The Cognitive Agents Specification Language and
Verification Environment for Multiagent Systems

Steven Shapiro
Dept. of Computer Science
University of Toronto
Toronto, ON M5S 3G4
Canada

steven@ai.toronto.edu

ABSTRACT

The Cognitive Agents Specification Language (CASL) is a frame-
work for specifying multiagent systems. It hasamix of declarative
and procedural componentsto facilitate the specification and veri-
fication of complex multiagent systems. In this paper, we describe
CASL and averification environment (CASLve) for it based on the
PV Sverification system. We give an example of amultiagent meet-
ing scheduler application specifiedwith CASL. Toillustrate thever-
ification system, we discussa proof wecarried out in it, namely, that
all bounded-loop CASL specificationsterminate.

Categoriesand Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial Intelli-
gence—multiagent systems; D.2.1 [Software Engineering]:
Requirements/Specifi cations—languages,tools; D.2.4 [Software
Engineering]: Software/Program Verification—formal methods

General Terms
Verification, Languages, Reliability

Keywords

Adgent specification languages, verification tools, theorem proving,
proof assistants

1. INTRODUCTION

The Cognitive Agents Specification Language (CASL) is a
framework for specifying multiagent systems, which allows the
specifier to view agents as entities with mental states, such as
knowledge, beliefs, and goals, and to define the behavior of the
agentsin terms of their mental states. It combinesa declarative ac-
tion theory defined in the situation calculus [11, 12, 13] — which
allows the specifier to methodically and concisely describe the ef-
fects of actions on the world and the mental states of agents— with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on serversor to redistribute to lists, requires prior specific
permission and/or afee.

AAMAS 02, July 15-19, 2002, Bologna, Italy.

Copyright 2002 ACM 1-58113-480-0/02/0007 ...$5.00.

Yves Lespérance
Dept. of Computer Science
York University
Toronto, ON M3J 1P3
Canada

lesperan@cs.yorku.ca

Hector J. Levesque
Dept. of Computer Science
University of Toronto
Toronto, ON M5S 3G4
Canada

hector@ai.toronto.edu

a rich programming/process language with constructs for concur-
rency and non-determinism to facilitate the specification and verifi-
cation of complex multiagent systems. In the next section, we will
describethe different aspectsof CASL, andin Sec. 3, wewill illus-
trate its use on a multiagent system application.

We are al so devel oping averification environment (CASLve) for
CASL based on the Prototype Verification System (PVS) [10] to
makeit easier to verify properties of CASL specifications. CASLve
usesarepresentation of the CASL formalism within PV Sthat isalso
described in the next section. The verification environment should
provide the user with acomprehensivelibrary of proof methods, or
lemmas, to facilitate the proof of various types of results (safety,
liveness, termination, etc.). We arein the process of building such
alibrary. For establishing termination, one important such lemma
is that bounded-loop programs or subprogramsterminate. We have
proven such alemmaand discussit in detail in Sec. 4, asan exam-
ple of what isinvolved in the process of verification and building a
library for this purpose. We show part of the proof in Sec.5toillus-
trate how CASLve is used. The environment should also provide
specialized proof strategies for reasoning about CASL multiagent
system specifications(e.g., regression) and customizedtoolsfor dis-
playing CASL specificationsand proofs, and these are planned for
future work.

2. SPECIFICATION

In this section, we discussthe CASL specification language and
how we represent it in PVS.

21 PVS

PV S[10] isatyped, higher-order logic together with a proof sys-
tem to facilitate theorem proving. The language has useful fea-
tures, such as abstract datatypes and recursive definitions of func-
tions and relations. PVS also has an extensive library of theo-
ries of mathematics, and datatypes such as lists, infinite sequences,
arrays, records, etc. The proof system has built-in proof strate-
gies, including ones for inductive proofs, and facilities for adding
new strategies. PV'S also features a convenient Emacs-based user-
interface, afacility for displaying proof treesgraphically, and proof-
management functionality.

A PV S specificationis a collection of theoriesthat are similar to
logical theories except that they contain extra syntax for such pur-
poses as declaring new types and declaring types of variables and
constants. Theories can be parameterized, yielding a limited form
of polymorphism. We will, as much as possible, omit the extra-
logical syntax of the PV S language to make the theorieslook more
like classical higher-order logic.

The PV S proof system is a standard sequent calculusfor higher-
order logic with high-level proof strategies and decision procedures
to facilitate equational and mathematical reasoning. As mentioned
above, PVS comes with an extensive library of theories, some of
which are built in to the standard proof strategies and decision pro-
cedures. We will useI" v « to denote that the sentence o can
be derived from the theory I" and the built-in library of theories us-
ing the PV S proof system. In the remainder of this section, we will
discussthe different componentsof CASL, and how they were rep-
resented in PVS.

2.2 Action Theory

The situation calculus is a predicate-calculus language for rep-
resenting dynamically changing domains. A situation represents a
snapshot of the domain. There is a set of initial situations corre-
sponding to the ways an agent thinks the domain might be initially.
The actual initial state of the domain is represented by the distin-
guishedinitial situation constant, So. Theterm do(a, s) denotesthe
unique situation that results from an agent performing action a in
situation s. Thus, the situations can be structured into a set of trees,
where the root of eachtreeisaninitial situation and the arcs are ac-
tions.

Predicates and functions that have a situation argument (which
by convention is placed last) are called fluents. Fluents are used
to talk about the dynamic aspects of the domain. For example,
IN(agt, r, s) could be used to specify that agt isin roomr in situa-
tion s. The effects of actions on fluents are defined using successor
state axioms [11], which provide a succinct representation for both
effect axioms and frame axioms [9].

To completely specify the dynamics of an application domain,
we use a theory with the following kinds of axioms: (1) successor
state axioms for the fluents, which describe how they are affected
by actions (2) action precondition axioms, which specify the cir-
cumstancesunder which an action can be performed, (3) initial state
axioms, which describe the initial state of the domain and the ini-
tial mental state of the agent, (4) unique names axioms for the ac-
tions, and (5) domain-independent foundational axioms (discussed
below).

Theaxiomswhich definethe structure of the situations (including
aninduction axiom) are called the foundational axioms. Reiter [11]
formulated foundational axioms for the case where there is only a
singleinitial situation, So. Since we will need multiple initial sit-
uations to model knowledge and goal's, we use the axiomatization
provided by Lakemeyer and Levesque (L&L)[7].

L&L first definetheinitial situationsto bethosethat haveno pre-
decessors: Init;;(s') £ —=3a,s.s' = do(a, s). Then, they define
arelation on situations s <, s’ that holdsif s’ can be reached
from s by a (possibly empty) sequence of actions. <, is defined
to be the smallest relation that is reflexive and transitive and con-
tains (s, do(«, s)) for any s and a:

s <11 s EVP[(Vs1.P(s1,51)) A (Va,s1.P(s1,do(a, 51))) A
(Vs1,52,53.P(s1,52) AP(s2,53) D P(s1,53)) D
P(57 5/)]
The foundational axioms are as follows:

F1. |nitLL(So).

F2. Va17a2751752.d0(a1751) = dO(ClQ,SQ) D) (Cll =as Ns; =
52).

F3. VP(Vs,s'.Initzr(s) As <pp s D P(s')) D Vs.P(s).

F1 declaresthat Sy isan initial situation. F2 statesthat performing
different actions yields different situations, i.e., the do function is
1-1. F3isan induction axiom which saysthat if a property holds
for any situation that can be reached from an initial situation, then
that property holds for all situations.

We represent situationsin PV S as an abstract datatype:

Sit : DATATYPE
BEGIN
addinit(getroot : Rootset) : Init
do(lastact : Action, undo : Sit) : Noninit
ENDSit

Thisdatatypeiscalled St. It usestwo types, Rootset and Action, so

we assume that these have been previously declared astypes. The
Rootset typeis aset of objectsthat will becometheinitial situations
in the situation datatype. The Action typeisthe set of actions. More
information about the objectsin these types will be given by appli-
cations that use this datatype, but we do not need any more details
about the types for the declaration.

Datatypeshavethree main elements: constructors, accessors, and
recognizers. Constructorsform the elements of datatypes, i.e., they
are functions whose values are objects in the datatype. Accessors
map elements of the datatype back into the objects that were used to
construct them. Recognizersare predicatesthat identify which con-
structor was used to construct an element of the datatype. The St
datatype has two constructors. Thefirst one, addinit, maps objects
of the type Rootset into initial situations. The second one, do, maps
an action and a situation into a non-initial situation. There are also
two recognizers. Init(s) (Noninit(s), resp.) will be trueiff s isan
initial (non-initial, resp.) situation. getroot is an accessor that maps
aninitial situation into the element of Rootset that was used to con-
struct it. lastact (undo, resp.) is an accessor that maps a non-initial
situation do(a, s) into a (s, resp.). Note that datatype declarations
can be recursive, i.e., one can use the datatype as atype in its own
declaration.

The datatype declaration generates a theory that formalizes the
datatype. We can infer L&L'’s definitions and the last two founda-
tional axiomsfrom the theory generated by the datatype declaration
for Sit. Thefirst foundational axiomhasto beexplicitly addedto our
theory. The axioms generated for the Init recognizer imply that for
any s, Init(s) holdsiff Initz.(s) holds. Also, among the definitions
generated by the datatype declaration is a relation, Subterm(s, s’),
which holdsif s isasubtermof s’ (i.e., s’ canbereachedfrom s with
afinite number of applications of do). We will substitute the infix
operator < for Subtermto makeit better fit its intuitive meaning for
situations. < is equivalentto <.

Let Sit denotethetheory that isgenerated by the St datatypeaug-
mented with the axiom: Init(.So). We can show that it correctly rep-
resents the theory obtained from L& L’s foundational axioms:*

Theorem 1
1. Sit Fpve Vs.Init(s) = Initzz(s)
2. Sit bFpys V8,8 s < s' =5 <71 8’

3. Sit l_pvs Va17a2751752.d0(a1751) = do(a2,52) Doar =
an AN 81 = 82

4. Sit Fpvs YP(Vs, 8" Init(s) A s < s D P(s")) D VsP(s)

LAll the theorems appearing in this paper were verified with
CASLve[13].

2.3 Knowledgeand Goals

In CASL, we want to be able to model agentsin terms of their
mental states. Specifically, we include operators to specify agents’
information (what they know or believe) and their motivation (what
their goals are). Scherl and Levesque [12] showed how to model
(single-agent) knowledge and sensing actions in the situation cal-
culus, using a possible-worlds semantics with an accessibility re-
lation K, where the possible worlds are situations. We adapt their
approach to handle multiple agents and communicative actions be-
tween agents. K (agt, s', s) will be used to denote that in situation
s, agt thinksthat situation s’ might bethe actual situation. An agent
knows a formula ¢2 in s if ¢ holds in all situations K -accessible
from s, i.e., Know(agt, ¢, s) & vs' K (agt,s',s) D ¢[s].

Scherl and Levesgue [12] show how to obtain a successor state
axiomfor K that completely specifieshow knowledgeisaffected by
actions. In their framework, the knowledge-producing actionswere
performed by the agent itself, i.e., sensing actions. In CASL, we
are interested in communication actions, which are actions that af-
fect the mental state of the agent to whom they are addressedrather
than that of the agent who performsthe action. However, Scherl and
Levesgue's successor state axiom for K is easily adapted to han-
dle communicative actions. In [15], we give a successor state ax-
iomfor K that handlesknowledgeexpansionasaresult of INFORM
actions. Knowledge expansion is a special case of belief change
where an agent adds to its existing knowledge but never discovers
that it was mistaken about something it believed. In [16], we show
how to generalize Scherl & Levesque'sframework to handle belief
change more generally (for the single agent case with sensing ac-
tions), where the agent can discover that it was mistaken about its
beliefs and be forced to revise them.

Weformalize thegoalsof an agent using an accessibility relation,
W (agt, s, s) which holdsif in situation s, agt considersthat in s’
everything that it wants to be true is actually true [14]. For exam-
ple, if agt wantsto becomeamillionairein s, thenin al situations
W-related to s, agt isamillionaire, but these situations can be arbi-
trarily far in the future. Goalswill be evaluated relative to two situ-
ations now and then, where now =< then. We canthink of then as
defining a path of situations, namely, the sequence of situationsin
the history of then. Intuitively, now isthe situation along that path
that occurs at the current time, i.e., the situations that come before
now are considered to be in the past, and the situations that come
after now are considered to be in the future. Thus, goal formulae
are evaluated relative to a path of situations and the current ‘time’.
For example, we could represent the goal of increasing one’swealth
as: TOTALASSETS(then) > TOTALASSETS(now).

We use the K accessibility relation to pick out the current situ-
ation along a path, since the K -accessible situations are the ones
that the agent thinks might be the current situation. We say that an
agent has ¢»® asa goal in s if ¢ holds on the path defined by now
and then, where then is W-related to s and now is K -related to s
and now = then:

Goal(agt, 9, s) e
Vnow, then.W (agt, then, s) A K (agt, now, s) A
now = then D Y[now, then].

2 ¢ is aformula that can contain a situation variable, now, in the
place of situation terms. ¢[s] denotes the formula that results from
substituting s for now in ¢. We often suppressnow whentheintent
is clear from the context.

34 is aformula that can contain two situation variables, now and
then, in the place of situation terms. s, s'] denotes the formula
that results from substituting s for now and s’ for then in. Weof-
ten suppressnow and then whentheintent isclear from the context.

In [13], we formulate a successor-state axiom for W that handles
goal expansion asaresult of REQUEST actionsand goal contraction
asaresult of CANCELREQUEST actions.

We can encode the mental state operatorsin PV S quite straight-
forwardly from the logical characterizations given above. Theonly
difficulty is that we need to represent formulae as terms since the
Know and Goal operatorstake formulae as arguments, and we need
to be able to obtain the value of formula at a situation. One solu-
tion would be to encodeformulae and variables asfirst-order terms
and encodethe substitution using a (long) set of axioms, such asthe
one given by by De Giacomo et. al. in [3]. Instead, since PVSisa
higher-order logic, we use predicates on situations to represent for-
mulae. This has the advantage that no axiomatization is needed to
encodeformulae as terms, nor to represent substitution. For exam-
ple, the formula vz, y.ON(z, y, now) O —ON(y, z, now) isrep-
resented by: As.Vz,y.0On(z,y,s) D —On(y, =, s). To obtain the
value of aformula at a situation, we simply apply the correspond-
ing predicate to the situation. The mental state operators will take
such predicates as arguments, e.g., Know(As.Vz, y.0n(z, y, s) D
-On(y, =, s), So).

2.4 Agent Behavior

We havejust presented a framework in which one can systemati-
cally and concisely describe the effects of actionson the world and
on the mental states of multiple, communicating agents. In order to
describe a multi-agent system, we must also specify what actions
the agents perform.

We specify the behavior of agents with the notation of the pro-
gramming language ConGolog [2], the concurrent version of Golog
[8]. While versions of both Golog and ConGolog have been im-
plemented, we are mainly interested here in the potential for using
ConGolog as a specification language. The language contains the
following constructs:*

a primitive action

o2, wait for a condition
01302, sequence
01 | 82, nondeterministic choice of programs
7x.6, nondeterministic choice of arguments
", nondeterministic iteration
if ¢ then é; elsed,, conditional
for x € L do$, for loop
while ¢ doé, whileloop
51 | 62, concurrency with equal priority

31)) 02,
(Z:d—=0),

concurrency with é; at ahigher priority
interrupt

In the above, a denotesa situation calculus action; ¢ denotesa for-
mulaasdescribed in footnote 2; 4, 61, and 4. stand for complex ac-
tions; L isafinitelist; and # is a sequenceof variables. Thesecon-
structs are mostly self-explanatory. Intuitively, the interrupts work
as follows. Whenever 3%.¢ becomes true, ¢ is executed with the
bindings of % that satisfied ¢; once é hasfinished executing, thein-
terrupt can trigger again.

The semantics of ConGolog programs are defined by De Gia-
como et. a. [2] using a kind of semantics called structural oper-
ational semantics[6], which is based on “single steps’ of compu-
tation, or transitions. A step here is either a primitive action or
testing whether a condition holds in the current situation. They
introduce two special predicates, Finalp and Transp, where

“De Giacomo et. al. [2] allow recursive procedures in the lan-
guage. To simplify matters, weomit them here. We only allow non-
recursive procedures and treat them as definitions.

Final p (4, s) denotesthat program & may legally terminate in sit-
uation s, and where Transp (6, s, 8’, s') meansthat program § in
situation s may legally execute one step, endingin situation s” with
program &’ remaining. They then define Dop (4, s, s') to mean
that s’ is aterminating situation of program 4 starting in situation
S.

Dop(d,s,s') 238" . Transh (6, 5,8", ') A Final pa(8', s'),

where Trans}, ; is the reflexive, transitive closure of Transp .

Inother words, Dop (4, s, s') holdsif it is possibleto repeatedly
single-step the program §, obtaining a program 4’ and a situation s’
suchthat 6’ canlegally terminatein s’. The semanticsdoesnot han-
diethefor-loop construct, since De Giacomoet. al. did not havethis
construct. However, it is straightforward to extend their semantics
to handle for-loops.

As seen above, De Giacomo et. al. quantify over programs when
defining Dop . To encodethis semanticsin PVS, we defineatype
for programs. We do this using the datatype declaration shown in
Fig. 1. The declaration depends on some predefined types. As be-
fore, Actionisthetype of primitive actions. Fluent isthetype of for-
mulae that contain fluents, which we encode as predicates on situa-
tions, as discussed above. The =, for-loop, and interrupt operators
aresimilar to quantifiersin that they bind variables. QuantDomcor-
respondsto the domain of quantification for these operators. How-
ever, we want to allow quantification over any non-empty subtype
of QuantDom, thereforein the datatypeweusethetypeNP, whichis
thetype of non-empty predicateson QuantDom. In PV'S, typescan-
not be passedto functions, but predicatescan be. A predicatecan be
convertedto atype (i.e., thetypeof objectsthat satisfy the predicate)
by enclosing it in parenthesis. For example, the arguments to the
pick constructor are a non-empty predicate on QuantDom, piPred,
and afunction from (piPred) to programs. Thisis called dependent
subtyping, since the type of an argument of a function dependson
an earlier argument. It is a very useful feature of PVS. [D — R|
is the type of functions from D to R. list[T] is the type of lists with
elementsof typeT.

For each program construct in the language, we definea construc-
tor, accessors, and a recognizer. They are mostly self-explanatory.
nil isthe null program that is used in defining Transand Final. It is
aconstant constructor, so it has no accessors, but it hasarecognizer
Null. Thereisno constructor for interrupts becausein the ConGolog
semantics [2], they are defined in terms of other constructs.

As seen above, the = and for-loop operators bind variables. For
example, in7x.4, x isintroduced asavariableand § isaprogramin
whichz can occur asafreevariable. Inthe axiomsfor Transp and
Final p =, 6 always appearsin the scope of an existential quantifier
that binds x. In order to directly represent variable introduction in
programs, we would have to do much of the work that we avoided
by modeling formulae as predicatesinstead of as first-order terms.
Instead, we saw that the pick operator (and the for-loop operator)
takes a predicate and a function from objects that satisfy the pred-
icate to programs. In other words, we are representing programs
with afree variable asfunctionsfrom thedomain of thefreevariable
to programs (we will refer to these functions as programfunctions).
We can achieve the effect of existentially quantifying over the free
variable using: Jy.(Ax.8)(y), where (Az.6)(y) denotes the appli-
cation of Az.é to y and yields a program.

Theaxiomsfor Transp ¢ and Final p ¢ (which we do not present
here due to lack of space) can easily be defined in PVS using the
CASES statement which handles pattern matching over datatypes.
Their encodingsin PVS will be denoted Trans and Final, respec-
tively. We encodethem as recursive definitions, instead of axioms.

Transy, « is the reflexive, transitive closure of Transps. Since

PVSis a higher-order logic, the definition for Transp, 4, which is
second-order, could be directly encodedin PVS. However, in order
to usethis definition in aproof, wewould haveto define a predicate
in PVS to instantiate the second-order quantifier. We would then
have to prove that this predicate is the reflexive, transitive closure
of Transp ¢ asalemma, and invokethislemmaeachtime weusethe
predicate to instantiate the second-order quantifier. It is more con-
venient to use this predicate in place of Trans, . In PVS, aninfi-
nite sequenceof elementsof typeT" can berepresented by afunction
from Natto 7. Wewill represent a program execution by aninfinite
seguenceof programstates. A program stateis apair consisting of
aprogram and a situation. We define Trans* asfollows:
Trans' (6, s,6",s') £

Jseq,n.seq(0) = (8, 8) A seq(n) = (8',s") A

Vi.t < n D Trany(seq(i), seq(s + 1)).

In other words, Trans'(4, s, §', s') holdsif there exists an infinite
sequence, seq, and a natural number, n, such that (4, s) is the Oth
element of seq, (§', s’) isthen-th element of seq, andfor all i < n,
Transtakesthe:-th element of seq to the:+ 1-th element. Notethat
we are using Transasabinary predicate here over pairs of program
states.

This definition is equivalent to Transp, ;. Let ConGolog denote
the theory generated by the Program datatype.

Theorem 2

Sit U ConGolog Fpys
V4, 8,8, s Transp (4, s,4', s') = Trans* (4, s,4', s')

3. AMEETING SCHEDULER EXAMPLE

We illustrate the use of CASL by briefly describing a specifica-
tion of ameeting scheduler multi-agent systemthat ismorefully de-
scribed in [15]. Inthis example, there are meeting organizer agents,
which are trying to schedule meetings with personal agents, which
managethe schedulesof their (human) owners. To scheduleameet-
ing, an organi zer agent requests of each of the personal agentsof the
participants in the meeting to adopt the goal that its owner attend
the meeting during a given time period. If a personal agent does
not haveany goalsthat conflict with its owner attending the meeting
(i.e., it hasnot previously scheduledaconflicting meeting), it adopts
the goal that its owner attend this meeting and informs the meet-
ing organizer that it has adopted this goal, i.e., that it accepts the
meeting request. Otherwise, the personal agent informs the meet-
ing organizer that it has not adopted the goal that its owner attend
the meeting, i.e., that it declines the meeting request.

The specification of the behavior of the personal agentsis shown
in Fig. 2. Its arguments are the personal agent and its owner. In
the specification, we use the fluent ATMEETING(user, chair, s),
which meansthat user isat ameeting chaired by chair in situation
s. During(period, ¢) meansthat ¢ holds throughout the time pe-
riod specified by period. KWhether (agt, ¢) holdsif agt knows¢
or knows—¢. INFORMWHETHER(agt,, agt,, ¢) isacomplex ac-
tion in which agt, informs agt, whether ¢ holds.

There are two interrupts, the first running at higher priority than
the second. Thefirst interrupt fireswhen the agent hasthe goal that
the user be at a meeting that starts in less than fifteen minutes, and
the agent knowsthat the user doesnot yet know that it hasthis goal.
The agent asks the user to go the meeting (actually, the agent in-
forms the user that it wants him to go to the meeting). The second
interrupt handles meeting requests; it fires when the agent knows
that an organizer agent has requested a meeting, andit knowsthat it
has not yet replied to the request. The action taken isto inform the

Program: DATATYPE

BEGIN
nil: Null
prim(action: Action): Primitive
test(testPred: Fluent): Test
segn(segFirst:Program, seqSecond:Program): Sequence
nondet(ndFirst:Program, ndSecond:Program): NonDet
pick(piPred : NP, piProg : [(piPred) — Program): Pick
star (star Prog:Program): Star
if (ifPred:Fluent, thenProg:Program, elseProg:Program): If
while(whilePred:Fluent, whileProg:Program): While
for (for Type: NP, objlist: list[(forPred)], for Prog:[forPred — Program): For
conc(concFirst:Program, concSecond:Program): Conc
priconc(priConcFirst:Program, priConcSecond:Program): PriConc

end Program

Figure1: Dataype declaration for ConGolog programs.

MANAGESCHEDULE(pa, user) &

(period, chair :
Goal(pa, During(period, ATMEETING(user, chair))) A

% null program used in semantics
% primitive action

% wait for a condition

% sequence

% nondet. choice of actions

% nondet. choice of argument

% nondet. iteration

% conditional

% whileloop

% for loop

% concurrency with equal priority
% prioritized concurrency

Know[pa, =Know(user, Goal(pa, During(period, ATMEETING(user, chair)))) A

start(period) — :15 < TIME < start(period)] —

INFORM(pa, user, Goal(pa, During(period, ATMEETING(user, chair)))))

)]

(oa, period, chair :
Know(pa, Goal(oa, During(period, ATMEETING(user, chair))) A

—KWhether (oa, Goal(pa, During(period, ATMEETING(user, chair))))) —
INFORMWHETHER(pa, oa, Goal(pa, During(period, ATMEETING(user, chair)))))

Figure 2: Specification of the per sonal agents.

organizer whether it accepts or declines the meeting request. Due
to space constraints, we omit the axiomatization of the fluents and
actionsfor this example, and the code that specifies the behavior of
the organizer agents.

A complete meeting scheduler system is defined by composing
instances of the personal agents and the meeting organizer agents
in parallel, thereby modeling the behavior of several agents acting
independently. We also need to compose the nondeterministic iter-
ation of atick action concurrently (at alower priority) to alow time
to pass when the agents are not acting. Here is an example of such
asystem:

[MANAGESCHEDULE(PA;, USER;) ||
MANAGESCHEDULE(PA;, USER?) ||
MANAGESCHEDULE(PA3, USERs) ||
ORGANIZEMEETING(OA , USER; , {USER; , USERs },
12:00-2:00) ||
ORGANIZEMEETING(OA2, USERy, {USER:, USERs },
1:30-2:45)]) TIck*

Inthisexample, 0A; istrying to scheduleameeting between USER;
and USERs from 12 to 2. OA; is trying to schedule a meeting be-
tween USER, and USERs from 1:30 to 2:45. Since both meeting
organizers will try to obtain USERs’s agreement for meetings that
overlap, there will be two types of execution sequences, depending
on who obtains this agreement.

The meeting scheduler system is easy to represent in CASLve.
The only complication is in defining the domain of quantification
(QuantDom). In the example, we need to quantify over periods of
time and agents. We represent periods of time as pairs of natural
numbers, while agents are declared as a primitive type. In PVS,
one cannot directly define atype to be the union of other types, so
we had to define a datatype with constructors for both types. This
means that when defining the system, we have to use constructors
and accessorsto map into the QuantDom and back to the original

types.
4. VERIFICATION

Let us now discuss the PV S-based verification environment for
CASL that we have developed, which we call CASLve. PVS has
high-level proof-strategies and decision procedures that take care
of many of the low-level details associated with computer-aided
theorem proving. Some simple proofs (including some inductive
proofs) can be handled using asingle application of aproof strategy.
Many proofs can be accomplished using only the following steps:
lemma introduction (here lemma is a general term for any propo-
sition: axioms, lemmas, theorems, etc., and includes induction ax-
ioms), definition expansion, quantifier instantiation, and simplifica-
tion. In addition, PV'S has useful proof-management facilities, in-
cluding agraphical display of the proof tree, and proof stepping and
editing.

We have used CASLve to prove many lemmas that are use-
ful in verifying properties of programs. In the remainder of
this section, we will discuss one such lemma, namely that all
bounded-loop programs terminate. For the purposes of this pa-
per, we consider a bounded-loop program to be one without while-
loops and nondeterministic iteration (but for-loops are allowed):
Bounded(8) £ v&'.Subterm(4’,) D —Star(8’) A—While(d"). If we
want to provethat this property holdsfor some program, weruninto
a problem involving the use of program functions asaway of han-
dling program operators that bind variables. We intend to use func-
tions such as: Az.seqn(test(ONTABLE(x)), REMOVE(z)), which
when applied to an object such as BLOCK 1 simulates the substitu-
tion of BLOCK1 for =. However, there is nothing to stop us from

defining afunction f : NAT — PROGRAM such that f(i) = a,
wherea' denotesthe sequential composition of a with itself ¢ times.
Then, pick(Nat, f) isessentially an unbounded program becausewe
cannot bound in advancethe number of primitive actionsthat it will
execute.

Our solution to this problem is to restrict the program functions
to functions that always return programs that have the same struc-
ture. We first define a congruence relation Congruent(§, ') that
holdsif two programs have the same structure. Thisrelation is de-
fined recursively and it checks that the outermost operator is the
same for each program and then recursively checksthat the rest of
the programs are congruent. In addition, if § and §’ are of the form
pick(NP1, pf,),andpick(NP2, pf,), respectively, thenwerequire
that NP1 = NPy andVz : (NP1).Congruent(pf, (), pf,(z)).
We have a similar requirement for for-loops, but we also require
that the two lists be of the same length. We omit the formal def-
inition of this relation here. We say that a program 4 is suit-
able (SProg(é)), if for any subprogram of & that is of the form
pick(NP, pf) or for(NP, 1, pf) al theinstantiationsof pf are con-
gruent, i.e, Vz,y : (NP).Congruent(pf(z), pf(y)). Agan, we
omit the formal definition. We will limit our attention to suitable
programs. We can do this becausethey are closed under transitions:

Theorem 3

Sit U ConGolog Fpvs
V4,8, s, .SProg(d) A Trans(d, s, 8", s') D SProg(s’)

All future quantifications over programs will be assumed to be re-
stricted to suitable programs.

Following Francez [5], we say that a program § terminates start-
ingin situation s if it hasnoinfinite executionsstarting in s. We can
use the notion of a sequence of program states introduced for our
definition of Trans" in Sec. 2.4 to talk about infinite executions. We
say that § hasan infinite execution starting in s, if thereis ainfinite
sequence of program states that starts with (4, s), such that Trans
holdsof each adjacent pair of states: InfExec(d, s) < Jseq.seq(0) =
(8, s) AVi.Trang(seq, 1), where seq ranges over functions from the
natural numbersto program states, and Trans(seg, ¢) holdsif there
isatransition from the i-th to the « + 1-th element of seq. Note that
thisis an overloading of the previously defined binary Trans predi-
cate. Now, we can define termination as the absence of an infinite
execution: Terminates(s, s) £ —InfExec(s, s).

We adapt a technique from Francez [5], to assist in proving ter-
mination of a program § starting in situation s. Theideais to find
apredicate P,., € NAT x NAT that isintuitively a measure on an
execution seq of § (where the sequenceis understood from the con-
text, wedrop thesubscript). Intuitively, P(¢, 7) holdsif the:-th step
of seq hasmeasure j. We caninfer that Terminates(4, s), if for any
sequence seq such that seq(0) = (4, s), thereisa P such that:

1. P(0,) holdsfor some j,

2. the value of the measure strictly decreaseswith each transi-
tion step of the sequence, and

3. when the measure reaches 0, i.e., P(¢,0) for some ¢, then
thereis nolegal transition from seq(¢) to seq(i + 1),

We can state this formally asfollows:

Theorem 4

Sit U ConGolog Fpvs
V4, s[Vseq.seq(0) = (8,5) D
(3P.(35.P(0,)) A
(Vi,7.7 > 0 A P(3,j) A Trang(seq,1) D
dkk <jAPE+1L,k)A
(Vi.P(3,0) D —Trang(seq, 1)))] D Terminates(d, s)

Note that we use a relation for the measure because we do not
want to require that the measure be defined over all natural num-
bers. In particular, once the measure reaches 0, we want to allow it
to be undefined from then on. If we canfind suchameasurefor any
bounded program ¢ and situation s, we can show that all bounded
programsterminate. The measurethat we useis based on thelength
of §, wherethelength of aprogram isthe maximum number of prim-
itive actions and tests that will be generated in any execution of the
program. We informally describethe proglen function which maps
a bounded program to its length, but omit its formal definition. It
is defined recursively. nil haslength 0. Primitive actions and tests
havelength 1. Thelength of sequential, concurrent, and prioritized
concurrent compositions are the sum of the lengths of their argu-
ments. The length of nondeterministic choice of programs and if-
then-el se statementsare the maximum of thelengthstheir (program)
arguments. Since we are only considering bounded, suitable pro-
grams, the length of the program that results from applying the pro-
gram function argument of a pick statement to an object will bethe
samefor all objects. Therefore, the length of a pick statement isthe
length of the program that results from applying the program func-
tion to an arbitrary object. Similarly, the length of afor-loop is the
(list) length of its list argument multiplied by the (program) length
of its program function argument applied to an arbitrary object.

We will now define arelational measure, P;.,, that usesthe pro-
gram length. We want the measure to be defined initially and as
long as the sequence continues to be a valid execution of the pro-
gram. Where it is defined, P;.4(¢, 7) will hold if j is the program
length of the program component of seq(i): Pseq = i, j.(Vk.k <
i D Trans(seq, k)) A 5 = proglen(pj1 (seq(7))), where pj1 projects
out thefirst element of a pair. We use this measure to show that all
bounded programs terminate:

Theorem 5
Sit U ConGolog Fpvs ¥4, s.Bounded(d) D Terminates(d, s)

Wedid not show the specification of the meeting organizer agents
here, but they are specified with bounded-loop programs, so it is
easy to show that they terminate. To show that the entire meeting
scheduler system terminates,® we also need to show that the per-
sonal agent processesterminate. Although the personal agents are
not specified with bounded-loop programs, they only perform ac-
tions in responseto actions performed by the organizer agents, and
each such responseconsists of afinite set of actions. Sincethe orga-
nizer agent processesterminate, it should follow that the entire sys-
tem terminates. In future work, we plan to completeaformal proof
in CASLvethat the meeting scheduler system terminates following
this line of reasoning.

°Note that the instance of the meeting scheduler system specified
above does not terminate, since the TICK* process has an infinite
execution. Thiscan easily be fixed by replacing this processby one
that hasatime limit.

5. EXAMPLE PROOF

Toillustrate CASLve, we will run through part of a proof. Since
we are presenting parts of a PV'S proof, we will use PV'S notation,
i.e., a sequent calculus with a typed, higher-order language. The
proof weillustrateisalemmathat is usedin the proof of Theorem5,
i.e,, that all bounded programs terminate. The lemma saysthat all
legal transitions of bounded programs result in programs of smaller
length; it is stated formally in the first sequent below.

When the PV S prover isinvoked, one entersthe proof mode with
a single sequent that contains only the proposition to be proved in
the consequent. The antecedent formulae are numbered with nega-
tive integers, while the consequent are numbered with positive in-
tegers.

{1} V(4 :Bounded), (5’ : Program), (s, s’ : Sit) :
Trans(é, s, 8, s") D proglen(é’) < proglen(s)

The proof proceeds by induction over §. The PV S command for
thisis: (INDUCT 4 1), which is a strategy that sets up a proof of
formula {1} by induction over §. Sinced is of type Program, PVS
sets up the induction by creating a new sequent to prove for each
program construct, and possibly some sequentsto prove type cor-
rectnessconditions. Since we do not have much space, wewill only
show the proof of oneof the cases. Wewill show the proof for tests.
Recall from Fig. 1 that the program construct for tests is test(¢),
where ¢ is afluent, i.e., a predicate on situations. The sequent that
PV S generatesfor this caseis as follows.

{1} V(¢ : Fluent) : Bounded(test(¢)) D
V(&' : Program), (s, s’ : Sit) :
Trans(test(¢), s, 8',s') D
proglen(s’) < proglen(test(¢))

Next, we simplify the sequentwith the PV S command (REDUCE
NIL). REDUCE is astrategy that performs various simplifications,
including skolemization, propositional simplification, applying de-
cision procedures, and equality replacement. The NIL parameter is
used to prevent heuristic quantifier instantiation. Skolem constants
are formed by adding subscripted numerals to variable names. The
following sequent is the result of the simplification.

{-1} Bounded(test(¢1))
{-2} Trans(test(¢1), 51,8}, s})

| {1} proglen(5}) < proglen(test(¢1))

In our encoding of ConGolog, we made Trans a PVS defini-
tion. The definition states that Trans(test(¢1), s1, 81, s1) holdsiiff
¢1(s1) holdsand s; = s7 and 6] = nil. The next step of the proof
isto expand the definition of Trans, which yields the following se-
quent.

[-1] Bounded(test(¢1))
{-2} (;51(51)/\51 = niI/\s’l = 57

| [proglen(s]) < proglen(test(¢1))

If aformula’ s numberis enclosedin squarebrackets, it meansthat
the formula has not changed from the previous sequent. In the def-
inition of proglen, the nil program is given length 0 and a program
consisting of only atestis givenlength 1. Therefore, after simplify-
ing and expandingthe definition of proglen, we obtain thefollowing

sequent.
[-1] Bounded(test(¢))
2] 41(s1)
[-3] & = nil
(4] s =5
RENEEE

It is easy to see that this sequent is true, and we can use the
(GROUND) command, which simplifiesusing decision procedures,
to complete the proof. We haveillustrated some of the main steps

usedin CASLve. Theother onesthat are used most often are quanti-
fier instantiation, lemmaintroduction, and GRIND, whichis astrat-
egy that repeatedly performs heuristic instantiation of quantifiers
and simplification and can complete many simple proofs. PVSalso
has a facility for creating user-defined strategies, which we would
like to useto develop strategies specifically for CASL to further fa-
cilitate the verification of CASL specifications.

6. CONCLUSION AND FUTURE WORK

We have presented the different aspects of the CASL specifica-
tion language and how we encoded them in PV S to form the basis
of a verification environment. We briefly described the specifica-
tion of a meeting scheduler multi-agent system in CASL, and we
showed that all bounded-loop programsterminate, whichisauseful
lemma for proving termination of CASL programs. To our know!-
edge, CASL is the only multiagent specification language with a
verification environment that uses theorem proving. There are at-
tempts to use model-checking to automatically verify properties of
multi-agent systems[1], but that approach limits the expressiveness
of the specification language, which can make it more difficult to
specify and verify complex multiagent systems.

We plan to completethe termination proof for the meeting sched-
uler system as discussed above. We would also like to prove partial
correctness properties of this system. The techniquesfor composi-
tional verification of multi-agent systems developed by Engelfriet
et. al. [4] may proveuseful here. In addition, we would like to han-
dle recursive proceduresin CASL using the framework of De Gia-
comoet. a. [2].

7. REFERENCES

[1] M. Benerecetti, F. Giunchiglia, and L. Serafini. Model
checking multiagent systems. Journal of Logic and
Computation, 8(3):401-423, 1998.

[2] G. De Giacomo, Y. Lespérance, and H. J. Levesgue.
ConGolog, a concurrent programming language based on the
situation calculus. Artificial Intelligence, 121:109-169, 2000.

[3] G. DeGiacomo and H. J. Levesgue. Progression using
regression and sensors. In Proceedingsof the Sixteenth
International Joint Conferenceon Artificial Intelligence
(IJCAI-99), pages 160-165, Stockholm, Sweden, 1999.

[4] J. Engelfriet, C. M. Jonker, and J. Treur. Compositional
verification of multi-agent systemsin temporal
multi-epistemic logic. In J. P. Muller, M. P. Singh, and A. S.
Rao, editors, Intelligent Agents V: Proceedingsof the Fifth
Inter national Workshop on Agent Theories, Architectures
and languages (ATAL’98), volume 1555 of LNAI, pages
177-194. Springer-Verlag, 1999.

[5] N. Francez. Fairness. Springer-Verlag, New York, 1986.

[6] M. Hennessy. The Semantics of Programming Languages.
John Wiley & Sons, 1990.

[7] G.LakemeyerandH. J. Levesgue. AOL: alogic of acting,
sensing, knowing, and only knowing. In Principles of
Knowledge Representation and Reasoning: Proceedingsof
the Sixth International Conference (KR-98), pages 316-327,
1998.

[8] H.J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. B.
Scherl. GOLOG: A logic programming language for
dynamic domains. Journal of Logic Programming,
31:59-84, 1997.

[9] J. McCarthy and P. J. Hayes. Some philosophical problems
from the standpoint of artificial intelligence. In B. Meltzer

[10]

[11]

[12]

[13]
[14]

[19]

[16]

and D. Michie, editors, Machine Intelligence 4. Edinburgh
University Press, 19609.

S. Owre, S. Rgjan, J. M. Rushby, N. Shankar, and M. K.
Srivas. PVS: Combining specification, proof checking, and
model checking. In R. Alur and T. A. Henzinger, editors,
Computer-Aided Verification, CAV ' 96, volume 1102 of
Lecture Notesin Computer Science, pages 411-414, New
Brunswick, NJ, July/August 1996. Springer-Verlag.

R. Reiter. The frame problem in the situation calculus: A
simple solution (sometimes) and a completeness result for
goal regression. In V. Lifschitz, editor, Artificial Intelligence
and Mathematical Theory of Computation: Papersin Honor
of John McCarthy, pages 359-380. Academic Press, San
Diego, CA, 1991.

R. B. Scherl and H. J. Levesque. The frame problem and
knowledge-producing actions. In Proceedings of the
Eleventh National Conferenceon Artificial Intelligence,
pages 689695, Washington, DC, July 1993. AAAI
Press'The MIT Press.

S. Shapiro. PhD thesis. In preparation.

S. Shapiro and Y. Lespérance. Modeling multiagent systems
with the cognitive agents specification language — a feature
interaction resolution application. In C. Castelfranchi and

Y. Lespérance, editors, Intelligent Agents Volume VII —
Proceedings of the 2000 Workshop on Agent Theories,
Architectures, and Languages (ATAL-2000), LNAI.
Springer-Verlag, Berlin, 2001. To appear.

S. Shapiro, Y. Lespérance, and H. J. Levesque. Specifying
communicative multi-agent systems. In W. Wobcke,

M. Pagnucco, and C. Zhang, editors, Agents and Multi-Agent
Systems — Formalisms, Methodologies, and Applications,
volume 1441 of LNAI, pages 1-14. Springer-Verlag, Berlin,
1998.

S. Shapiro, M. Pagnucco, Y. Lespérance, and H. J. Levesque.
Iterated belief changein the situation calculus. In A. G.
Cohn, F. Giunchiglia, and B. Selman, editors, Principles of
Knowledge Representation and Reasoning: Proceedings of
the Seventh International Conference (KR2000), pages
527-538, San Francisco, CA, 2000. Morgan Kaufmann
Publishers.

