
The Cognitive Agents Specification Language and
Verification Environment for Multiagent Systems

Steven Shapiro
Dept. of Computer Science

University of Toronto
Toronto, ON M5S 3G4

Canada
steven@ai.toronto.edu

Yves Lespérance
Dept. of Computer Science

York University
Toronto, ON M3J 1P3

Canada
lesperan@cs.yorku.ca

Hector J. Levesque
Dept. of Computer Science

University of Toronto
Toronto, ON M5S 3G4

Canada
hector@ai.toronto.edu

ABSTRACT
The Cognitive Agents Specification Language (CASL) is a frame-
work for specifying multiagent systems. It has a mix of declarative
and procedural components to facilitate the specification and veri-
fication of complex multiagent systems. In this paper, we describe
CASL and a verification environment (CASLve) for it based on the
PVS verification system. We give an example of a multiagent meet-
ing schedulerapplication specified with CASL. To illustrate the ver-
ification system, we discussa proof we carried out in it, namely, that
all bounded-loop CASL specifications terminate.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelli-
gence—multiagent systems; D.2.1 [Software Engineering]:
Requirements/Specifications—languages,tools; D.2.4 [Software
Engineering]: Software/Program Verification—formal methods

General Terms
Verification, Languages, Reliability

Keywords
Agent specification languages, verification tools, theorem proving,
proof assistants

1. INTRODUCTION
The Cognitive Agents Specification Language (CASL) is a

framework for specifying multiagent systems, which allows the
specifier to view agents as entities with mental states, such as
knowledge, beliefs, and goals, and to define the behavior of the
agents in terms of their mental states. It combines a declarative ac-
tion theory defined in the situation calculus [11, 12, 13] — which
allows the specifier to methodically and concisely describe the ef-
fects of actions on the world and the mental states of agents — with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’02, July 15-19, 2002, Bologna, Italy.
Copyright 2002 ACM 1-58113-480-0/02/0007 ...$5.00.

a rich programming/process language with constructs for concur-
rency and non-determinism to facilitate the specification and verifi-
cation of complex multiagent systems. In the next section, we will
describe the different aspects of CASL, and in Sec. 3, we will illus-
trate its use on a multiagent system application.

We are also developing a verification environment (CASLve) for
CASL based on the Prototype Verification System (PVS) [10] to
make it easier to verify properties of CASL specifications. CASLve
uses a representation of the CASL formalism within PVS that is also
described in the next section. The verification environment should
provide the user with a comprehensive library of proof methods, or
lemmas, to facilitate the proof of various types of results (safety,
liveness, termination, etc.). We are in the process of building such
a library. For establishing termination, one important such lemma
is that bounded-loop programs or subprograms terminate. We have
proven such a lemma and discuss it in detail in Sec. 4, as an exam-
ple of what is involved in the process of verification and building a
library for this purpose. We show part of the proof in Sec. 5 to illus-
trate how CASLve is used. The environment should also provide
specialized proof strategies for reasoning about CASL multiagent
system specifications (e.g., regression) and customized tools for dis-
playing CASL specifications and proofs, and these are planned for
future work.

2. SPECIFICATION
In this section, we discuss the CASL specification language and

how we represent it in PVS.

2.1 PVS
PVS [10] is a typed, higher-order logic together with a proof sys-

tem to facilitate theorem proving. The language has useful fea-
tures, such as abstract datatypes and recursive definitions of func-
tions and relations. PVS also has an extensive library of theo-
ries of mathematics, and datatypes such as lists, infinite sequences,
arrays, records, etc. The proof system has built-in proof strate-
gies, including ones for inductive proofs, and facilities for adding
new strategies. PVS also features a convenient Emacs-based user-
interface, a facility for displaying proof trees graphically, and proof-
management functionality.

A PVS specification is a collection of theories that are similar to
logical theories except that they contain extra syntax for such pur-
poses as declaring new types and declaring types of variables and
constants. Theories can be parameterized, yielding a limited form
of polymorphism. We will, as much as possible, omit the extra-
logical syntax of the PVS language to make the theories look more
like classical higher-order logic.

The PVS proof system is a standard sequent calculus for higher-
order logic with high-level proof strategies and decision procedures
to facilitate equational and mathematical reasoning. As mentioned
above, PVS comes with an extensive library of theories, some of
which are built in to the standard proof strategies and decision pro-
cedures. We will use � `pvs � to denote that the sentence � can
be derived from the theory � and the built-in library of theories us-
ing the PVS proof system. In the remainder of this section, we will
discuss the different components of CASL, and how they were rep-
resented in PVS.

2.2 Action Theory
The situation calculus is a predicate-calculus language for rep-

resenting dynamically changing domains. A situation represents a
snapshot of the domain. There is a set of initial situations corre-
sponding to the ways an agent thinks the domain might be initially.
The actual initial state of the domain is represented by the distin-
guished initial situation constant,S0 . The term do(a; s) denotes the
unique situation that results from an agent performing action a in
situation s. Thus, the situations can be structured into a set of trees,
where the root of each tree is an initial situation and the arcs are ac-
tions.

Predicates and functions that have a situation argument (which
by convention is placed last) are called fluents. Fluents are used
to talk about the dynamic aspects of the domain. For example,
IN(agt; r; s) could be used to specify that agt is in room r in situa-
tion s. The effects of actions on fluents are defined using successor
state axioms [11], which provide a succinct representation for both
effect axioms and frame axioms [9].

To completely specify the dynamics of an application domain,
we use a theory with the following kinds of axioms: (1) successor
state axioms for the fluents, which describe how they are affected
by actions (2) action precondition axioms, which specify the cir-
cumstancesunder which an action can be performed, (3) initial state
axioms, which describe the initial state of the domain and the ini-
tial mental state of the agent, (4) unique names axioms for the ac-
tions, and (5) domain-independent foundational axioms (discussed
below).

The axioms which define the structure of the situations (including
an induction axiom) are called the foundational axioms. Reiter [11]
formulated foundational axioms for the case where there is only a
single initial situation, S0 . Since we will need multiple initial sit-
uations to model knowledge and goals, we use the axiomatization
provided by Lakemeyer and Levesque (L&L)[7].

L&L first define the initial situations to be those that have no pre-
decessors: InitLL(s0)

def
= :9a; s:s0 = do(a; s). Then, they define

a relation on situations s �LL s0 that holds if s0 can be reached
from s by a (possibly empty) sequence of actions. �LL is defined
to be the smallest relation that is reflexive and transitive and con-
tains (s; do(a; s)) for any s and a:

s �LL s0
def
= 8P [(8s1:P (s1; s1)) ^ (8a;s1:P (s1 ;do(a; s1)))^

(8s1; s2; s3:P (s1 ; s2) ^ P (s2; s3) � P (s1; s3)) �
P (s; s0)]

The foundational axioms are as follows:

F1. InitLL(S0).

F2. 8a1; a2; s1; s2:do(a1; s1) = do(a2; s2) � (a1 = a2 ^ s1 =
s2).

F3. 8P (8s; s0:InitLL(s) ^ s �LL s
0 � P (s0)) � 8s:P (s):

F1 declares that S0 is an initial situation. F2 states that performing
different actions yields different situations, i.e., the do function is
1-1. F3 is an induction axiom which says that if a property holds
for any situation that can be reached from an initial situation, then
that property holds for all situations.

We represent situations in PVS as an abstract datatype:

Sit : DATATYPE

BEGIN

addinit(getroot : Rootset) : Init
do(lastact : Action; undo : Sit) : Noninit

ENDSit

This datatype is called Sit. It uses two types, Rootset and Action, so
we assume that these have been previously declared as types. The
Rootset type is a set of objects that will become the initial situations
in the situation datatype. The Action type is the set of actions. More
information about the objects in these types will be given by appli-
cations that use this datatype, but we do not need any more details
about the types for the declaration.

Datatypes have three main elements: constructors, accessors,and
recognizers. Constructors form the elements of datatypes, i.e., they
are functions whose values are objects in the datatype. Accessors
map elements of the datatype back into the objects that were used to
construct them. Recognizers are predicates that identify which con-
structor was used to construct an element of the datatype. The Sit
datatype has two constructors. The first one, addinit, maps objects
of the type Rootset into initial situations. The second one, do, maps
an action and a situation into a non-initial situation. There are also
two recognizers. Init(s) (Noninit(s), resp.) will be true iff s is an
initial (non-initial, resp.) situation. getroot is an accessor that maps
an initial situation into the element of Rootset that was used to con-
struct it. lastact (undo, resp.) is an accessor that maps a non-initial
situation do(a; s) into a (s, resp.). Note that datatype declarations
can be recursive, i.e., one can use the datatype as a type in its own
declaration.

The datatype declaration generates a theory that formalizes the
datatype. We can infer L&L’s definitions and the last two founda-
tional axioms from the theory generated by the datatype declaration
for Sit. The first foundational axiom has to be explicitly added to our
theory. The axioms generated for the Init recognizer imply that for
any s, Init(s) holds iff InitLL(s) holds. Also, among the definitions
generated by the datatype declaration is a relation, Subterm(s; s0),
which holds if s is a subterm of s0 (i.e., s0 can be reachedfrom swith
a finite number of applications of do). We will substitute the infix
operator� for Subterm to make it better fit its intuitive meaning for
situations. � is equivalent to �LL.

Let Sit denote the theory that is generated by the Sit datatype aug-
mented with the axiom: Init(S0). We can show that it correctly rep-
resents the theory obtained from L&L’s foundational axioms:1

Theorem 1

1. Sit `pvs 8s:Init(s) � InitLL(s)

2. Sit `pvs 8s; s
0:s � s0 � s �LL s

0

3. Sit `pvs 8a1; a2; s1; s2:do(a1; s1) = do(a2; s2) � a1 =
a2 ^ s1 = s2

4. Sit `pvs 8P (8s; s0:Init(s) ^ s � s0 � P (s0)) � 8sP (s)

1All the theorems appearing in this paper were verified with
CASLve [13].

2.3 Knowledge and Goals
In CASL, we want to be able to model agents in terms of their

mental states. Specifically, we include operators to specify agents’
information (what they know or believe) and their motivation (what
their goals are). Scherl and Levesque [12] showed how to model
(single-agent) knowledge and sensing actions in the situation cal-
culus, using a possible-worlds semantics with an accessibility re-
lation K , where the possible worlds are situations. We adapt their
approach to handle multiple agents and communicative actions be-
tween agents. K(agt; s0; s) will be used to denote that in situation
s, agt thinks that situation s0 might be the actual situation. An agent
knows a formula �2 in s if � holds in all situations K-accessible
from s, i.e., Know(agt; �; s)

def
= 8s0:K(agt; s0; s) � �[s0].

Scherl and Levesque [12] show how to obtain a successor state
axiom forK that completely specifieshow knowledge is affected by
actions. In their framework, the knowledge-producing actions were
performed by the agent itself, i.e., sensing actions. In CASL, we
are interested in communication actions, which are actions that af-
fect the mental state of the agent to whom they are addressed rather
than that of the agentwho performs the action. However, Scherl and
Levesque’s successor state axiom for K is easily adapted to han-
dle communicative actions. In [15], we give a successor state ax-
iom forK that handles knowledge expansion as a result of INFORM

actions. Knowledge expansion is a special case of belief change
where an agent adds to its existing knowledge but never discovers
that it was mistaken about something it believed. In [16], we show
how to generalize Scherl & Levesque’s framework to handle belief
change more generally (for the single agent case with sensing ac-
tions), where the agent can discover that it was mistaken about its
beliefs and be forced to revise them.

We formalize the goals of an agent using an accessibility relation,
W (agt; s0; s) which holds if in situation s, agt considers that in s0

everything that it wants to be true is actually true [14]. For exam-
ple, if agt wants to become a millionaire in s, then in all situations
W -related to s, agt is a millionaire, but these situations can be arbi-
trarily far in the future. Goals will be evaluated relative to two situ-
ations now and then, where now � then. We can think of then as
defining a path of situations, namely, the sequence of situations in
the history of then. Intuitively, now is the situation along that path
that occurs at the current time, i.e., the situations that come before
now are considered to be in the past, and the situations that come
after now are considered to be in the future. Thus, goal formulae
are evaluated relative to a path of situations and the current ‘time’.
For example, we could represent the goal of increasing one’s wealth
as: TOTALASSETS(then) > TOTALASSETS(now).

We use the K accessibility relation to pick out the current situ-
ation along a path, since the K-accessible situations are the ones
that the agent thinks might be the current situation. We say that an
agent has 3 as a goal in s if holds on the path defined by now

and then, where then is W -related to s and now is K-related to s
and now � then:

Goal(agt; ; s) def
=

8now ; then:W (agt; then; s) ^K(agt;now ; s) ^
now � then � [now ; then]:

2 � is a formula that can contain a situation variable, now , in the
place of situation terms. �[s] denotes the formula that results from
substituting s for now in �. We often suppressnow when the intent
is clear from the context.
3 is a formula that can contain two situation variables, now and
then, in the place of situation terms. [s; s0] denotes the formula
that results from substituting s fornow and s0 for then in . We of-
ten suppressnow and then when the intent is clear from the context.

In [13], we formulate a successor-state axiom for W that handles
goal expansion as a result of REQUEST actions and goal contraction
as a result of CANCELREQUEST actions.

We can encode the mental state operators in PVS quite straight-
forwardly from the logical characterizations given above. The only
difficulty is that we need to represent formulae as terms since the
Know and Goal operators take formulae as arguments, and we need
to be able to obtain the value of formula at a situation. One solu-
tion would be to encode formulae and variables as first-order terms
and encode the substitution using a (long) set of axioms, such as the
one given by by De Giacomo et. al. in [3]. Instead, since PVS is a
higher-order logic, we use predicates on situations to represent for-
mulae. This has the advantage that no axiomatization is needed to
encode formulae as terms, nor to represent substitution. For exam-
ple, the formula 8x; y:ON(x;y; now) � :ON(y; x;now) is rep-
resented by: �s:8x; y:On(x; y; s) � :On(y; x; s): To obtain the
value of a formula at a situation, we simply apply the correspond-
ing predicate to the situation. The mental state operators will take
such predicates as arguments, e.g., Know(�s:8x; y:On(x;y; s) �
:On(y; x; s); S0).

2.4 Agent Behavior
We have just presented a framework in which one can systemati-

cally and concisely describe the effects of actions on the world and
on the mental states of multiple, communicating agents. In order to
describe a multi-agent system, we must also specify what actions
the agents perform.

We specify the behavior of agents with the notation of the pro-
gramming language ConGolog [2], the concurrent version of Golog
[8]. While versions of both Golog and ConGolog have been im-
plemented, we are mainly interested here in the potential for using
ConGolog as a specification language. The language contains the
following constructs:4

a, primitive action
�?, wait for a condition
�1; �2, sequence
�1 j �2, nondeterministic choice of programs
�x:�, nondeterministic choice of arguments
�� , nondeterministic iteration
if � then �1 else �2, conditional
for x 2 L do �, for loop
while � do �, while loop
�1 k �2 , concurrency with equal priority
�1 ii �2, concurrency with �1 at a higher priority
h ~x : �! � i, interrupt

In the above, a denotes a situation calculus action; � denotes a for-
mula as described in footnote 2; �, �1, and �2 stand for complex ac-
tions; L is a finite list; and ~x is a sequence of variables. These con-
structs are mostly self-explanatory. Intuitively, the interrupts work
as follows. Whenever 9~x:� becomes true, � is executed with the
bindings of ~x that satisfied �; once � has finished executing, the in-
terrupt can trigger again.

The semantics of ConGolog programs are defined by De Gia-
como et. al. [2] using a kind of semantics called structural oper-
ational semantics [6], which is based on “single steps” of compu-
tation, or transitions. A step here is either a primitive action or
testing whether a condition holds in the current situation. They
introduce two special predicates, FinalDG and TransDG, where
4De Giacomo et. al. [2] allow recursive procedures in the lan-
guage. To simplify matters, we omit them here. We only allow non-
recursive procedures and treat them as definitions.

FinalDG(�; s) denotes that program � may legally terminate in sit-
uation s, and where TransDG(�; s; �0; s0) means that program � in
situation smay legally execute one step, ending in situation s0 with
program �0 remaining. They then define DoDG(�; s; s0) to mean
that s0 is a terminating situation of program � starting in situation
s:

DoDG(�; s; s
0)

def
= 9�0:Trans�DG(�; s; �

0

; s
0) ^ FinalDG(�

0

; s
0);

where Trans�DG is the reflexive, transitive closure of TransDG.
In other words, DoDG(�; s; s0) holds if it is possible to repeatedly

single-step the program �, obtaining a program �0 and a situation s0

such that �0 can legally terminate in s0. The semantics does not han-
dle the for-loop construct, since De Giacomo et. al. did not have this
construct. However, it is straightforward to extend their semantics
to handle for-loops.

As seen above, De Giacomo et. al. quantify over programs when
defining DoDG. To encode this semantics in PVS, we define a type
for programs. We do this using the datatype declaration shown in
Fig. 1. The declaration depends on some predefined types. As be-
fore, Action is the type of primitive actions. Fluent is the type of for-
mulae that contain fluents, which we encode as predicates on situa-
tions, as discussed above. The �, for-loop, and interrupt operators
are similar to quantifiers in that they bind variables. QuantDom cor-
responds to the domain of quantification for these operators. How-
ever, we want to allow quantification over any non-empty subtype
of QuantDom, therefore in the datatype we use the type NP, which is
the type of non-empty predicates on QuantDom. In PVS, types can-
not be passed to functions, but predicates can be. A predicate can be
converted to a type (i.e., the type of objects that satisfy the predicate)
by enclosing it in parenthesis. For example, the arguments to the
pick constructor are a non-empty predicate on QuantDom, piPred,
and a function from (piPred) to programs. This is called dependent
subtyping, since the type of an argument of a function depends on
an earlier argument. It is a very useful feature of PVS. [D ! R]
is the type of functions from D to R. list[T] is the type of lists with
elements of type T.

For each program construct in the language,we definea construc-
tor, accessors, and a recognizer. They are mostly self-explanatory.
nil is the null program that is used in defining Trans and Final. It is
a constant constructor, so it has no accessors,but it has a recognizer
Null. There is no constructor for interrupts because in the ConGolog
semantics [2], they are defined in terms of other constructs.

As seen above, the � and for-loop operators bind variables. For
example, in �x:�, x is introduced as a variable and � is a program in
whichx can occur as a free variable. In the axioms for TransDG and
FinalDG, � always appears in the scope of an existential quantifier
that binds x. In order to directly represent variable introduction in
programs, we would have to do much of the work that we avoided
by modeling formulae as predicates instead of as first-order terms.
Instead, we saw that the pick operator (and the for-loop operator)
takes a predicate and a function from objects that satisfy the pred-
icate to programs. In other words, we are representing programs
with a free variable as functions from the domain of the free variable
to programs (we will refer to these functions as program functions).
We can achieve the effect of existentially quantifying over the free
variable using: 9y:(�x:�)(y), where (�x:�)(y) denotes the appli-
cation of �x:� to y and yields a program.

The axioms for TransDG and FinalDG (which we do not present
here due to lack of space) can easily be defined in PVS using the
CASES statement which handles pattern matching over datatypes.
Their encodings in PVS will be denoted Trans and Final, respec-
tively. We encode them as recursive definitions, instead of axioms.

Trans�DG is the reflexive, transitive closure of TransDG. Since

PVS is a higher-order logic, the definition for Trans�DG, which is
second-order, could be directly encoded in PVS. However, in order
to use this definition in a proof, we would have to define a predicate
in PVS to instantiate the second-order quantifier. We would then
have to prove that this predicate is the reflexive, transitive closure
of TransDG as a lemma, and invoke this lemma eachtime we use the
predicate to instantiate the second-order quantifier. It is more con-
venient to use this predicate in place of Trans�DG. In PVS, an infi-
nite sequenceof elements of typeT can be represented by a function
from Nat to T . We will represent a program execution by an infinite
sequence of program states. A program state is a pair consisting of
a program and a situation. We define Trans� as follows:

Trans�(�; s; �0; s0)
def
=

9seq; n:seq(0) = (�; s) ^ seq(n) = (�0; s0) ^
8i:i < n � Trans(seq(i); seq(i+ 1)):

In other words, Trans�(�; s; �0; s0) holds if there exists an infinite
sequence, seq, and a natural number, n, such that (�; s) is the 0th
element of seq, (�0; s0) is the n-th element of seq, and for all i < n,
Trans takes the i-th element of seq to the i+1-th element. Note that
we are using Trans as a binary predicate here over pairs of program
states.

This definition is equivalent to Trans�DG. Let ConGolog denote
the theory generated by the Program datatype.

Theorem 2

Sit [ConGolog `pvs
8�; s; �0; s0:Trans�DG(�; s; �

0; s0) � Trans�(�; s; �0; s0)

3. A MEETING SCHEDULER EXAMPLE
We illustrate the use of CASL by briefly describing a specifica-

tion of a meeting schedulermulti-agent system that is more fully de-
scribed in [15]. In this example, there are meeting organizer agents,
which are trying to schedule meetings with personal agents, which
manage the schedulesof their (human) owners. To schedule a meet-
ing, an organizer agent requests of each of the personal agents of the
participants in the meeting to adopt the goal that its owner attend
the meeting during a given time period. If a personal agent does
not have any goals that conflict with its owner attending the meeting
(i.e., it has not previously scheduleda conflicting meeting), it adopts
the goal that its owner attend this meeting and informs the meet-
ing organizer that it has adopted this goal, i.e., that it accepts the
meeting request. Otherwise, the personal agent informs the meet-
ing organizer that it has not adopted the goal that its owner attend
the meeting, i.e., that it declines the meeting request.

The specification of the behavior of the personal agents is shown
in Fig. 2. Its arguments are the personal agent and its owner. In
the specification, we use the fluent ATMEETING(user; chair; s),
which means that user is at a meeting chaired by chair in situation
s. During(period; �) means that � holds throughout the time pe-
riod specified by period . KWhether(agt; �) holds if agt knows �
or knows :�. INFORMWHETHER(agt1;agt2; �) is a complex ac-
tion in which agt1 informs agt2 whether � holds.

There are two interrupts, the first running at higher priority than
the second. The first interrupt fires when the agent has the goal that
the user be at a meeting that starts in less than fifteen minutes, and
the agent knows that the user does not yet know that it has this goal.
The agent asks the user to go the meeting (actually, the agent in-
forms the user that it wants him to go to the meeting). The second
interrupt handles meeting requests; it fires when the agent knows
that an organizer agent has requested a meeting, and it knows that it
has not yet replied to the request. The action taken is to inform the

Program: DATATYPE

BEGIN

nil: Null % null program used in semantics
prim(action: Action): Primitive % primitive action
test(testPred: Fluent): Test % wait for a condition
seqn(seqFirst:Program, seqSecond:Program): Sequence % sequence
nondet(ndFirst:Program, ndSecond:Program): NonDet % nondet. choice of actions
pick(piPred : NP; piProg : [(piPred)! Program]): Pick % nondet. choice of argument
star(starProg:Program): Star % nondet. iteration
if (ifPred:Fluent, thenProg:Program, elseProg:Program): If % conditional
while(whilePred:Fluent, whileProg:Program): While % while loop
for(forType: NP, objlist: list[(forPred)], forProg:[forPred! Program]): For % for loop
conc(concFirst:Program, concSecond:Program): Conc % concurrency with equal priority
priconc(priConcFirst:Program, priConcSecond:Program): PriConc % prioritized concurrency

end Program

Figure 1: Dataype declaration for ConGolog programs.

MANAGESCHEDULE(pa;user)
def
=

hperiod; chair :
Goal(pa;During(period;ATMEETING(user; chair))) ^
Know[pa;:Know(user;Goal(pa;During(period;ATMEETING(user; chair)))) ^

start(period)� :15 � TIME � start(period)] !
INFORM(pa;user ;Goal(pa;During(period;ATMEETING(user; chair)))) i

ii
hoa;period; chair :

Know(pa;Goal(oa;During(period;ATMEETING(user; chair))) ^
:KWhether(oa;Goal(pa;During(period;ATMEETING(user; chair))))) !

INFORMWHETHER(pa; oa;Goal(pa;During(period;ATMEETING(user; chair)))) i

Figure 2: Specification of the personal agents.

organizer whether it accepts or declines the meeting request. Due
to space constraints, we omit the axiomatization of the fluents and
actions for this example, and the code that specifies the behavior of
the organizer agents.

A complete meeting scheduler system is defined by composing
instances of the personal agents and the meeting organizer agents
in parallel, thereby modeling the behavior of several agents acting
independently. We also need to compose the nondeterministic iter-
ation of a tick action concurrently (at a lower priority) to allow time
to pass when the agents are not acting. Here is an example of such
a system:

[MANAGESCHEDULE(PA1; USER1) k
MANAGESCHEDULE(PA2; USER2) k
MANAGESCHEDULE(PA3; USER3) k
ORGANIZEMEETING(OA1; USER1; fUSER1; USER3g;

12:00–2:00) k
ORGANIZEMEETING(OA2; USER2; fUSER2; USER3g;

1:30–2:45)] ii TICK�

In this example, OA1 is trying to schedule a meeting between USER1
and USER3 from 12 to 2. OA2 is trying to schedule a meeting be-
tween USER2 and USER3 from 1:30 to 2:45. Since both meeting
organizers will try to obtain USER3’s agreement for meetings that
overlap, there will be two types of execution sequences, depending
on who obtains this agreement.

The meeting scheduler system is easy to represent in CASLve.
The only complication is in defining the domain of quantification
(QuantDom). In the example, we need to quantify over periods of
time and agents. We represent periods of time as pairs of natural
numbers, while agents are declared as a primitive type. In PVS,
one cannot directly define a type to be the union of other types, so
we had to define a datatype with constructors for both types. This
means that when defining the system, we have to use constructors
and accessors to map into the QuantDom and back to the original
types.

4. VERIFICATION
Let us now discuss the PVS-based verification environment for

CASL that we have developed, which we call CASLve. PVS has
high-level proof-strategies and decision procedures that take care
of many of the low-level details associated with computer-aided
theorem proving. Some simple proofs (including some inductive
proofs) can be handled using a single application of a proof strategy.
Many proofs can be accomplished using only the following steps:
lemma introduction (here lemma is a general term for any propo-
sition: axioms, lemmas, theorems, etc., and includes induction ax-
ioms), definition expansion, quantifier instantiation, and simplifica-
tion. In addition, PVS has useful proof-management facilities, in-
cluding a graphical display of the proof tree, and proof stepping and
editing.

We have used CASLve to prove many lemmas that are use-
ful in verifying properties of programs. In the remainder of
this section, we will discuss one such lemma, namely that all
bounded-loop programs terminate. For the purposes of this pa-
per, we consider a bounded-loop program to be one without while-
loops and nondeterministic iteration (but for-loops are allowed):
Bounded(�)

def
=8�0:Subterm(�0; �) � :Star(�0)^:While(�0): If we

want to prove that this property holds for some program, we run into
a problem involving the use of program functions as a way of han-
dling program operators that bind variables. We intend to use func-
tions such as: �x:seqn(test(ONTABLE(x)); REMOVE(x)), which
when applied to an object such as BLOCK1 simulates the substitu-
tion of BLOCK1 for x. However, there is nothing to stop us from

defining a function f : NAT ! PROGRAM such that f(i) = ai ,
where ai denotes the sequential composition of awith itself i times.
Then, pick(Nat; f) is essentially an unboundedprogram becausewe
cannot bound in advance the number of primitive actions that it will
execute.

Our solution to this problem is to restrict the program functions
to functions that always return programs that have the same struc-
ture. We first define a congruence relation Congruent(�; �0) that
holds if two programs have the same structure. This relation is de-
fined recursively and it checks that the outermost operator is the
same for each program and then recursively checks that the rest of
the programs are congruent. In addition, if � and �0 are of the form
pick(NP1;pf 1), and pick(NP2;pf 2), respectively, then we require
that NP1 = NP2 and 8x : (NP1):Congruent(pf 1(x);pf 2(x)).
We have a similar requirement for for-loops, but we also require
that the two lists be of the same length. We omit the formal def-
inition of this relation here. We say that a program � is suit-
able (SProg(�)), if for any subprogram of � that is of the form
pick(NP ;pf) or for(NP; l;pf) all the instantiations of pf are con-
gruent, i.e., 8x; y : (NP):Congruent(pf (x);pf (y)). Again, we
omit the formal definition. We will limit our attention to suitable
programs. We can do this because they are closed under transitions:

Theorem 3

Sit [ConGolog `pvs
8�; �0; s; s0:SProg(�) ^ Trans(�; s; �0; s0) � SProg(�0)

All future quantifications over programs will be assumed to be re-
stricted to suitable programs.

Following Francez [5], we say that a program � terminates start-
ing in situation s if it has no infinite executions starting in s. We can
use the notion of a sequence of program states introduced for our
definition of Trans� in Sec. 2.4 to talk about infinite executions. We
say that � has an infinite execution starting in s, if there is a infinite
sequence of program states that starts with (�; s), such that Trans

holds of each adjacentpair of states: InfExec(�; s)
def
=9seq:seq(0) =

(�; s)^8i:Trans(seq; i); where seq ranges over functions from the
natural numbers to program states, and Trans(seq; i) holds if there
is a transition from the i-th to the i+1-th element of seq. Note that
this is an overloading of the previously defined binary Trans predi-
cate. Now, we can define termination as the absence of an infinite
execution: Terminates(�; s)

def
= :InfExec(�; s).

We adapt a technique from Francez [5], to assist in proving ter-
mination of a program � starting in situation s. The idea is to find
a predicate Pseq � NAT � NAT that is intuitively a measure on an
execution seq of � (where the sequence is understood from the con-
text, we drop the subscript). Intuitively, P (i; j) holds if the i-th step
of seq has measure j. We can infer that Terminates(�; s), if for any
sequence seq such that seq(0) = (�; s), there is a P such that:

1. P (0; j) holds for some j,

2. the value of the measure strictly decreases with each transi-
tion step of the sequence, and

3. when the measure reaches 0, i.e., P (i; 0) for some i, then
there is no legal transition from seq(i) to seq(i + 1),

We can state this formally as follows:

Theorem 4

Sit [ConGolog `pvs
8�; s[8seq:seq(0) = (�; s) �

(9P:(9j:P (0; j)) ^
(8i; j:j > 0 ^ P (i; j) ^ Trans(seq; i) �

9k:k < j ^ P (i+ 1; k)) ^
(8i:P (i; 0) � :Trans(seq; i)))] � Terminates(�; s)

Note that we use a relation for the measure because we do not
want to require that the measure be defined over all natural num-
bers. In particular, once the measure reaches 0, we want to allow it
to be undefined from then on. If we can find such a measure for any
bounded program � and situation s, we can show that all bounded
programs terminate. The measure that we use is based on the length
of �, where the length of a program is the maximum numberof prim-
itive actions and tests that will be generated in any execution of the
program. We informally describe the proglen function which maps
a bounded program to its length, but omit its formal definition. It
is defined recursively. nil has length 0. Primitive actions and tests
have length 1. The length of sequential, concurrent, and prioritized
concurrent compositions are the sum of the lengths of their argu-
ments. The length of nondeterministic choice of programs and if-
then-else statements are the maximum of the lengths their (program)
arguments. Since we are only considering bounded, suitable pro-
grams, the length of the program that results from applying the pro-
gram function argument of a pick statement to an object will be the
same for all objects. Therefore, the length of a pick statement is the
length of the program that results from applying the program func-
tion to an arbitrary object. Similarly, the length of a for-loop is the
(list) length of its list argument multiplied by the (program) length
of its program function argument applied to an arbitrary object.

We will now define a relational measure, Pseq, that uses the pro-
gram length. We want the measure to be defined initially and as
long as the sequence continues to be a valid execution of the pro-
gram. Where it is defined, Pseq(i; j) will hold if j is the program

length of the program component of seq(i): Pseq
def
= �i; j:(8k:k <

i � Trans(seq; k))^ j = proglen(pj1(seq(i)));where pj1 projects
out the first element of a pair. We use this measure to show that all
bounded programs terminate:

Theorem 5

Sit [ConGolog `pvs 8�; s:Bounded(�) � Terminates(�; s)

We did not show the specification of the meeting organizer agents
here, but they are specified with bounded-loop programs, so it is
easy to show that they terminate. To show that the entire meeting
scheduler system terminates,5 we also need to show that the per-
sonal agent processes terminate. Although the personal agents are
not specified with bounded-loop programs, they only perform ac-
tions in response to actions performed by the organizer agents, and
each such responseconsists of a finite set of actions. Since the orga-
nizer agent processes terminate, it should follow that the entire sys-
tem terminates. In future work, we plan to complete a formal proof
in CASLve that the meeting scheduler system terminates following
this line of reasoning.

5Note that the instance of the meeting scheduler system specified
above does not terminate, since the TICK� process has an infinite
execution. This can easily be fixed by replacing this process by one
that has a time limit.

5. EXAMPLE PROOF
To illustrate CASLve, we will run through part of a proof. Since

we are presenting parts of a PVS proof, we will use PVS notation,
i.e., a sequent calculus with a typed, higher-order language. The
proof we illustrate is a lemma that is used in the proof of Theorem 5,
i.e., that all bounded programs terminate. The lemma says that all
legal transitions of bounded programs result in programs of smaller
length; it is stated formally in the first sequent below.

When the PVS prover is invoked, one enters the proof mode with
a single sequent that contains only the proposition to be proved in
the consequent. The antecedent formulae are numbered with nega-
tive integers, while the consequent are numbered with positive in-
tegers.

f1g 8(� : Bounded); (�0 : Program); (s; s0 : Sit) :
Trans(�; s; �0; s0) � proglen(�0) < proglen(�)

The proof proceeds by induction over �. The PVS command for
this is: (INDUCT � 1), which is a strategy that sets up a proof of
formula f1g by induction over �. Since � is of type Program, PVS
sets up the induction by creating a new sequent to prove for each
program construct, and possibly some sequents to prove type cor-
rectness conditions. Since we do not have much space, we will only
show the proof of one of the cases. We will show the proof for tests.
Recall from Fig. 1 that the program construct for tests is test(�),
where � is a fluent, i.e., a predicate on situations. The sequent that
PVS generates for this case is as follows.

f1g 8(� : Fluent) : Bounded(test(�)) �
8(�0 : Program); (s; s0 : Sit) :

Trans(test(�); s; �0; s0) �
proglen(�0) < proglen(test(�))

Next, we simplify the sequentwith the PVS command(REDUCE
NIL). REDUCE is a strategy that performs various simplifications,
including skolemization, propositional simplification, applying de-
cision procedures, and equality replacement. The NIL parameter is
used to prevent heuristic quantifier instantiation. Skolem constants
are formed by adding subscripted numerals to variable names. The
following sequent is the result of the simplification.

f-1g Bounded(test(�1))
f-2g Trans(test(�1); s1; �01; s

0

1)

f1g proglen(�01) < proglen(test(�1))
In our encoding of ConGolog, we made Trans a PVS defini-

tion. The definition states that Trans(test(�1); s1; �01; s
0

1) holds iff
�1(s1) holds and s1 = s01 and �01 = nil. The next step of the proof
is to expand the definition of Trans, which yields the following se-
quent.

[-1] Bounded(test(�1))
f-2g �1(s1)^ �01 = nil ^ s01 = s1

[1] proglen(�0
1
) < proglen(test(�1))

If a formula’s number is enclosed in square brackets, it means that
the formula has not changed from the previous sequent. In the def-
inition of proglen, the nil program is given length 0 and a program
consisting of only a test is given length 1. Therefore, after simplify-
ing and expanding the definition of proglen, we obtain the following
sequent.

[-1] Bounded(test(�1))
[-2] �1(s1)

[-3] �01 = nil
[-4] s0

1
= s1

f1g 0 < 1
It is easy to see that this sequent is true, and we can use the

(GROUND) command, which simplifies using decision procedures,
to complete the proof. We have illustrated some of the main steps

used in CASLve. The other ones that are used most often are quanti-
fier instantiation, lemma introduction, and GRIND, which is a strat-
egy that repeatedly performs heuristic instantiation of quantifiers
and simplification and can complete many simple proofs. PVS also
has a facility for creating user-defined strategies, which we would
like to use to develop strategies specifically for CASL to further fa-
cilitate the verification of CASL specifications.

6. CONCLUSION AND FUTURE WORK
We have presented the different aspects of the CASL specifica-

tion language and how we encoded them in PVS to form the basis
of a verification environment. We briefly described the specifica-
tion of a meeting scheduler multi-agent system in CASL, and we
showed that all bounded-loop programs terminate, which is a useful
lemma for proving termination of CASL programs. To our knowl-
edge, CASL is the only multiagent specification language with a
verification environment that uses theorem proving. There are at-
tempts to use model-checking to automatically verify properties of
multi-agent systems[1], but that approach limits the expressiveness
of the specification language, which can make it more difficult to
specify and verify complex multiagent systems.

We plan to complete the termination proof for the meeting sched-
uler system as discussed above. We would also like to prove partial
correctness properties of this system. The techniques for composi-
tional verification of multi-agent systems developed by Engelfriet
et. al. [4] may prove useful here. In addition, we would like to han-
dle recursive procedures in CASL using the framework of De Gia-
como et. al. [2].

7. REFERENCES
[1] M. Benerecetti, F. Giunchiglia, and L. Serafini. Model

checking multiagent systems. Journal of Logic and
Computation, 8(3):401–423, 1998.

[2] G. De Giacomo, Y. Lespérance, and H. J. Levesque.
ConGolog, a concurrent programming language based on the
situation calculus. Artificial Intelligence, 121:109–169, 2000.

[3] G. De Giacomo and H. J. Levesque. Progression using
regression and sensors. In Proceedings of the Sixteenth
International Joint Conference on Artificial Intelligence
(IJCAI-99), pages 160–165, Stockholm, Sweden, 1999.

[4] J. Engelfriet, C. M. Jonker, and J. Treur. Compositional
verification of multi-agent systems in temporal
multi-epistemic logic. In J. P. Müller, M. P. Singh, and A. S.
Rao, editors, Intelligent Agents V: Proceedings of the Fifth
International Workshop on Agent Theories, Architectures
and languages (ATAL’98), volume 1555 of LNAI, pages
177–194. Springer-Verlag, 1999.

[5] N. Francez. Fairness. Springer-Verlag, New York, 1986.
[6] M. Hennessy. The Semantics of Programming Languages.

John Wiley & Sons, 1990.
[7] G. Lakemeyer and H. J. Levesque. AOL: a logic of acting,

sensing, knowing, and only knowing. In Principles of
Knowledge Representation and Reasoning: Proceedings of
the Sixth International Conference (KR-98), pages 316–327,
1998.

[8] H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. B.
Scherl. GOLOG: A logic programming language for
dynamic domains. Journal of Logic Programming,
31:59–84, 1997.

[9] J. McCarthy and P. J. Hayes. Some philosophical problems
from the standpoint of artificial intelligence. In B. Meltzer

and D. Michie, editors, Machine Intelligence 4. Edinburgh
University Press, 1969.

[10] S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M. K.
Srivas. PVS: Combining specification, proof checking, and
model checking. In R. Alur and T. A. Henzinger, editors,
Computer-Aided Verification, CAV ’96, volume 1102 of
Lecture Notes in Computer Science, pages 411–414, New
Brunswick, NJ, July/August 1996. Springer-Verlag.

[11] R. Reiter. The frame problem in the situation calculus: A
simple solution (sometimes) and a completeness result for
goal regression. In V. Lifschitz, editor, Artificial Intelligence
and Mathematical Theory of Computation: Papers in Honor
of John McCarthy, pages 359–380. Academic Press, San
Diego, CA, 1991.

[12] R. B. Scherl and H. J. Levesque. The frame problem and
knowledge-producing actions. In Proceedings of the
Eleventh National Conference on Artificial Intelligence,
pages 689–695, Washington, DC, July 1993. AAAI
Press/The MIT Press.

[13] S. Shapiro. PhD thesis. In preparation.
[14] S. Shapiro and Y. Lespérance. Modeling multiagent systems

with the cognitive agents specification language — a feature
interaction resolution application. In C. Castelfranchi and
Y. Lespérance, editors, Intelligent Agents Volume VII —
Proceedings of the 2000 Workshop on Agent Theories,
Architectures, and Languages (ATAL-2000), LNAI.
Springer-Verlag, Berlin, 2001. To appear.

[15] S. Shapiro, Y. Lespérance, and H. J. Levesque. Specifying
communicative multi-agent systems. In W. Wobcke,
M. Pagnucco, and C. Zhang, editors, Agents and Multi-Agent
Systems — Formalisms, Methodologies, and Applications,
volume 1441 of LNAI, pages 1–14. Springer-Verlag, Berlin,
1998.

[16] S. Shapiro, M. Pagnucco, Y. Lespérance, and H. J. Levesque.
Iterated belief change in the situation calculus. In A. G.
Cohn, F. Giunchiglia, and B. Selman, editors, Principles of
Knowledge Representation and Reasoning: Proceedings of
the Seventh International Conference (KR2000), pages
527–538, San Francisco, CA, 2000. Morgan Kaufmann
Publishers.

