and attribute declarations like ordinary classes. If a

class contains even one abstract methods, the class must be declared

abstract.

Because they are “incomplete”, abstract classes cannot have any di-

rect instances, i.e. instances that are not also instances of some con-

crete subclass.

28

Multiple Inheritance and Java Interfaces

Sometimes, it would be useful to inherit from several classes. E.g.

Student Employee

StudentEmployee

But it is mot exactly clear what should be inherited when several su-

perclasses define methods or attributes of the same name.

29

Languages like C++ allowmultiple inheritance and have complex rules
to resolve inheritance conflicts.

To avoid this complexity, Java only allows a very limited form of multiple

inheritance through the interface mechanism. A Java interface

is like a purely abstract class. It can only contain abstract method

declarations (i.e. signature only, no implementation) and constant dec-

larations; these are all automatically public. E.g.

public interface Comparable
{ int compareTo(Object other);
}

public interface Clonable
{ Object clone();// returns copy of this instance
}

public interface Enumeration // for enumerating
{ boolean hasMoreElements();// a collection

Object nextElement();
}

30

A class that implements an interface must supply implementa-

tions for the methods defined in the interface. E.g.

public class Student implements Comparable
{ ...

public int compareTo(Object other)
{ Student otherStud = (Student)other;

if (number < otherStud.number) return -1;
if (number > otherStud.number) return 1;
return 0;

}
...

}

A class can implement several interfaces, e.g.

public class Student implements Comparable, Clonable
{...}

interfaces can also be organized in a hierarchy; an interface can

extend several parent interfaces.

31

Interfaces are often useful for designing classes that can work with

many different types of objects. The DataSet class of Horstmann Ch.

11 is a good example of this. It represents a collection to which objects

can be added and can return the average and maximum of the collec-

tion. This can work for any collection of objects that are “measurable”.

We would prefer not to have to commit to a particular type of objects,

e.g. bank accounts, coins, etc.

To do this the version in Sec. 1 defines an interface:

public interface Measurable

{ double getMeasure();

}

32

The DataSet class can then use this interface as the type of objects

that can be added to the collection or saved as the maximum. Any

class that implements the interface can be added to the collection.

DataSet uses the getMeasure() method to obtain a value that can

be used to compute the average and maximum.

A class using an interface type is another case of polymorphism.

A second version of DataSet in Sec. 4 is even more general, allowing

multiple ways of measuring a given thing.

33

The Class Object

There is a root to the class hierarchy in Java, a class called Object.

Every class that is defined without a superclass being specified is au-

tomatically made to be a subclass of Object.

Because it is so general, the class Object does not provide much. Its

most useful methods are discussed below. It is generally a good idea

to override these when you define a class.

String toString() generates a string representing the object, by

default ClassOfObject@HashCodeOfObject, e.g. Student@123f56.

This is not very meaningful and we have seen how to override it in

Student.

34

boolean equals(Object other) tests whether this instance is

equal to other. By default it returns true iff this and other are

the same reference. We generally override it to make a comparison

based on the objects’ attributes, e.g.

public class Student
{ ...

public boolean equals(Object other)
{ if (other instanceof Student)

return number == ((Student)other).number;
else

return false;
}
...

}

35

Object clone() returns a new object which is a copy of this in-

stance. By default this is a shallow copy, i.e. attributes which are
themselves objects are not cloned, only their references are copied. If

an object has attributes which are mutable objects, it is generally better

to make a deep copy.

E.g. suppose that Student had an additional attribute nextofKin of

type Person. To make clone return a deep copy, we override it as

follows:

36

public class Student implements Clonable
{ ...

public Object clone()
{ try

{ Student copy = (Student)super.clone();
// or = new Student(name,number);
copy.nextOfKin = (Person)nextOfKin.clone();
// assumes Person is Cloneble
return copy;

}
catch (CloneNotSupportedException e)
{ return null; // can’t really happen
}

}
}

If a class uses clone from Object, it must implement the Clonable

interface and catch the CloneNotSupportedException.

37

The Object class can also be used for defining very general data

structures, e.g. an array whose elements are of type Object, or an

ArrayList of Object. If you have such a data structure, then you

can put any kind of object into it, Students, Names, Integers (wrap-

per class), etc. In many cases though, it is better to use generic

classes that take a type parameter, e.g ArrayList<BankAccount>.

38

Packages

In Java, classes are grouped into packages. Package names corre-
spond to the directory hierarchy into which classes are organized.

/ (root)

java

iolang

String Double File

util

Scanner

awt

geom

Point2D

We’ve already seen how to use the import statement to avoid having

to refer to a class using its full name.

39

Java looks for classes starting in the directories that are on the CLASSPATH,

e.g.

CLASSPATH=/cs/dept/www/java/bin/york/york.jar:\
/cs/home/fac1/lesperan/java:.;

To create a package, you put a package declaration at the beginning

of each file containing the definition of a class in the package, and

you install the files in the appropriate directories. E.g. for the class

Student, we put the following in

/cs/home/fac1/lesperan/java/yves/Student.java:

package yves;

public class Student{

...

}

Classes that are not explicitly put in a package go into an unnamed

package.

40

The Java API provides a set of standard classes grouped in several

packages, e.g.

java.util

java.io

java.lang

The java.lang package contains the core classes (e.g. String,

System, Math, etc.) and is automatically imported.

41

Visibility/Scope of Class Attributes and Methods

Besides public and private, there are other access modifiers that

can be used to control the visibility of class constants, variables, and

methods:

• public: visible everywhere,

• protected: visible in all classes of the same package and in

subclasses in other packages,

• default: visible in all classes of the same package,

• private: visible only in the class itself.

42

protected can be used on attributes to give subclasses access to

the implementation of a class. But this is generally a bad idea because

you cannot prevent anyone from defining a subclass of one of your

classes. If you give them access to your implementation, then you

can’t change it without affecting them.

If you want define classes that work closely together, it is often better

to use inner classes (see below).

As well, access to classes can be controlled. public classes are vis-

ible everywhere. Classes that are not labeled public are only visible

in their package.

Also, classes that are declared final cannot be extended, i.e. no one

can create subclasses.

You can also prevent someone from overriding a method in a subclass

that they define by declaring the method final.

43

Inner Classes

An inner class is a class that is defined inside another class (or a
method of another class). This is usually done when the inner class is

only meant to be used by the enclosing class, i.e. you don’t what to

make it available to others (as for a private method).

The third version of Horstmann’s DataSet example in Ch. 11 Sec. 5

defines the class that implements the Measurer interface as an inner

class, as it is not meant to be used in other contexts.

Some graphical shapes are defined as inner classes, e.g.

Ellipse2D.Double.

There are restrictions on what variables inner classes can access (see

Horstmann Ch. 11 Sec. 7).

44

