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ABSTRACT
Most previous logical accounts of goals do not deal with
prioritized goals and goal dynamics properly. Many are re-
stricted to achievement goals. In this paper, we develop a
logical account of goal change that addresses these deficien-
cies. In our account, we do not drop lower priority goals per-
manently when they become inconsistent with other goals
and the agent’s knowledge; rather, we make such goals in-
active. We ensure that the agent’s chosen goals/intentions
are consistent with each other and the agent’s knowledge.
When the world changes, the agent recomputes her cho-
sen goals and some inactive goals may become active again.
This ensures that our agent maximizes her utility. We prove
that the proposed account has desirable properties. We also
discuss previous work on postulates for goal revision.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Intelligent agents, Multiagent systems ; I.2.4 [Artif-
icial Intelligence]: Knowledge Representation Formalisms
and Methods—Modal Logic

General Terms
Theory, Languages

Keywords
Prioritized goals, goal change, intention, logic of agency

1. INTRODUCTION
There has been much work on modeling agents’ mental

states, beliefs, goals, and intentions, and how they interact
and lead to rational decisions about action. As well, there
has been a lot of work on modeling belief change. But the
dynamics of motivational attitudes has received much less
attention. Most formal models of goal and goal change [3,
14, 17, 10, 24, 23] assume that all goals are equally important
and many only deal with achievement goals. Moreover, most
of these frameworks do not guarantee that an agent’s goals
will properly evolve when an action/event occurs, when the
agent’s beliefs/knowledge changes, or when a goal is adopted
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or dropped (one exception to this is the model of prioritized
goals in [21]). Dealing with these issues is important for
developing effective models of rational agency. It is also
important for work on BDI agent programming languages,
where handling declarative goals is an active research topic
[28, 1].

In this paper, we present a formal model of prioritized
goals and their dynamics that addresses some of these is-
sues. In our framework, an agent can have multiple goals
at different priority levels, possibly inconsistent with each
other. We define intentions as the maximal set of highest
priority goals that is consistent given the agent’s knowledge.
Our model of goals supports the specification of general tem-
porally extended goals, not just achievement goals.

We start with a (possibly inconsistent) initial set of pri-
oritized goals or desires that are totally ordered according
to priority, and specify how these goals evolve when ac-
tions/events occur and the agent’s knowledge changes. We
define the agent’s chosen goals or intentions in terms of this
goal hierarchy. Our agents maximize their utility; they will
abandon a chosen goal φ if an opportunity to commit to a
higher priority but inconsistent with φ goal arises. To this
end, we keep all prioritized goals in the goal base unless they
are explicitly dropped. At every step, we compute an op-
timal set of chosen goals given the hierarchy of prioritized
goals, preferring higher priority goals such that chosen goals
are consistent with each other and with the agent’s knowl-
edge. Thus at any given time, some goals in the hierarchy
are active, i.e. chosen, while others are inactive. Some of
these inactive goals may later become active, e.g. if a higher
priority active goal that is currently blocking an inactive
goal becomes impossible.

Our formalization of prioritized goals ensures that the
agent always tries to maximize her utility, and as such dis-
plays an idealized form of rationality. In the Section 5, we
discuss how this relates to Bratman’s [2] theory of practical
reasoning. We use an action theory based on the situation
calculus [12] along with our formalization of paths in the
situation calculus as our base formalism.

In the next section, we outline our base framework. In Sec-
tion 3, we formalize paths in the situation calculus to support
modeling goals. In Section 4, we present our model of priori-
tized goals. In Section 5 and 6, we present our formalization
of goal dynamics and discuss some of its properties. Then in
the last section, we summarize our results, discuss previous
work in this area, and point to possible future work.



2. ACTION AND KNOWLEDGE
Our base framework for modeling goal change is the situ-

ation calculus [12] as formalized in [16]. In this framework,
a possible state of the domain is represented by a situation.
There is a set of initial situations corresponding to the ways
the agent believes the domain might be initially, i.e. situa-
tions in which no actions have yet occurred. Init(s) means
that s is an initial situation. The actual initial state is rep-
resented by a special constant S0. There is a distinguished
binary function symbol do where do(a, s) denotes the suc-
cessor situation to s resulting from performing the action a.
Thus the situations can be viewed as a set of trees, where
the root of each tree is an initial situation and the arcs rep-
resent actions. Relations (and functions) whose truth values
vary from situation to situation, are called relational (func-
tional, resp.) fluents, and are denoted by predicate (func-
tion, resp.) symbols taking a situation term as their last
argument. There is a special predicate Poss(a, s) used to
state that action a is executable in situation s.

Our framework uses a theory Dbasic that includes the fol-
lowing set of axioms:1 (1) action precondition axioms, one
per action a characterizing Poss(a, s), (2) successor state
axioms (SSA), one per fluent, that succinctly encode both
effect and frame axioms and specify exactly when the fluent
changes [16], (3) initial state axioms describing what is true
initially including the mental states of the agents, (4) unique
name axioms for actions, and (5) domain-independent foun-
dational axioms describing the structure of situations [11].

Following [13, 20], we model knowledge using a possible
worlds account adapted to the situation calculus. K(s′, s)
is used to denote that in situation s, the agent thinks that
she could be in situation s′. Using K, the knowledge of an

agent is defined as:2 Know(Φ, s)
def
= ∀s′. K(s′, s) ⊃ Φ(s′), i.e.

the agent knows Φ in s if Φ holds in all of her K-accessible
situations in s. K is constrained to be reflexive, transi-
tive, and Euclidean in the initial situation to capture the
fact that agents’ knowledge is true, and that agents have
positive and negative introspection. In our framework, the
dynamics of knowledge is specified using a SSA for K that
supports knowledge expansion as a result of sensing actions.
As shown in [20], the constraints on K then continue to hold
after any sequence of actions since they are preserved by the
SSA for K. We also assume that all actions are public, i.e.
whenever an action (including exogenous events) occurs, the
agent learns that it has happened. Note that, we work with
knowledge rather than belief. Although much of our formal-
ization should extend to the latter, we leave this for future
work.

3. PATHS IN THE SITUATION CALCULUS
To support modeling temporally extended goals, we intro-

duce a new sort of paths, with (possibly sub/super-scripted)
variables p ranging over paths. A path is essentially an
infinite sequence of situations, where each situation along
the path can be reached by performing some executable ac-
tion in the preceding situation. We introduce a predicate

1We will be quantifying over formulae, and thus assume
Dbasic includes axioms for encoding of formulae as first order
terms, as in [22].
2Φ is a state formula that can contain a situation variable,
now, in the place of situation terms. We often suppress now
when the intent is clear from the context.

OnPath(p, s), meaning that the situation s is on path p.
Also, Starts(p, s) means that s is the starting situation of
path p. A path p starts with s iff s is the earliest situation
on p:3

Axiom 1.

Starts(p, s) ≡ OnPath(p, s) ∧ ∀s′. OnPath(p, s′) ⊃ s ≤ s′.

In the standard situation calculus, paths are implicitly
there, and a path can be viewed as a pair (s, F ) consisting
of a situation s representing the starting situation of the
path, and a function F from situations to actions (called
Action Selection Functions (ASF) or strategies in [23]), such
that from the starting situation s, F defines an infinite se-
quence of situations by specifying an action for every situa-
tion starting from s. Thus, one way of axiomatizing paths
is by making them correspond to such pairs (s, F ):

Axiom 2.

∀p. Starts(p, s) ⊃ (∃F. Executable(F, s)

∧ ∀s′. OnPath(p, s′) ≡ OnPathASF(F, s, s′)),

∀F, s. Executable(F, s) ⊃ ∃p. Starts(p, s)

∧ ∀s′. OnPathASF(F, s, s′) ≡ OnPath(p, s′).

This says that for every path there is an executable ASF that
produces exactly the sequence of situations on the path from
its starting situation. Also, for every executable ASF and
situation, there is a path that corresponds to the sequence of
situations produced by the ASF starting from that situation.

OnPathASF(F, s, s′)
def
=

s ≤ s′ ∧ ∀a, s∗. s < do(a, s∗) ≤ s′ ⊃ F (s∗) = a,

Executable(F, s)
def
=

∀s′. OnPathASF(F, s, s′) ⊃ Poss(F (s′), s′).

Here, OnPathASF(F, s, s′) [18] means that the situation se-
quence defined by (s, F ) includes the situation s′. Also, the
situation sequence encoded by a strategy F and a starting
situation s is executable iff for all situations s′ on this se-
quence, the action selected by F in s′ is executable in s′.

We will use both state and path formulae. A state for-
mula Φ(s) is a formula that has a free situation variable s
in it, whereas a path formula φ(p) is one that has a free
path variable p.4 State formulae are used in the context
of knowledge while path formulae are used in that of goals.
Note that, by incorporating infinite paths in our framework,
we can evaluate goals over these and handle arbitrary tem-
porally extended goals; thus, unlike some other situation
calculus based accounts where goal formulae are evaluated
w.r.t. finite paths (e.g. [21]), we can handle for example
unbounded maintenance goals. Also, while our account is
restricted to infinite paths, one could argue that situations
where no action is possible are artificial.

We next define some useful constructs. A state formula
Φ eventually holds over the path p if Φ holds in some situ-

ation that is on p, i.e. 3Φ(p)
def
= ∃s′. OnPath(p, s′) ∧ Φ(s′).

Other Temporal Logic operators can be defined similarly,
e.g. always Φ: 2Φ(p).

3In the following, s < s′ means that s′ can be reached from
s by performing a sequence of executable actions. s ≤ s′ is
an abbreviation for s < s′ ∨ s = s′.
4As with state formulae, we often suppress the path variable
p in a path formula φ(p) when the intent is clear from the
context.



An agent knows in s that φ has become inevitable if φ holds
over all paths that starts with a K-accessible situation in s,

i.e. KInevitable(φ, s)
def
= ∀p. Starts(p, s′) ∧ K(s′, s) ⊃ φ(p).

An agent knows in s that φ is impossible if she knows that ¬φ
is inevitable in s, i.e. KImpossible(φ, s)

def
= KInevitable(¬φ, s).

Thirdly, we define what it means for a path p′ to be a
suffix of another path p w.r.t. a situation s:

Suffix(p′, p, s)
def
= OnPath(p, s) ∧ Starts(p′, s)

∧ ∀s′. s′ ≥ s ⊃ OnPath(p, s′) ≡ OnPath(p′, s′).

Fourthly, SameHist(s1, s2) means that the situations s1
and s2 share the same history of actions, but perhaps start-
ing from different initial situations:

Axiom 3.

SameHist(s1, s2) ≡ (Init(s1) ∧ Init(s2)) ∨
(∃a, s′1, s′2. s1 = do(a, s′1) ∧ s2 = do(a, s′2)

∧ SameHist(s′1, s
′
2)).

Finally, we say that φ has become inevitable in s if φ
holds over all paths that starts with a situation that has the

same history as s: Inevitable(φ, s)
def
= ∀p, s′. Starts(p, s′) ∧

SameHist(s′, s) ⊃ φ(p).

4. PRIORITIZED GOALS
Most work on formalizing goals only deals with static goal

semantics and not their dynamics. In this section, we for-
malize goals or desires with different priorities which we call
prioritized goals (p-goals, henceforth). These p-goals are not
required to be mutually consistent and need not be actively
pursued by the agent. In terms of these, we define the con-
sistent set of chosen goals or intentions (c-goals, henceforth)
that the agent is committed to. In Section 5, we formalize
goal dynamics by providing a SSA for p-goals. The agent’s
c-goals are automatically updated when her p-goals change.

Not all of the agent’s goals are equally important to her.
Thus, it is useful to support a priority ordering over goals.
This information can be used to decide which of the agent’s
c-goals should no longer be actively pursued in case they
become mutually inconsistent. We specify each p-goal by its
own accessibility relation/fluent G. A path p is G-accessible
at priority level n in situation s (denoted by G(p, n, s)) iff
the goal of the agent at level n is satisfied over this path and
if it starts with a situation that has the same action history
as s. The latter requirement ensures that the agent’s p-goal-
accessible paths reflect the actions that have been performed
so far. A smaller n represents higher priority, and the highest
priority level is 0. Thus here we assume that the set of
p-goals are totally ordered according to priority (given a
priority level, the agent can have only one goal at that level,
possibly a complex one, e.g. a conjunctive goal). We say
that an agent has the p-goal that φ at level n in situation s
iff φ holds over all paths that are G-accessible at n in s:

PGoal(φ, n, s)
def
= ∀p. G(p, n, s) ⊃ φ(p).

To be able to refer to all the p-goals of the agent at some
given priority level, we also define only p-goals.

OPGoal(φ, n, s)
def
= PGoal(φ, n, s) ∧ ∀p. φ(p) ⊃ G(p, n, s).

An agent has the only p-goal that φ at level n in situation s
iff φ is a p-goal at n in s, and any path over which φ holds
is G-accessible at n in s.

A domain theory for our framework D includes the axioms
of a theory Dbasic as in the previous section, the axiomatiza-
tion of paths, i.e. axioms 1-3, domain dependent initial goal
axioms (see below), the domain independent axioms 4-6 and
the definitions that appear throughout this paper. We al-
low the agent to have infinitely many goals. We expect the
modeler to include some specification of what paths are G
accessible at the various levels initially. We call these ax-
ioms initial goal axioms. In many cases, the user will want
to specify a finite set of initial p-goals. This can be done by
providing a set of axioms as in the example below. But in
general, an agent can have a countably infinite set of p-goals,
e.g. an agent that has the p-goal at level n to know what the
n-th prime number is for all n. The agent’s set of p-goals
can even be specified incompletely, e.g. the theory might
not specify what the p-goals at some level are initially.

We use the following as a running example. We have an
agent who initially has the following three p-goals: φ0 =
2BeRich, φ1 = 3GetPhD, and φ2 = 2BeHappy at level
0, 1, and 2, respectively. This domain can be specified using
the following two initial goal axioms:

(a) Init(s) ⊃
((G(p, 0, s) ≡ Starts(p, s′) ∧ Init(s′) ∧ φ0(p))

∧ (G(p, 1, s) ≡ Starts(p, s′) ∧ Init(s′) ∧ φ1(p))

∧ (G(p, 2, s) ≡ Starts(p, s′) ∧ Init(s′) ∧ φ2(p))),

(b) ∀n, p, s. Init(s) ∧ n ≥ 3 ⊃
(G(p, n, s) ≡ Starts(p, s′) ∧ Init(s′)).

(a) specifies the p-goals φ0, φ1, φ2 (from highest to lowest
priority) of the agent in the initial situations, and makes
G(p, n, s) true for every path p that starts with an initial
situation and over which φn holds, for n = 0, 1, 2; each of
them defines a set of initial goal paths for a given priority
level, and must be consistent. (b) makes G(p, n, s) true for
every path p that starts with an initial situation for n ≥ 3.
Thus at levels n ≥ 3, the agent has the trivial p-goal that
she be in an initial situation. Assume that while initially the
agent knows that all of her p-goals are individually achiev-
able, she knows that her p-goal 3GetPhD is inconsistent
with her highest priority p-goal 2BeRich as well as with her
p-goal 2BeHappy, while the latter are consistent with each
other. It can be shown that in our example, we have D |=
OPGoal(φi(p) ∧ Starts(p, s) ∧ Init(s), i, S0), for i = 0, 1, 2.
Also, for any n ≥ 3, we have D |= OPGoal(Starts(p, s) ∧
Init(s), n, S0).

While p-goals or desires are allowed to be known to be
impossible to achieve, an agent’s c-goals or intentions must
be realistic. Not all of the G-accessible paths are realistic in
the sense that they start with a K-accessible situation. To
filter these out, we define realistic p-goal accessible paths:

GR(p, n, s)
def
= G(p, n, s) ∧ Starts(p, s′) ∧K(s′, s).

Thus GR prunes out the paths from G that are known to be
impossible, and since we define c-goals in terms of realistic
p-goals, this ensures that c-goals are realistic. We say that
an agent has the realistic p-goal that φ at level n in situation
s iff φ holds over all paths that are GR-accessible at n in s:

RPGoal(φ, n, s)
def
= ∀p. GR(p, n, s) ⊃ φ(p).

Using realistic p-goals, we next define c-goals. The idea of
how we specify c-goal-accessible paths is as follows: the set
of GR-accessibility relations represents a set of prioritized
temporal propositions that are candidates for the agent’s



c-goals. Given GR, in each situation we want to compute
the agent’s c-goals such that it is the maximal consistent set
of higher priority realistic p-goals. We do this iteratively
starting with the set of all realistic paths (i.e. paths that
start with a K-accessible situation). At each iteration we
compute the intersection of this set with the next highest
priority set of GR-accessible paths. If the intersection is
not empty, we thus obtain a new chosen set of paths at
level i. We call a p-goal chosen by this process an active p-
goal. If on the other hand the intersection is empty, then it
must be the case that the p-goal represented by this level is
either in conflict with another active higher priority p-goal/a
combination of two or more active higher priority p-goals,
or is known to be impossible. In that case, that p-goal is
ignored (i.e. marked as inactive), and the chosen set of paths
at level i is the same as at level i− 1. Axiom 4 specifies this
intersection:5

Axiom 4.

G∩(p, n, s) ≡
if (n = 0) then

if ∃p′. GR(p′, n, s) then GR(p, n, s)

else Starts(p, s′) ∧K(s′, s)

else

if ∃p′.(GR(p′, n, s) ∧G∩(p′, n− 1, s))

then (GR(p, n, s) ∧G∩(p, n− 1, s))

else G∩(p, n− 1, s).

Using this, we define what it means for an agent to have a
c-goal at some level n:

CGoal(φ, n, s)
def
= ∀p. G∩(p, n, s) ⊃ φ(p),

i.e. an agent has the c-goal at level n that φ if φ holds over
all paths that are in the prioritized intersection of the set of
GR-accessible paths up to level n.

We define c-goals in terms of c-goals at level n:

CGoal(φ, s)
def
= ∀n. CGoal(φ, n, s),

i.e., the agent has the c-goal that φ if for any level n, φ is a
c-goal at n.

In our example, the agent’s realistic p-goals are 2BeRich,
3GetPhD, and 2BeHappy in order of priority. The G∩-
accessible paths at level 0 in S0 are the ones that start with
a K-accessible situation and where 2BeRich holds. The G∩-
accessible paths at level 1 in S0 are the same as at level 0,
since there are no realistic path over which both 3GetPhD
and 2BeRich hold. Finally, the G∩-accessible paths at level
2 in S0 are those that start with a K-accessible situation
and over which 2BeRich∧2BeHappy holds. Also, it can be
shown that initially our example agent has the c-goals that
2BeRich and 2BeHappy, but not 3GetPhD.

Note that by our definition of c-goals, the agent can have
a c-goal that φ in situation s for various reasons: 1) φ is
known to be inevitable in s; 2) φ is an active p-goal at some
level n in s; 3) φ is a consequence of two or more active
p-goals at different levels in s. To be able to refer to c-goals
for which the agent has a primitive motivation, i.e. c-goals
that result from a single active p-goal at some priority level
n, in contrast to those that hold as a consequence of two

5ifφ then δ1 else δ2 is an abbreviation for (φ ⊃ δ1)∧ (¬φ ⊃
δ2).

or more active p-goals at different priority levels, we define
primary c-goals:

PrimCGoal(φ, s)
def
=

∃n. PGoal(φ, n, s) ∧ ∃p. G(p, n, s) ∧G∩(p, n, s).

That is, an agent has the primary c-goal that φ in situation
s, if φ is a p-goal at some level n in s, and if there is a
G-accessible path p at n in s that is also in the prioritized
intersection of GR-accessible paths up to n in s. The last
two conjuncts are required to ensure that n is an active
level. Thus if an agent has a primary c-goal that φ, then she
also has the c-goal that φ, but not necessarily vice-versa.
It can be shown that initially our example agent has the
primary c-goals that 2BeRich and 2BeHappy, but not their
conjunction. To some extent, this shows that primary c-
goals are not closed under logical consequence.

5. GOAL DYNAMICS
An agent’s goals change when her knowledge changes as

a result of the occurrence of an action (including exogenous
events), or when she adopts or drops a goal. We formalize
this by specifying how p-goals change. C-goals are then
computed using (realistic) p-goals in every new situation as
above.

We introduce two actions for adopting and dropping a
p-goal, adopt(φ, n) and drop(φ). The action precondition
axioms for these are as follows:

Axiom 5.

Poss(adopt(φ, n), s) ≡ ¬∃n′. PGoal(φ, n′, s),

Poss(drop(φ), s) ≡ ∃n. PGoal(φ, n, s).

That is, an agent can adopt (drop) the p-goal that φ at level
n, if she does not (does, resp.) already have φ as her p-goal
at some level.

In the following, we specify the dynamics of p-goals by
giving the SSA for G and discuss each case, one at a time:

Axiom 6 (SSA for G).

G(p, n, do(a, s)) ≡
∀φ,m. (a 6= adopt(φ,m) ∧ a 6= drop(φ) ∧

Progressed(p, n, a, s))

∨ ∃φ,m. (a = adopt(φ,m) ∧Adopted(p, n,m, a, s, φ))

∨ ∃φ. (a = drop(φ) ∧Dropped(p, n, a, s, φ)).

The overall idea of the SSA for G is as follows. First of all,
to handle the occurrence of a non-adopt/drop (i.e. regular)
action a, we progress all G-accessible paths to reflect the
fact that this action has just happened; this is done using
the Progressed(p, n, a, s) construct, which replaces each G-
accessible path p′ with starting situation s′, by its suffix p
provided that it starts with do(a, s′):

Progressed(p, n, a, s)
def
=

∃p′, s′. G(p′, n, s) ∧ Starts(p′, s′) ∧ Suffix(p, p′, do(a, s′)).

Any path over which the next action performed is not a is
eliminated from the respective G-accessibility level.

Secondly, to handle adoption of a p-goal φ at level m, we
add a new proposition containing the p-goal to the agent’s
goal hierarchy at m by modifying the G-relation accordingly.
The G-accessible paths at all levels above m are progressed
as above. TheG-accessible paths at levelm are the ones that



share the same history with do(a, s) and over which φ holds.
The G-accessible paths at all levels below m are the ones
that can be obtained by progressing the level immediately
above it. Thus the agent acquires the p-goal that φ at level
m, and all the p-goals with priority m or less in s are pushed
down one level in the hierarchy.

Adopted(p, n,m, a, s, φ)
def
=

if (n < m) then Progressed(p, n, a, s)

else if (n = m) then ∃s′. Starts(p, s′)

∧ SameHist(s′, do(a, s)) ∧ φ(p)

else Progressed(p, n− 1, a, s).

Finally, to handle the dropping of a p-goal φ, we replace
the propositions that imply the dropped goal in the agent’s
goal hierarchy by the trivial proposition that the history
of actions in the current situation has occurred. Thus, in
addition to progressing all G-accessible paths as above, we
add back all paths that share the same history with do(a, s)
to the existing G-accessibility levels where the agent has the
p-goal that φ.

Dropped(p, n, a, s, φ)
def
= if PGoal(φ, n, s)

then ∃s′. Starts(p, s′) ∧ SameHist(s′, do(a, s))

else Progressed(p, n, a, s).

Returning to our example, recall that our agent has the
c-goals/active p-goals in S0 that 2BeRich and 2BeHappy,
but not 3GetPhD, since the latter is inconsistent with her
higher priority p-goal 2BeRich. Assume that, after the ex-
ogenous event/action goBankrupt happens in S0, the p-goal
2BeRich becomes impossible. Then in S1 = do(goBankrupt,
S0), the agent has the c-goal that 3GetPhD, but not 2BeRich
nor 2BeHappy; 2BeRich is excluded from the set of c-
goals since it has become impossible to achieve (i.e. unre-
alistic). Also, since her higher priority p-goal 3GetPhD is
inconsistent with her p-goal 2BeHappy, the agent will make
2BeHappy inactive.

Note that, while it might be reasonable to drop a p-goal
(e.g. 3GetPhD) that is in conflict with another higher pri-
ority active p-goal (e.g. 2BeRich), in our framework we
keep such p-goals around. The reason for this is that al-
though 2BeRich is currently inconsistent with 3GetPhD,
the agent might later learn that 2BeRich has become im-
possible to bring about (e.g. after goBankrupt occurs), and
then might want to pursue 3GetPhD. Thus, it is useful
to keep these inactive p-goals since this allows the agent to
maximize her utility (that of her chosen goals) by taking
advantage of such opportunities. As mentioned earlier, c-
goals are our analogue to intentions. Recall that Bratman’s
[2] model of intentions limits the agent’s practical reason-
ing – agents do not always optimize their utility and don’t
always reconsider all available options in order to allocate
their reasoning effort wisely. In contrast to this, our c-goals
are defined in terms of the p-goals, and at every step, we
ensure that the agent’s c-goals maximize her utility so that
these are the set of highest priority goals that are consistent
given the agent’s knowledge. Thus, our notion of c-goals
is not as persistent as Bratman’s notion of intentions. For
instance as mentioned above, after the action goBankrupt
happens in S0, the agent will lose the c-goal that 2BeHappy,
although she did not drop it and it did not become impos-
sible or achieved. In this sense, our model is that of an
idealized agent. There is a tradeoff between optimizing the

agent’s chosen set of prioritized goals and being committed
to chosen goals. In our framework, chosen goals behave like
intentions with an automatic filter-override mechanism [2]
that forces the agent to drop her chosen goals when oppor-
tunities to commit to other higher priority goals arise. In
the future, it would be interesting to develop a logical model
that captures the pragmatics of intention reconsideration by
supporting control over it.

6. PROPERTIES
We now show that our formalization has some desirable

properties. Some of these (e.g. Proposition 1, 3(a), 4, 5) are
analogues of the AGM postulates [8]. First we show that
c-goals are consistent:

Proposition 1 (Consistency).

D |= ∀s. ¬CGoal(False, s).

Thus, the agent cannot have both φ and ¬φ c-goals in a
situation s. Even if all of the agent’s p-goals become known
to be impossible, the set of c-goal-accessible paths will be
precisely those that starts with a K-accessible situation, and
thus the agent will only choose the propositions that are
known to be inevitable.

We also have the property of realism [3], i.e. if an agent
knows that something has become inevitable, then she has
this as a c-goal:

Proposition 2 (Realism).

D |= ∀φ, s. KInevitable(φ, s) ⊃ CGoal(φ, s).

Note that this is not necessarily true for p-goals and primary
c-goals – an agent may know that something has become in-
evitable and not have it as her p-goal/primary c-goal, which
is intuitive. While the property of realism is often criticized
[14, 15], one should view these inevitable goals as something
that hold in the worlds that the agent intends to bring about,
rather than something that the agent is actively pursuing.

A consequence of Proposition 1 and 2 is that an agent
does not have a c-goal that is known to be impossible:

Corollary 1.

D |= ∀φ, s. CGoal(φ, s) ⊃ ¬KImpossible(φ, s).

We next discuss some properties of the framework w.r.t.
goal change. Proposition 3 says that (a) an agent acquires
the p-goal that φ at level n after she adopts it at n, (b) that
she acquires the primary c-goal (and thus the p-goal and c-
goal) that φ after she adopts it at some level n in s, provided
that she does not have the c-goal in s that ¬φ next, and (c)
that she acquires the primary c-goal that φ after she adopts
it at some level n in s provided that it is consistent with
her c-goals up to level n − 1; this holds even if she has the
inconsistent c-goal at some level that ¬φ next, provided that
she adopts φ at a higher priority than all such inconsistent
goals.

Proposition 3 (Adoption).

(a) D |= PGoal(φ, n, do(adopt(φ, n), s)),

(b) D |= ¬CGoal(¬∃s′, p′. Starts(s′) ∧
Suffix(p′, do(adopt(φ, n), s′)) ∧ φ(p′), s)

⊃ PrimCGoal(φ, do(adopt(φ, n), s)),

(c) D |= ¬CGoal(¬∃s′, p′. Starts(s′) ∧
Suffix(p′, do(adopt(φ, n), s′)) ∧ φ(p′), n− 1, s)

⊃ PrimCGoal(φ, do(adopt(φ, n), s)).



It should be noted that (c) above is a specialization of (b)
for dealing with prioritized goals. Recall that the agent’s
chosen goals act as a filter for adopting newer goals. (c)
ensures that the agent takes into consideration the priorities
of goals when adopting a new goal that is inconsistent with
her current chosen goals.

We can also show that after dropping the p-goal that φ
at n in s, an agent does not have the p-goal (and thus the pri-
mary c-goal) that the progression of φ at n, i.e. ProgOf(φ, dr-
op(φ), s), provided that ProgOf(φ, drop(φ), s) is not inevitab-
le in do(drop(φ), s).

Proposition 4 (Drop).

D |= PGoal(φ, n, s)

∧ ¬Inevitable(ProgOf(φ, drop(φ), s), do(drop(φ), s))

⊃ ¬PGoal(ProgOf(φ, drop(φ), s), n, do(drop(φ), s)),

where,

ProgOf(φ, a, s)
def
=

∃p′, s′. Starts(p′, s′) ∧ Suffix(p′, do(a, s′)) ∧ φ(p′).

Note that, this does not hold for CGoal, as φ could still be
a consequence of her remaining primary c-goals.

The next property states that adopting/dropping logically
equivalent goals has the same result.

Proposition 5 (Extensionality).

D |= φ1 ≡ φ2 ⊃
∀ψ. [PrimCGoal(ψ, do(adopt(φ1, n), s)) ≡

PrimCGoal(ψ, do(adopt(φ2, n), s))]

∧ ∀ψ. [PrimCGoal(ψ, do(drop(φ1), s)) ≡
PrimCGoal(ψ, do(drop(φ2), s))].

The next few properties concern the persistence of these
motivational attitudes. First we have a persistence property
for achievement realistic p-goals:

Proposition 6 (Persistence of Achv.RPGoals).

D |= RPGoal(3Φ, n, s) ∧Know(¬Φ, s) ∧ ∀ψ. a 6= drop(ψ)

⊃ ∃n′. RPGoal(3Φ, n′, do(a, s)).

This says that if an agent has a realistic p-goal that 3Φ in s,
then she will retain this realistic p-goal after some action a
has been performed in s, provided that she knows that Φ has
not yet been achieved, and a is not the action of dropping
a p-goal. Note that, we do not need to ensure that 3Φ is
consistent with higher priority active p-goals, since the SSA
for G does not automatically drop such incompatible p-goals
from the goal hierarchy. Also, the level n where Φ is a p-goal
may change, e.g. if the action performed is an adopt action
with priority higher than or equal to n.

For achievement chosen goals we have the following:

Proposition 7 (Persistence of Achv. CGoals).

D |= OPGoal(3Φ ∧ ∃s′. Starts(s′) ∧ SameHist(s′), n, s)

∧ CGoal(3Φ, s) ∧Know(¬Φ, s) ∧ ∀ψ. a 6= drop(ψ)

∧ ∀ψ,m. ¬(a = adopt(ψ,m) ∧m ≤ n)

∧ ¬CGoal(¬3Φ, n− 1, do(a, s))

⊃ CGoal(3Φ, n, do(a, s)).

Thus, in situation s, if an agent has the only p-goal at level n
that 3Φ and that the correct history of actions in s has been

performed, and if 3Φ is also a chosen goal in s (and thus
she has the primary c-goal that 3Φ), then she will retain
the c-goal that 3Φ at level n after some action a has been
performed in s, provided that: she knows that Φ has not yet
been achieved, that a is not the action of dropping a p-goal,
that a is not the action of adopting a p-goal at some higher
priority level than n or at n, and that at level n−1 the agent
does not have the c-goal that ¬3Φ, i.e. 3Φ is consistent with
higher priority c-goals.

Note that, this property also follows if we replace the con-
sequent with CGoal(3Φ, do(a, s)), and thus it deals with the
persistence of c-goals. Note however that, it does not hold
if we replace the OPGoal in the antecedent with PGoal; the
reason for this is that the agent might have a p-goal at level
n in s that φ and the c-goal in s that φ, but not have φ
as a primary c-goal in s, e.g. n might be an inactive level
because another p-goal at n has become impossible, and φ
could be a c-goal in s because it is a consequence of two
other primary c-goals. Thus even if ¬φ is not a c-goal after
a has been performed in s, there is no guarantee that the
level n will be active in do(a, s) or that all the active p-goals
that contributed to φ in s are still active.

7. DISCUSSION AND FUTURE WORK
In this paper, we presented a formalization of prioritized

goals and their dynamics. Our formalization ensures that
an agent’s chosen goals are always consistent and that her
goals properly evolve as a result of regular actions as well
as of adopting and dropping goals. Although we made some
simplifying assumptions, in this paper we have focused on
developing an expressive framework that captures an ideal-
ized form of rationality without worrying about tractabil-
ity. It would be desirable to study restricted fragments of
the logic where reasoning is tractable. Also, before defining
more limited forms of rationality, one should have a clear
specification of what ideal rationality really is so that one
understands what compromises are being made.

While in our account chosen goals are closed under logical
consequence, primary c-goals are not. Thus, our formaliza-
tion of primary c-goals is related to the non-normal modal
formalizations of intentions found in the literature [10], and
as such it does not suffer from the side-effect problem [3].
For instance, in our framework an agent can have the pri-
mary c-goal to get her teeth fixed and know that this always
involves pain, but not have the primary c-goal to have pain.

Our framework can be extended to model subgoal adop-
tion and the dependencies between goals and the subgoals
and plans adopted to achieve them. The latter is impor-
tant since subgoals and plans adopted to bring about a goal
should be dropped when the parent goal becomes impossi-
ble, is achieved, or is dropped. One way of handling this
is to ensure that the adoption of a subgoal ψ w.r.t. a par-
ent goal φ adds a new p-goal that contains both this subgoal
and this parent goal, i.e. ψ ∧ φ. This ensures that when the
parent goal is dropped, the subgoal is also dropped, since
when we drop the parent goal φ, we drop all the p-goals at
all G-accessibility levels that imply φ including ψ ∧ φ.

Also, since we are using the situation calculus, we can
easily represent procedural goals/plans, e.g. the goal to do
a1 and then a2 can be written as: PGoal(Starts(p, s1) ∧
OnPath(p, s) ∧ s = do(a2, do(a1, s1)), 0, S0). Golog [7] can
be used to represent complex plans/programs. So we can
model the adoption of plans as subgoals.



Recently, there have been a few proposals that deal with
goal change. Shapiro et al. [22] present a situation calculus
based framework where an agent adopts a goal when she
is requested to do so, and remains committed to this goal
unless the requester cancels this request; a goal is retained
even if the agent learns that it has become impossible, and in
this case the agent’s goals become inconsistent. Shapiro and
Brewka [21] modify this framework to ensure that goals are
dropped when they are believed to be impossible or when
they are achieved. Their account is similar to ours in the
sense that they also assume a priority ordering over the set
of (in their case, requested) goals, and in every situation
they compute chosen goals by computing a maximal consis-
tent goal set that is also compatible with the agent’s beliefs.
In their framework, goals are only partially ordered and in-
consistencies between goals at the same level (given goals at
higher levels and knowledge) can be resolved differently in
different models. In fact, the agent’s chosen goals in do(a, s)
in a model may be quite different from her goals in s, al-
though a did not make any of her goals in s impossible or
inconsistent with higher priority goals, simply because the
inconsistencies between goals at the same priority level are
resolved differently in s and do(a, s). This is rather unin-
tuitive. Note that, while one might argue that a partial
order over goals might be more general, allowing this means
that additional control information is required to obtain a
single goal state after the agent’s goals change. In other
words, the problem with a partial ordering is that it does
not specify what a rational agent should do when two of her
goals that have equal priority become inconsistent with each
other. Also, we provide a more expressive formalization of
prioritized goals – we model goals using infinite paths, and
thus can model many types of goals that they cannot. Fi-
nally they model prioritized goals by treating the agent’s
p-goals as an arbitrary set of temporal formulae, and then
defining the set of c-goals as a subset of the p-goals. How-
ever, our possible world semantics has some advantages over
this: it clearly defines when goals are consistent with each
other and with what is known. One can easily specify how
goals change when an action a occurs, e.g. the goal to do
a next and then do b becomes the goal to do b next, the
goal that 3Φ ∨ 3Ψ becomes the goal that 3Ψ if a makes
achieving Φ impossible, etc.

To the best of our knowledge, the only set of goal change
postulates that can be found in the literature is the one pro-
posed by da Costa Pereira et al. in a series of papers on goal
revision for rational agents (e.g., see [4, 5, 6]). In their frame-
work, an agent’s state S is a triple 〈σ, γ,RD〉 that consists
of a belief-base σ and a desire-base γ (these are presumably
achievement goals), each of which is a set of propositional
formulae taken from an object language L containing the
standard boolean connectives, and a desire adoption rule-
base RD. The latter consists of PRS-like rules [9], which
depending on the agent’s current beliefs and desires, allow
her to derive new desires, and are meant to serve as a jus-
tification for having a desire. Given a state S, a rule whose
antecedent is entailed by the agent’s current beliefs and de-
sires is called an active rule. An agent’s desires are updated
both as a result of a new/revised belief b and of adoption of a
new desire d. When the agent’s beliefs are revised/updated,
she removes from her desire-base any desire d for which there
is no justification in the desire adoption rule-base, i.e. there
is no active desire adoption rule in RD that can be used

to derive d. In addition, she adds the new desires that can
be derived from her active desire adoption rules. Thus γ is
closed under the application of rules from RD. When the
agent adopts a new desire d, a new goal update rule with
the antecedent that True is added to her rule-base, which in
turns makes her add d to her desire-base. The authors then
suppose that an intention/goal selection function I is pro-
vided, which given a belief-base and a desire-base, decides
which of these desires the agent should actively pursue, i.e.
intend.

Their notion of consistency of goals/desires appeals to a
specification of consistency of plans for these goals. Consis-
tency of plans is specified in terms of consistency in ordinary
propositional logic, as opposed to using a proper formal-
ization for actions and their preconditions and effects in a
suitable temporal framework.

To model prioritized desires, they assume a preference re-
lation º over desires in γ that is reflexive and transitive,
which they extend to apply to sets of desires.

In the following, we give their postulates which constrain
I. Suppose that ⊗ is the desire-base γ revision operator, ⊕
is the desire adoption rule-base RD update operator (that
adds an unconditional rule to RD when the agent adopts a
new desire), and Sd = 〈σ, γ⊗d,RD⊕d〉 is the updated state
resulting from the adoption of desire d in S. Then:

I1 : For all S, I(S) is a feasible goal set, i.e. a consistent
set of goals that are possible.

I2 : For all S, if γ′ ⊆ γ is a feasible goal set, then I(S) º γ′,
i.e. a rational agent always selects the most preferable
intention set.

I3 : If d is consistent with I(S), then d ∈ I(Sd).

I4 : If d is inconsistent with I(S) and there is an intention
i in I(S) that is conflicting with d and i º d, then
I(Sd) = I(S).

I5 : If d is inconsistent with I(S) and for all intentions i in
I(S) that are conflicting with d, we have d º i, then
d ∈ I(Sd) and i /∈ I(Sd).

As mentioned above, these postulates are based on notions
of consistency of sets of desires and executability of desires
that seems problematic. In our framework, we specify ex-
ecutability using a formal action theory (by action precon-
dition axioms), and we interpret consistency among a set
of (achievement) goals as the existence of a path starting
with the current situation over which all of these goals hold.
Given this interpretation, we think these postulates are in
fact sound. A formal version of I1 is shown to hold in our
framework by Proposition 1 and Corollary 1. Note that I2
seems problematic unless the ordering º over desires is to-
tal, which is the case for our framework. If a partial order
is assumed, an agent might have several alternative sets of
chosen goals, none of which is better than the others. We for-
malize I3 in Proposition 3(b). Proposition 3(c) shows that
I5 is partially satisfied in our framework (we didn’t prove
that i /∈ I(Sd)). Finally, we believe that I4 and I5 are both
satisfied in our framework. Proving this is left for future
work.

There has been much work on agent programming lan-
guages with declarative goals where the dynamics of goals
and intentions are modeled (e.g. [19, 27, 1] and the refer-
ences therein). However, most of these are not based on a



formal theory of agency. To the best of our knowledge, none
maintains the consistency of (chosen) goals, i.e. when adopt-
ing a plan to achieve a goal, these frameworks do not ensure
that this plan is consistent with the agent’s other concur-
rent goals/plans. For instance, the lookahead search oper-
ator Plan(P ) proposed in the CAN-PLAN agent program-
ming language [19], that searches for a complete execution
of the plan P before performing it, is “local”: the agent may
adopt multiple search tasks, say Plan(P1) and Plan(P2), but
the output of these Plan operators need not be consistent
with each other or with the agent’s other concurrent inten-
tions/plans, as is acknowledged in [19]. Also, most of these
agent programming languages do not deal with temporally
extended goals, and as a result they often need to accom-
modate inconsistent goal-bases to allow the agent to achieve
conflicting states at different time points (e.g. the default
logic based framework in [26]); chosen goals are required to
be consistent. In [25], the authors formalized two seman-
tics for representing conflicting goals, using propositional
and default logic; they argued that even logically consistent
goals can be conflicting, e.g. when multiple goals/plans are
chosen to fulfill the same (super)goal. Unlike us however,
they do not address how an agent chooses the goals that she
will actively pursue. In [18], the authors present a situation
calculus based agent programming language where the agent
executes a program while maximizing the achievement of a
set of prioritized goals. However, they do not formalize goal
dynamics.

One limitation of our account is that one could argue that
our agent wastes resources trying to optimize her c-goals at
every step. In the future, we would like to develop an ac-
count where the agent is strongly committed to her chosen
goals, and where the filter override mechanism is only trig-
gered under specific conditions. Also, it would be interesting
to identify a set of postulates for goal change and examine
how they differ from belief change postulates.
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