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Abstract

Most programming languages only support tests that refer ex-
clusively to the current state. This applies even to high-level
programming languages based on the situation calculus such
as Golog. The result is that additional variables/fluents/data
structures must be introduced to track conditions that the pro-
gram uses in tests to make decisions. In this paper, draw-
ing inspiration from McCarthy’s Elephant 2000, we pro-
pose an extended version of Golog, called ElGolog, that sup-
ports rich tests about the execution history, where tests are
expressed in a first-order variant of two-way linear dynamic
logic that uses ElGolog programs with converse. We show
that in spite of rich tests, ElGolog shares key features with
Golog, including a sematics based on macroexpansion into
situation calculus formulas, upon which regression can still
be applied. We also show that like Golog, our extended lan-
guage can easily be implemented in Prolog.

Introduction

Suppose that we want to give the following instructions to a
robot assistant:

You have already delivered coffee to some offices. Now,
go back and deliver milk as well.

If we want to write a high-level program to represent these
instructions, we might write the following:

while ∃o.(DeliveredCoffee(o) ∧ ¬DeliveredMilk(o))
do πo.[(DeliveredCoffee(o) ∧ ¬DeliveredMilk(o))?;

goto(o) ; deliverMilk(o)]

i.e., while there is an office where coffee has been delivered
but not milk, (nondeterministically) pick such an office and
go there and deliver milk. This program is written in Golog
(Levesque et al. 1997), but there is nothing essential about
this; any language where one can iterate over items that sat-
isfy a condition would do.

Notice that the program relies on fluents (essentially,
boolean functions that change value over time) such as
DeliveredCoffee(o) and DeliveredMilk(o) that memorize
historical information. The model of the world that captures
the dynamics of the domain (i.e., the action theory in Golog)
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may not support these fluents. All it is likely to say is that
immediately after delivering an item to a location, the item
will be at this location. To be able to write the above pro-
gram, the programmer would first need to extend the action
theory/world model with these additional task-specific flu-
ents. Such an extension might be needed for every new task.

More generally, most programming languages only sup-
port queries about the current state of the system. This is
the so-called Markov property: the executability of an action
and its effects are entirely determined by the current state or
situation. This assumption is commonly made in formalisms
for reasoning about action, such as the situation calculus
(McCarthy and Hayes 1969; Reiter 2001). It is also made
in the high-level programming languages Golog (Levesque
et al. 1997) and ConGolog (De Giacomo, Lespérance, and
Levesque 2000) based on it (as well as in any standard pro-
gramming language such as C, Java, etc.), where tests may
only query the current situation/state. If one wants to query
some historical information, one has to introduce some data
structures or fluents to remember what happened in the past.
In contrast, in natural language instructions, one simply
refers to past states and events.

It should be clear that referring to the past to specify a task
is useful in many applications, for instance, in robotics. We
might want to order the robot to “go back to all rooms where
you saw discarded pop cans and bring them to the recycling
bin”. Note that bringing milk to people to whom one has
already delivered coffee is not necessarily just a “fix” to the
earlier behavior, as the milk may only have been ordered
later, or it might not have been possible to deliver both at the
same time (perhaps the milk is stored in a fridge far from the
coffee machine).

In this paper, we show that we can conveniently extend a
programming language to support queries about the past. In
particular, we define ElGolog, which extends Golog with
the possibility of using (converse) programs in tests, as
sometimes allowed in Dynamic Logic (Harel, Kozen, and
Tiuryn 2000). However we interpret such tests on the current
history, or log, which is provided by the current situation. So
in a sense we are equipping Golog with a sort of two-way
version of Linear Dynamic Logic operators (De Giacomo
and Vardi 2013).

With this addition, we can write programs that capture
more directly the natural language instructions. For exam-
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ple, we would write:

while ∃o.〈(deliverCoffee(o); any∗)−〉
(¬〈any∗; deliverMilk(o)〉True)

do πo.[〈(deliverCoffee(o); any∗)−〉
(¬〈any∗; deliverMilk(o)〉True)?;
goto(o) ; deliverMilk(o)]

The test in this example means that there is an office location
o such that there is a state in the past where deliverCoffee
has occurred for that o, and, in the future of that state, there is
no deliverMilk for o. Here, any means any atomic action,
which can be defined as (π�x.A1(�x)) | . . . | (π�x.Ak(�x)),
assuming thatA1, . . . , Ak are all the action types/functions.1

John McCarthy made a similar point to motivate his pro-
posal for a programming language Elephant 2000, which,
among other features, “does not forget” (McCarthy 1992;
2007). ElGolog is named after this. We go over other related
work in the discussion section.

Preliminaries

Situation Calculus. The situation calculus is a well known
predicate logic language for representing and reasoning
about dynamically changing worlds (McCarthy and Hayes
1969; Reiter 2001). All changes to the world are the re-
sult of actions, which are terms in the language. A pos-
sible world history is represented by a term called a situ-
ation. The constant S0 is used to denote the initial situa-
tion where no actions have yet been performed. Sequences
of actions are built using the function symbol do, such that
do(a, s) denotes the successor situation resulting from per-
forming action a in situation s. Predicates and functions
whose value varies from situation to situation are called flu-
ents, and are denoted by symbols taking a situation term
as their last argument (e.g., Holding(x, s)). s � s′ means
that s is a predecessor situation to s′, and s � s′ stands for
s � s′ ∨ s = s′. The abbreviation do([a1, . . . , an], s) stands
for do(an, do(an−1, . . . do(a1, s) . . .)).

Within the language, one can formulate action theories
that describe how the world changes as a result of the avail-
able actions. A basic action theory (BAT) D (Pirri and Reiter
1999; Reiter 2001) is the union of the following disjoint sets:
the foundational, domain independent, axioms of the situa-
tion calculus (Σ), which include a second order axiom char-
acterizing the situation domain; precondition axioms stat-
ing when actions can be legally performed (Dposs); suc-
cessor state axioms describing how fluents change between
situations (Dssa); unique name axioms for actions (Duna);
and axioms describing the initial configuration of the world
(DS0 ). A special predicate Poss(a, s) is used to state that
action a is executable in situation s; precondition axioms
in Dposs characterize this predicate. Executable(s) means
that every action performed in reaching situation s is exe-
cutable in the situation in which it occurs. In turn, successor

1Note that tests are used in Golog not just to branch (in condi-
tionals and loops), but also to constrain the nondeterministic choice
of arguments of actions/programs within the “pick” construct. The
rich tests in ElGolog can be used to select program arguments
based on complex historical conditions.

state axioms encode the causal laws of the world being mod-
eled; they take the place of the so-called effect axioms and
provide a solution to the frame problem.

A key feature of BATs is the existence of a sound and
complete regression mechanism for answering queries about
situations resulting from performing a sequence of actions
(Pirri and Reiter 1999; Reiter 2001). In a nutshell, the re-
gression operator R∗ reduces a formula φ about a partic-
ular future situation to an equivalent formula R∗[φ] about
the initial situation S0, essentially by substituting fluent re-
lations with the right-hand side formula of their successor
state axioms. A formula φ is regressable if and only if (i)
all situation terms in it are of the form do([a1, . . . , an], S0),
(ii) in every atom of the form Poss(a, σ), the action func-
tion is specified, i.e., a is of the form A(t1, . . . , tn), (iii) it
does not quantify over situations, and (iv) it does not contain
� or equality over situation terms. Thus in essence, a for-
mula is regressable if it does not contain situation variables.
Another key result about BATs is the relative satisfiability
theorem (Pirri and Reiter 1999; Reiter 2001): D is satisfi-
able if and only if DS0

∪Duna is satisfiable (the latter being
a purely first-order theory). This implies that we can check
if a regressable formula φ is entailed by D, by checking if
its regression R∗[φ] is entailed by DS0

∪ Duna only.

Golog. To represent and reason about complex actions or
processes obtained by suitably executing atomic actions,
various so-called high-level programming languages have
been defined such as Golog (Levesque et al. 1997; Reiter
2001), which includes the usual procedural programming
constructs and constructs for nondeterministic choices.2

The syntax of Golog programs is as follows:

δ ::= a | (δ1; δ2) | (δ1|δ2) | πz.δ | δ∗ | ϕ?
ϕ ::= P (�x) | ¬ϕ | ϕ1 ∧ ϕ2 | ∃x.ϕ

In the above, a is an action term, possibly with parameters,
and ϕ is situation-suppressed formula, i.e., a formula with
all situation arguments in fluents suppressed. Atomic pro-
gram a executes the action a, while a test ϕ? confirms that
ϕ holds. The sequence of program δ1 followed by program
δ2 is denoted by δ1; δ2. Program δ1|δ2 allows for the nonde-
terministic branch between programs δ1 and δ2, while πx.δ
executes program δ for some nondeterministic choice of a
binding for object variable x (observe that such a choice is,
in general, unbounded). δ∗ performs δ zero or more times.
Conditionals and while loops can be defined as in Dynamic
Logic (Harel, Kozen, and Tiuryn 2000). Note the presence of
nondeterministic constructs, which allow a loose specifica-
tion of behavior by leaving “gaps” that ought to be resolved
by the executor (one can write anything from a generic plan-
ning program to a fully deterministic plan/program).

The semantics of Golog programs is specified by defin-
ing an abbreviation Do(δ, s, s′), which means that program

2Extensions of Golog include ConGolog (De Giacomo,
Lespérance, and Levesque 2000), which supports concurrency, and
IndiGolog (Sardiña et al. 2004), which provides means for inter-
leaving sensing, planning, and execution.

2807



δ, when executed starting in situation s, has s′ as a legal ter-
minating situation. It is defined inductively as follows:

Do(a, s, s′) .
= s′ = do(a, s) ∧ Poss(a, s)

Do(δ1; δ2, s, s′)
.
= ∃s′′.Do(δ1, s, s′′) ∧ Do(δ2, s′′, s′)

Do(δ1|δ2, s, s′) .
= Do(δ1, s, s′) ∨ Do(δ2, s, s′)

Do(πx.δ, s, s′) .
= ∃x.Do(δ, s, s′)

Do(δ∗, s, s′) .
= ∀P.

[∀s1.P (s1, s1)] ∧
[∀s1, s2, s3.Do(δ, s1, s2) ∧ P (s2, s3) ⊃ P (s1, s3)]

⊃ P (s, s′)
Do(ϕ?, s, s′) .

= s′ = s ∧ ϕ[s]

In the above definition, we use ϕ[s] to denote the formula
obtained from ϕ by restoring the situation argument s into
all fluents in ϕ. More formally:

P (�x)[s]
.
= P (�x, s)

(¬ϕ)[s] .= ¬(ϕ[s])
(ϕ1 ∧ ϕ2)[s]

.
= ϕ1[s] ∧ ϕ2[s]

(∃x.ϕ)[s] .= ∃x.ϕ[s]
Thus, for any Golog program δ, Do(δ, s, s′) expands into

a situation calculus formula that characterizes the pairs of
situations 〈s, s′〉 over which a complete execution of δ oc-
curs. Note also that for any Golog program δ without non-
deterministic iteration, Do(δ, s, s′) expands to a first-order
regressable formula. Thus one can find executions of such
a program though first-order theorem proving. (Levesque et
al. 1997; Reiter 2001) presents an interpreter for Golog im-
plemented in Prolog for the case where the initial situation
description satisfies the Prolog closed world assumption,
which is shown to be sound/correct with respect to the se-
mantics under some assumptions. But note that there is no
guarantee of termination in general (e.g., one might have a
program of the form “while (true) do ....”). Regarding the
π nondeterministic choice of argument construct, if the do-
main is finite and the regressed queries evaluated by the in-
terpreter succeed or finitely fail, backtracking will exhaust
all possible bindings of a π variable; but backtracking on
infinitely many instances of a π variable is another case of
non-termination. The interpreter searches for a way to re-
solve the nondeterministic choices in the program that leads
to a complete execution. In doing this, it actually interleaves
expanding the Do definition, regression, and reasoning about
the initial situation, to try to detect failures early.

The ElGolog Language

The syntax of ElGolog is same as that of Golog except for
tests:

δ ::= a | δ− | (δ1; δ2) | (δ1|δ2) | πz.δ | δ∗ | ϕ?
ϕ ::= P (�x) | ¬ϕ | ϕ1 ∧ ϕ2 | ∃x.ϕ | 〈δ〉ϕ

where the converse program construct δ−, which is bor-
rowed from Dynamic Logic (Harel, Kozen, and Tiuryn
2000), can only be used in tests, i.e., in the 〈δ′〉ϕ construct.

As we will see, tests are interpreted over the past history
up to the current situation, and 〈δ−〉ϕ holds in the current
situation sn if there exists a situation in the past, say st, such
that there is an execution of δ from st to sn (i.e., a “back-
ward” execution of δ from sn to st) and where ϕ held in

st. Note that the current situation sn acts as a log and 〈δ〉ϕ
queries the log.

We also define

[δ]ϕ
.
= ¬〈δ〉¬ϕ

meaning that for all situations reached by executing δ, ϕ
holds.

For all the Golog constructs, Do is defined exactly as be-
fore, except for tests, where we now have a slightly different
definition:

Do(ϕ?, s, s′) .
= s′ = s ∧ ϕ[s, s]

A rich test ϕ[st, sn] is evaluated over a pair of situations,
where sn is the current situation (“now”), i.e., the situation at
the end of the log, and st is the situation in the past (“then”),
where the condition ϕ is being evaluated. In the definition of
Do(ϕ?, s, s′) for tests above, both sn and st get initialized to
the current situation s, but as we will see the 〈δ′〉ϕ′ operator
may bind st to a different past situation to evaluate ϕ′.

The semantics of rich tests in general is defined follows:

P (�x)[st, sn]
.
= P (�x, st)

(¬ϕ)[st, sn] .= ¬(ϕ[st, sn])
(ϕ1 ∧ ϕ2)[st, sn]

.
= ϕ1[st, sn] ∧ ϕ2[st, sn]

(∃x.ϕ)[st, sn] .= ∃x.ϕ[st, sn]
(〈δ〉ϕ)[st, sn] .= ∃s.Dolog(δ, st, s, sn) ∧ ϕ[s, sn]

All cases other than 〈δ〉ϕ just recursively obtain the truth
value of the formula in terms of that of their subformulas
in st (as in Golog). 〈δ〉ϕ[st, sn] holds if and only if there
exists a situation s, such that there is an execution of δ from
st to s within the log, such that ϕ[s, sn] holds. It uses the
new abbreviation Dolog(δ, s, s

′, sn) that holds if and only if
there is an execution of δ from s to s′ that is entirely within
the log sn. Note that the program δ may contain the converse
operator, and Dolog needs to handle it.

Dolog(δ, s, s
′, sn) is defined inductively as follows:

Dolog(a, s, s′, sn)
.
= s′ = do(a, s) ∧ Poss(a, s)

∧ s′ � sn

Dolog(δ1; δ2, s, s′, sn)
.
= ∃s′′.Dolog(δ1, s, s′′, sn) ∧

Dolog(δ2, s′′, s′, sn)
Dolog(δ1|δ2, s, s′, sn) .

= Dolog(δ1, s, s′, sn) ∨
Dolog(δ2, s, s′, sn)

Dolog(πx.δ, s, s′, sn)
.
= ∃x.Dolog(δ, s, s′, sn)

Dolog(δ∗, s, s′, sn)
.
= ∀P.

[∀s1.s1 � sn ⊃ P (s1, s1, sn)] ∧
[∀s1, s2, s3.Dolog(δ, s1, s2, sn) ∧ P (s2, s3, sn) ⊃ P (s1, s3, sn)]

⊃ P (s, s′, sn)
Dolog(ϕ?, s, s′, sn)

.
= s′ = s ∧ ϕ[s, sn] ∧ s � sn

Dolog(a−, s, s′, sn)
.
= Dolog(a, s′, s, sn)

Dolog((δ1; δ2)−, s, s′, sn)
.
= Dolog((δ2)−; (δ1)−, s, s′, sn)

Dolog((δ1|δ2)−, s, s′, sn)
.
= Dolog((δ1)−|(δ2)−, s, s′, sn)

Dolog((πx.δ)−, s, s′, sn)
.
= Dolog(πx.(δ)−, s, s′, sn)

Dolog((δ∗)−, s, s′, sn)
.
= Dolog(((δ)−)∗, s, s′, sn)

Dolog((ϕ?)−, s, s′, sn)
.
= Dolog(ϕ?, s, s′, sn)

Dolog((δ−)−, s, s′, sn)
.
= Dolog(δ, s, s′, sn)

Golog program constructs are handled as in Do, but we ad-
ditionally ensure that the execution remains within the log
sn (see the parts in bold). For converse programs δ−, we
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have various cases according to the form of δ. For the prim-
itive action case, a converse execution of a, i.e., an execu-
tion of a−, occurs between s and s′ if a “forward” execution
of a occurs between s′ and s (i.e., if s is do(a, s′) and a
was executable in s′) within the log sn,. For the case of the
sequence, (δ1; δ2)−, the converse is distributed into the se-
quence and the order of the subprograms is reversed. In the
cases of (δ1 | δ2)−, (πx.δ)− and (δ∗)− the converse op-
erator is simply pushed inwards. In the case of a test, the
converse operator can be dropped. Finally, double converse
cancels out.

We say that an ElGolog program δ (or test formula ϕ) is
in converse normal form (NFC) if every occurrence of the
converse construct it contains applies to a primitive action
only.

We can define a transformation nfc(δ) which for any
ElGolog program δ returns an equivalent program δ′ that
is in converse normal form.
nfc(δ) is defined inductively as follows:

nfc(a)
.
= a

nfc(ϕ?)
.
= nfc(ϕ)?

nfc(P (�x))
.
= P (�x)

nfc(¬ϕ) .
= ¬nfc(ϕ)

nfc(ϕ1 ∧ ϕ2)
.
= nfc(ϕ1) ∧ nfc(ϕ2)

nfc(∃x.ϕ) .
= ∃x.nfc(ϕ)

nfc(〈δ〉ϕ) .
= 〈nfc(δ)〉nfc(ϕ)

nfc(δ1; δ2)
.
= nfc(δ1);nfc(δ2)

nfc(δ1|δ2) .
= nfc(δ1)|nfc(δ2)

nfc(πx.δ)
.
= πx.nfc(δ)

nfc(δ∗) .
= nfc(δ)∗

nfc(a−) .
= a−

nfc((δ1; δ2)
−) .

= nfc(δ−2 );nfc(δ−1 )
nfc((δ1|δ2)−) .

= nfc(δ−1 )|nfc(δ−2 )
nfc((πx.δ)−) .

= πx.nfc(δ−)
nfc((δ∗)−) .

= nfc(δ−)∗
nfc((ϕ?)−) .

= nfc(ϕ?)
nfc((δ−)−) .

= nfc(δ)

Essentially, nfc(δ) applies the definition of Dolog to non-
atomic converse programs to push the converse construct
down to the atomic action level.

It is easy to show that:

Lemma 1. Dolog(nfc(δ), s, s′, sn) = Dolog(δ, s, s
′, sn)

Observe that for any ElGolog program δ in converse nor-
mal form, Dolog(δ, s, s′, sn) is defined purely in terms of
Dolog for subprograms of δ. Also the cases of the defini-
tion of Dolog for non-atomic converse program are no longer
necessary.

Examples

Let’s look at some examples to understand the ElGolog se-
mantics better.

Example 2. Consider the test program 〈(a; b)−〉P?. Then
we have that :

Do(〈(a; b)−〉P?, s, s′) .= s′ = s ∧ 〈(a; b)−〉P [s, s]

The test formula then expands to:

〈(a; b)−〉P [s, s]
≡ ∃s′′.Dolog((a; b)

−, s, s′′, s) ∧ P [s′′, s]
≡ ∃s′′.Dolog((a; b)

−, s, s′′, s) ∧ P (s′′)
i.e., the test holds in [s, s] if there is some situation s′′ where
P holds and there is an execution of (a; b)− from s to s′′
within the log s.

Then if we expand Dolog we have that:

Dolog((a; b)−, s, s′′, s)
≡ Dolog((b−; a−), s, s′′, s)
≡ ∃s′′′.Dolog(b−, s, s′′′, s) ∧ Dolog(a−, s′′′, s′′, s)
≡ ∃s′′′.Dolog(a, s′′, s′′′, s) ∧ Dolog(b, s′′′, s, s)
≡ ∃s′′′.s′′′ = do(a, s′′) ∧ Poss(a, s′′) ∧ s′′′ 	 s ∧

s = do(b, s′′′) ∧ Poss(b, s′′) ∧ s 	 s
≡ s = do(b, do(a, s′′)) ∧ Poss(a, s′′) ∧ Poss(b, do(a, s′′))

Thus Do(〈(a; b)−〉P?, s, s′) holds if and only if s′ = s
and there is some situation s′′ in the past of s such that
s = do(b, do(a, s′′)), P (s′′) holds, and a followed by b is
executable in s′′.

A concrete instance of the above program is the following:

Do(〈(goto(O2); deliverCoffee(O2))
−〉At(O1)?, s, s

′)

i.e., the robot was at office O1 before it went to office O2

and then delivered coffee there to end up in situation s.

It is easy to show that the programs involving nested tests
below are equivalent to the one in the previous example:
Example 3.

Do(〈(a; b)−〉P?, s, s′)
≡ Do(〈b−〉(〈a−〉P )?, s, s′)
≡ Do(〈(b−; (〈a−〉P?))〉True?, s, s′)

The example in the introduction section shows how one
can use rich tests in ElGolog to specify complex history de-
pendent tasks. Another useful application of rich tests is to
ensure that the “pick” construct choses a different entity at
each iteration of a loop:

Example 4. The following program makes a robot deliver
coffee to some office zero or more times such that no office
is visited twice (and infinite loops are avoided):

(πo.¬〈(deliverCoffee(o); any∗)−〉True?;
goto(o); deliverCoffee(o))∗

We can also ensure that every office gets a coffee delivery
by adding a test at the end:

(πo.¬〈(deliverCoffee(o); any∗)−〉True?;
goto(o); deliverCoffee(o))∗;
∀o.Office(o) ⊃ 〈(deliverCoffee(o); any∗)−〉True?

Properties

First, we show that an execution of a converse program δ−
is effectively a backwards execution δ:

Theorem 5. For any ElGolog program δ, we have that
D |= Dolog(δ

−, s, s′, sn) ≡ Dolog(δ, s
′, s, sn).
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Proof. By induction on the structure of δ. Base cases: In
case δ is an atomic action a, the thesis follows by the defini-
tion of DoLog. In case δ is a test φ?, we have that

D |= Dolog(δ−, s, s′, sn)
≡ Dolog((ϕ?)−, s, s′, sn)
≡ Dolog((ϕ?), s, s′, sn)
≡ s′ = s ∧ ϕ[s, s] ∧ s � sn
≡ Dolog((ϕ?), s

′, s, sn)
≡ Dolog(δ, s

′, s, sn)

Otherwise, assume as induction hypothesis that the thesis
holds for all sub-program terms in δ. In case δ = (δ1; δ2),
we have that

D |= Dolog(δ
−, s, s′, sn)

≡ Dolog((δ1; δ2)
−, s, s′, sn)

≡ Dolog((δ2)
−; (δ1)−, s, s′, sn)

≡ ∃s′′.Dolog(δ
−
2 , s, s

′′, sn) ∧ Dolog(δ−1 , s
′′, s′, sn)

≡ ∃s′′.Dolog(δ2, s
′′, s, sn) ∧ Dolog(δ1, s′, s′′, sn)

by the induction hypothesis
≡ Dolog((δ1; δ2), s

′, s, sn)
≡ Dolog(δ, s′, s, sn)

All the other cases, i.e., where δ is (δ1|δ2), (πx.δ1), and
(δ∗1), can be proven in a similar way.

We can also show the following result about Dolog :
Lemma 6. For any ElGolog program δ:

D |= Dolog(δ, s, s
′, sn) ⊃ s � sn ∧ s′ � sn

This can be shown by induction on situations and on the
structure of δ.

Now, we observe that for any ElGolog program δ,
Do(δ, s, s′) stands for a situation calculus formula ψδ(s, s

′)
that does not mention any program. In particular, note that
Do(ϕ?, s, s′) stands for ψϕ?(s, s

′) = s′ = s∧ϕ[s, s] by def-
inition of Do. Notice as well that ϕ[s, s] actually stands for a
situation calculus formula with only one free situation vari-
able s. Such a formula is not necessarily first-order as it may
contain temporal operators involving programs of the form
δ∗i , that expand to second-order subformulas. However, we
show next that if the situation parameter s is ground, then the
formula that ϕ[s, s] stands for is equivalent to a first-order
formula which is moreover regressable.

First, let’s define some bounded iteration abbreviations
δk, meaning that δ is performed exactly k times, and δ≤k,
meaning that δ is performed 0 or more times, but at most k
times:

δk
.
=

{
True? if k = 0
(δk−1; δ) otherwise

δ≤k .
=

{
δ0 if k = 0
(δ≤(k−1)|δk) otherwise

Also, for any ground situation term S, we define |S| to
stand for the length, i.e., number of actions, in S.

Then we prove the following lemma about nondetermin-
istic iteration programs, which says that, if there is an execu-
tion of δ∗ from ground situation term S to ground situation

term S′ within the log Sn, then there is an execution of δ∗
from S to S′ within the log Sn that performs at most |Sn|
iterations of δ:3

Lemma 7. For any ElGolog program δ and any ground sit-
uation terms, S, S′, and Sn, we have that:

D |= DoLog(δ∗, S, S′, Sn) ⊃ DoLog(δ≤|Sn|, S, S′, Sn)

Proof. Take an arbitrary model M of D and assume that
M |= DoLog(δ∗, S, S′, Sn). Then there exists situations
s1, . . . , sk with s1 = S and sk = S′ such that M |=
DoLog(δ, si, si+1, Sn) for 1 ≤ i < k. By Lemma 6, this
implies that M |= si � Sn for 1 ≤ i ≤ k. Thus, there
are ground situation terms S1, . . . , Sk such that S1 = S
and Sk = S′, M |= Si � Sn for 1 ≤ i ≤ k and M |=
DoLog(δ, Si, Si+1, Sn) for 1 ≤ i < k. If k ≤ |Sn|, then
the thesis follows. Otherwise, since there are only |Sn| + 1
distinct ground situation terms Sg such that Sg � Sn, there
exists j and m such that j < m and Sj = Sm, that is, there
must be a “cycle” in the execution of δ∗. We can remove
this cycle and still have an execution of δ∗, that is, M |=
DoLog(δ, S1, S2, Sn) ∧ . . . ∧ DoLog(δ, Sj−1, Sj , Sn) ∧
DoLog(δ, Sj , Sm+1, Sn) ∧ . . . ∧ DoLog(δ, Sk−1, Sk, Sn).
We can repeat this cycle removal process until we have an
execution of δ∗ from S to S′ such that performs δ at most
|Sn| times.

We can use this lemma to show that an ElGolog rich test
on ground situations expands to what is essentially a re-
gressable (first-order) formula, and similarly for Dolog of an
ElGolog program on a ground situation log:
Theorem 8. For any ElGolog test ϕ, ElGolog program δ,
and ground situation terms St, S, S′, and Sn, such that
St � Sn, there exist first-order regressable situation cal-
culus formulas ψ and ψ′ such that D |= ϕ[St, Sn] ≡ ψ and
D |= Dolog(δ, S, S′, Sn) ≡ ψ′

Proof. We assume wlog. that ϕ and δ are in converse normal
form. We show the thesis by induction on the structure of ϕ
and δ.
Base cases:
For ϕ = P (�x), the thesis trivially holds.
For δ = a, we have that

Dolog(a, S, S′, Sn)
.
=

S′ = do(a, S) ∧ Poss(a, S) ∧ S′ � Sn

The thesis then follows immediately by the definition of re-
gressable formula (since S′ and Sn are ground, S′ � Sn is
either equivalent to True or to False).
For δ = a−, we have that

Dolog(a
−, S, S′, Sn)

.
= Dolog(a, S

′, S, Sn)
≡ S = do(a, S′) ∧ Poss(a, S′) ∧ S � Sn

The thesis then follows immediately by the definition of re-
gressable formula.

3Note that unlike Golog programs, whose execution can only
go forward, ElGolog programs may go back and forth within the
log, e.g., (a−|a)∗ has executions from S0 to do(a, S0) within the
log do(a, S0) that iterate hundreds of times (assuming that a is
executable in S0). So the fact that the lemma holds is significant.
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Inductive step:
Assume that the thesis holds for all subtests and subpro-
grams in ϕ and δ (induction hypothesis, IH for short).
For the cases ϕ = ¬ϕ′, ϕ = ϕ′ ∧ ϕ′′, and ϕ = ∃x.ϕ′, the
thesis follows immediately by the IH and the definition of
regressable formula.
For ϕ = 〈δ〉ϕ′, we have that

(〈δ〉ϕ′)[St, Sn]
.
= ∃s.Dolog(δ, St, s, Sn) ∧ ϕ′[s, Sn]

≡ ∨
S′′:S′′�Sn

Dolog(δ, S, S′′, Sn) ∧ ϕ′[S′′, Sn]
since by Lemma 6 s must be a prefix of ground situation Sn.

The thesis then follows immediately by the IH and the defi-
nition of regressable formula.
For the cases δ = δ1|δ2 and δ = πx.δ′, the thesis follows
immediately by the IH and the definition of regressable for-
mula.
For δ = δ1; δ2, we have that

Dolog((δ1; δ2), S, S
′, Sn)

.
=

∃s.Dolog(δ1, S, s, Sn) ∧Do(δ2, s, S
′, Sn)

≡ ∨
S′′.S′′�Sn

Dolog(δ1, S, S
′′, Sn) ∧ Dolog(δ2, S

′′, S′, Sn)
since by Lemma 6 s must be a prefix of ground situation Sn.

The thesis then follows immediately by the IH and the defi-
nition of regressable formula.
For δ = δ∗1 , by Lemma 7, we have that

Dolog(δ
∗
1 , S, S

′, Sn) ≡ Dolog(δ
≤|Sn|
1 , S, S′, Sn).

Then we can use the same arguments as in the nondetermin-
istic branch and sequence cases to show that the thesis holds.

We can also draw some results about Golog from this.
First, we have that:
Lemma 9. For any Golog program δ,

D |= Do(δ, s, s′) ⊃ s � s′

This can be proven by induction on situations and on the
structure of Golog programs.

We can also show that for Golog programs, Dolog is
equivalent to Do:
Theorem 10. For any Golog program δ,

D |= Dolog(δ, s, s′, s′) ≡ Do(δ, s, s′)

The proof is by induction on the structure of δ, using the fact
that for any Golog program δ, D |= Do(δ, s, s′) ⊃ s � s′.

From this, it follows that the result in Theorem 8 also ap-
plies to Golog programs:
Corollary 11. For any Golog program δ, and ground situa-
tion terms S and S′, there exist a first-order regressable sit-
uation calculus formula ψ such that D |= Do(δ, S, S′) ≡ ψ.

In summary, when the situation parameter is ground,
ElGolog rich tests can be handled with the same techniques
as standard tests without temporal operators. More gener-
ally, observe that for both Golog and ElGolog programs δ,
if the situation parameters s and s′ are ground, Do(δ, s, s′)
is equivalent to a first-order situation calculus formula. Also,
for both Golog and ElGolog programs δ, if δ contains no
iteration, Do(δ, s, s′) is also equivalent to a first-order situ-
ation calculus formula. Of course, in the general case, if δ

contains iteration and the situation parameters s and s′ are
not ground, then Do(δ, s, s′) expands to a second-order for-
mula in both the Golog and the ElGolog case. Hence, in
spite of its ability to query the execution history, ElGolog
can be handled with the same technical machinery as stan-
dard Golog.

Prolog Implementation

We have developed an implementation of ElGolog4 in
SWI-Prolog, which is based on the implementation of
Golog in (Levesque et al. 1997; Reiter 2001). Our imple-
mentation assumes that the basic action theory is repre-
sented in a particular way in Prolog and that the initial situ-
ation description satisfies the Prolog closed world assump-
tion. We use the same implementation syntax for programs
(and action theories) as (Reiter 2001), to which we add
diamond(Delta,Phi) for 〈δ〉ϕ and conv(Delta)
for δ−, where Delta and Phi are δ and ϕ expressed in
the implementation syntax.

The main predicate of the ElGolog interpreter is
do(Delta,S1,S2), which implements Do(δ, s1, s2).
The definition contains clauses such as:

do(E,S,do(E,S)) :-
primitive_action(E), poss(E,S).

do(?(P),S,S) :- holds(P,S,S).
do(E1 : E2,S,S1) :- % handles sequence

do(E1,S,S2), do(E2,S2,S1).
do(E1 # E2,S,S1) :- % handles nondet branch

do(E1,S,S1) ; do(E2,S,S1).
do(star(E),S,S1) :-

S1 = S ; do(E : star(E),S,S1).

The predicate holds(Phi,St,Sn) implements the
evaluation of a test formula ϕ[st, sn]. The definition con-
tains clauses such as:

holds(P & Q,St,Sn) :-
holds(P,St,Sn), holds(Q,St,Sn).

As in the original Golog implementation, atomic fluent for-
mulas are handled by restoring the situation argument and
invoking the result in Prolog, which first regresses it and
then evaluates it in the initial situation. Existentially quanti-
fied variables are handled by substituting in a fresh Prolog
variable, and using Prolog evaluation. Negation is handled
by applying Lloyd-Topor transformations and using Prolog
negation-as-failure. See (Reiter 2001) for more details.

The following clause implements the evaluation of the
temporal operator:

holds(diamond(E,P),St,Sn) :-
doLog(E,St,S1,Sn), holds(P,S1,Sn).

It uses the predicate doLog(Delta,S1,S2,Sn), which
implements Dolog(δ, s1, s2, sn). This predicate first pushes
the converse construct inwards, all the way down to atomic
actions. Then there are various clauses that handle other
forms of programs, such as:

4The ElGolog interpreter together with some examples is avail-
able at https://www.eecs.yorku.ca/∼lesperan/code/ElGolog.
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doLog(E,S,do(E,S),Sn) :- primitive_action(E),
leq(do(E,S),Sn), poss(E,S).

doLog(conv(E),S,S1,Sn) :-
primitive_action(E), doLog(E,S1,S,Sn).

doLog(?(P),S,S,Sn) :-
leq(S,Sn), holds(P,S,S).

doLog(E1 : E2,S,S1,Sn) :-
doLog(E1,S,S2,Sn), doLog(E2,S2,S1,Sn).

These are mostly as in do(Delta,S1,S2), except that
we check that the execution remains in the log Sn. This uses
the auxiliary predicate leq(S1,S2), which implements
s1 � s2:

leq(S,S).
leq(S,do(A,S1)) :- leq(S,S1).

Example 12. The basic action theory for a simple version of
the coffee delivery domain can be implemented as follows:
room(giuseppeOf). room(yvesOf).
room(eugeniaOf).

primitive_action(goto(R)) :- room(R).
primitive_action(deliverCoffee(R)):- room(R).
primitive_action(wait).

poss(goto(R),S) :- room(R), \+ at(R,S).
poss(deliverCoffee(R),S) :- at(R,S).
poss(wait,S).

at(R,do(A,S)) :- A = goto(R) ;
at(R,S), \+ A = goto(R1).

at(coffeeRoom,s0).

We can define a nondeterministic coffee delivery procedure
that never delivers to the same office twice as follows:
proc(cdp,

star(pi(r, (
?(room(r) &

-diamond(conv((deliverCoffee(r) :
star(any)),

true))
: goto(r) : deliverCoffee(r))))).

When we execute this procedure, we obtain various execu-
tions that deliver coffee to zero or more offices, never going
to the same office twice:

?- do(cdp,s0,S).
S = s0 ;
S = do(deliverCoffee(giuseppeOf),
do(goto(giuseppeOf), s0)) ;
S = do(deliverCoffee(yvesOf),
do(goto(yvesOf),
do(deliverCoffee(giuseppeOf),
do(goto(giuseppeOf), s0)))) ;
S = do(deliverCoffee(eugeniaOf),
do(goto(eugeniaOf),
do(deliverCoffee(yvesOf),
do(goto(yvesOf),
do(deliverCoffee(giuseppeOf),
do(goto(giuseppeOf), s0)))))) ;
S = do(deliverCoffee(eugeniaOf),
do(goto(eugeniaOf),
do(deliverCoffee(giuseppeOf),

do(goto(giuseppeOf), s0))))
...

Discussion
The need to handle domain dynamics which depends on
past histories has long been recognized as an important issue
in reasoning about action (Giunchiglia and Lifschitz 1995;
Mendez, Lobo, and Baral 1996; Gelfond and Lifschitz
1998). In particular, Gabaldon (Gabaldon 2011) extends Re-
iter’s basic action theories (Reiter 2001), which are Marko-
vian, to non-Markovian basic action theories, thus allowing
preconditions and effects of actions to be determined by the
whole history, not just the current situation. He also extends
regression to handle formulas that quantify over situations
that are bounded by a ground situation term, thus supporting
regression over non-Markovian basic action theories. (Ga-
baldon 2011) does in fact advocate for future work on a ver-
sion of Golog would support test conditions that refer to the
past, as we have provided in ElGolog.

There is also related work in the “action languages” ap-
proach (Gelfond and Lifschitz 1998). For instance, Gonzalez
et al. (Gonzalez, Baral, and Gelfond 2005) introduced Alan,
an A-like language for modeling non-Markovian domains.
One of their motivations is the practical problem of mod-
eling multimedia presentations that involve temporal condi-
tions constraining how a presentation evolves. (Giunchiglia
and Lifschitz 1995) also handled non-Markovian domain
specifications. More recently, non-Markovian planning do-
mains expressed in Linear Dynamic Logic have been studied
in (Brafman and De Giacomo 2019).

Our contribution in this paper is orthogonal to work on
handling non-Markovian action theories, since our focus is
on allowing the agent’s program to make non-Markovian
tests consisting of historical queries on its log. For simplic-
ity, we have assumed world dynamics to be specified by clas-
sical basic action theories (Reiter 2001), but our work could
be easily extended to deal with non-Markovian ones.

To sumarize, in this paper, we have presented ElGolog,
a high-level programming language extending Golog that
supports rich tests about the execution history, where tests
are expressed in a first-order variant of two-way linear dy-
namic logic that uses ElGolog programs with converse. This
allows procedures that involve complex history-dependent
conditions to be expressed naturally, without having to in-
troduce new task-specific fluents or data structures into the
action theory/domain model. We have shown that in spite
of its rich tests, ElGolog can be provided with a semantics
based on macroexpansion into situation calculus formulas
(Levesque et al. 1997; Reiter 2001), upon which regression
can be applied, just like Golog. We also described an imple-
mentation of ElGolog in Prolog.

The ability to refer to the past, as advocated by McCarthy
(McCarthy 1992; 2007). is important to keep the model of
the world (the fluents and atomic actions) and the model of
the task (the Golog/ElGolog program) separate. Indeed on
the same world model, we may run several programs per-
forming different tasks. If we cannot refer to the history,
then we need to summarize the relevant part of the history in
newly introduced fluents in an extended world model. But
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these fluents depend on the task, so for every new task we
would need to add new task-specific fluents. This clutters
the world model with extra information that does not per-
tain to the world itself, but to the (essentially unboundedly
many) tasks that we may perform on it.

Note that in the related work on non-Markovian action
theories by Gabaldon, Gonzalez et al., etc., avoiding the in-
troduction of auxiliary fluents is one of the main motiva-
tions. This argument applies to any kind of system where
we distinguish between a world model (including dynam-
ics) that remains valid over time and a variety of control
tasks that are performed on it at different times. Even in C
or Java it may be advantageous to refer to the log when pro-
gramming such tasks. However, in these languages, we do
not have a convenient data structure for the log. Instead in
the situation calculus, we do have one, the current situation,
which is in fact the history from the starting state to the cur-
rent one. In Golog, this log is used only when doing regres-
sion, but in ELGolog instead we use it as well for querying
the past, and as we have shown, we can still apply regres-
sion as we do in the standard Golog. Obviously, from time
to time we will “progress” the action theory to the current
situation (Reiter 2001), and this corresponds to erasing the
log and having a fresh start in the state corresponding to the
current situation. This means that we lose access to the his-
tory. The question of how to handle progression in ElGolog
is an interesting topic for future research.

Our approach should be applicable to other agent pro-
gramming languages. For instance, one could try to extend
Thielscher’s FLUX language (Thielscher 2005) along these
lines. Our ideas could also be applied to BDI agent pro-
gramming languages (e.g., Jason (Bordini, Hübner, and
Wooldridge 2007), 2APL (Dastani 2008), etc.), although
this would be more challenging as these typically only re-
member the current belief state. Note that it would also in-
teresting to investigate techniques to remember only the part
of the past history that is required to evaluate the historical
tests that appear in a given program.

In future work, we would like to extend our results to a
version of ElGolog based on non-Markovian action theo-
ries. It would also be interesting to generalize the approach
to handle concurrent programs as in ConGolog. Finally, it
would be worthwhile to investigate the usability of ElGolog
in practical domains such as cognitive robotics.
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