
Masters Thesis

Optimizing Simulated Crowd Behaviour

Glen Berseth

July 16, 2014

Contents

1 Introduction 1

1.1 Contributions . 4

1.2 Outline . 5

2 Related Work 6

2.1 Steering Techniques . 6

2.2 Crowd Evaluation . 7

2.3 Parameter Optimization . 8

2.4 Concurrent Work . 8

3 Outline of the Framework 10

3.1 SteerSuite . 10

3.1.1 Steering Algorithms . 11

3.1.2 What is a Scenarios . 12

3.1.3 Scenario Module . 13

3.2 SteerStats . 13

3.2.1 SteerSuite Interface . 13

3.2.2 SteerStats Database . 14

1

3.2.3 Conclusion . 15

4 Preparation And Formulation 16

4.1 Generating Test Sets . 17

4.2 Performance Measures . 19

4.3 Weighted Multi-Objective Optimization 22

4.4 Conclusion . 23

5 Parameter Analysis 24

5.1 Uni-Variate Optimization . 24

5.1.1 Discussion . 27

5.2 Parameter-Metric Analysis . 29

5.3 Metric-Metric Analysis . 31

6 Parameter Optimization 34

6.1 Multi-Variate Optimization . 34

6.2 Objective Optimization . 36

6.2.1 Validation . 38

6.3 More Metric-Metric Analysis . 40

6.4 Summery . 40

7 Multi-Objective Optimization 43

7.1 Pareto Optimal Front . 44

7.1.1 Application . 45

7.2 Pareto Optimal Front Interpolation 46

8 Additional Results And Examples 50

8.1 Single-Objective Results . 50

2

8.2 Pareto Optimal Front Results . 54

8.3 Implementation details . 56

9 Conclusion 57

9.1 Limitations . 58

9.2 Future Work . 58

10 Appendix 60

10.1 Parameter Settings . 60

10.2 Optimization Values . 60

3

Abstract

In the context of crowd simulation, there is a diverse set of algorithms that

model steering, the ability of an agent to navigate between spatial locations,

while avoiding static and dynamic obstacles. The performance of steering ap-

proaches, both in terms of quality of results and computational efficiency, de-

pends on internal parameters that are manually tuned to satisfy application-

specific requirements. This work investigates the effect that these parameters

have on an algorithm’s performance. Using three representative steering algo-

rithms and a set of established performance criteria, we perform a number of

large scale optimization experiments that optimize an algorithm’s parameters

for a range of objectives.

For example, our method automatically finds optimal parameters to mini-

mize turbulence at bottlenecks, reduce building evacuation times, produce emer-

gent patterns, and increase the computational efficiency of an algorithm. Our

study includes a statistical analysis of the correlations between algorithmic pa-

rameters, and performance criteria. We also propose using the pareto-optimal

front as an efficient way of modelling optimal relationships between multiple ob-

jectives, and demonstrate its effectiveness by estimating optimal parameters for

interactively defined combinations of the associated objectives. The proposed

methodologies are general and can be applied to any steering algorithm using

any set of performance criteria.

Chapter 1

Introduction

Simulating groups of autonomous virtual humans (agents) in complex, dynamic

environments is an important issue for many practical applications. A key aspect

of autonomous agents is their ability to navigate (steer) from one location to

another in their environment, while avoiding collisions with static as well as

dynamic obstacles. The requirements of a steering approach differ significantly

between applications and application domains. For example, computer games

are generally concerned with minimizing computational overhead, and often

trade off quality for efficiency, while evacuation studies often aim to generate

plausible crowd behaviour that minimizes evacuation times while maintaining

order.

There is no definitive solution to the steering problem. Most of the estab-

lished methods are designed for specific classes of situations (scenarios), and

make different trade-offs between quality and efficiency. The fine balance be-

tween these often competing performance criteria is governed by algorithm spe-

cific parameters that are exposed to the user. Some of these parameters have

1

intuitive direct effects. For example, the radius of a comfort zone affects how

close agents may come to each other, while the neighbour horizon limits the dis-

tance from an agent within which other agents are considered during steering.

This significantly influences both the predictive power and computational effi-

ciency of the associated method. However, even when the parameters are fairly

intuitive, their combined effect, or their effect on the macroscopic behaviour of a

large crowd, is not always easy to predict. For this reason, the inverse question

is particularly interesting. Given a pattern of behaviour, a performance crite-

rion (metric) or a trade-off between performance metrics, can we automatically

select the parameter values of a steering algorithm that will produce the desired

effect? This is a timely and important question, and the main focus of our work.

We begin our study look at the independent effects of parameters. Using

simple a equidistant parameter sampling strategy we analyze the effects individ-

ual parameters have on different performance measures. We perform additional

correlation analysis over the parameters and the metrics to identify parameters

that effect different performance measures the most. It can easily be shown that

these methods are incapable of finding a globally optimal solution but the finds

can be used in a number of way. For example Using the correlation analysis to

find s subset of the parameters for a steering algorithm that are most important

and limit the number of parameters used while optimizing.

We present a methodology for automatically fitting the parameters of a

steering algorithm to minimize any combination of performance metrics across

any set of environment benchmarks in a general, model-independent fashion.

Using our approach, a steering algorithm can be optimized for the following:

success; quality with respect to distance, time, or energy consumption of an

2

agent; computational performance; similarity to ground truth; user-defined cus-

tom metrics; or, a weighted combination of any of the above. Optimizing an

algorithm’s parameters across a representative set of challenging scenarios pro-

vides a parameter set that generalizes to many situations. A steering approach

may also be fitted to a specific benchmark (e.g., a game level), or a benchmark

category (e.g., evacuations) to hone its performance for a particular application.

We demonstrate our proposed methodology using three established agent-

based algorithms: (1) ORCA: a predictive technique that uses reciprocal ve-

locity obstacles for collision avoidance [van den Berg et al., 2011], (2) PPR:

a hybrid approach that uses rules to combine reactions, predictions, and plan-

ning [Singh et al., 2011], and (3) SF: a variant of the social forces method

for crowd simulation [Helbing et al., 2000]. We thoroughly study these algo-

rithms and compute their optimal parameter configurations for different metric

combinations on a representative scenario set of local agent interactions and

large-scale benchmarks. For example, our method automatically finds optimal

parameters to minimize turbulence at bottlenecks, reduce building evacuation

times, produce emergent patterns, and increase the computational efficiency of

an algorithm, in one case by a factor of two. Cross-validation shows that, on

average, optimal parameter values generalize across scenarios that were not part

of the test set. Our study includes an in-depth statistical analysis of correlations

between algorithmic parameters and performance criteria, however, because of

space limitations the complete analysis can be found in the supplemental ma-

terial.

We also study the interesting and challenging problem of dynamically tuning

the parameters of an algorithm to support interactively defined combinations

3

of objectives. For most practical cases, it is not feasible to solve this prob-

lem in real-time every time the combination changes. To address this issue we

precompute optimal trade-offs between the objectives in the form of a discrete

approximation of the pareto-optimal front . During runtime, our method effi-

ciently estimates the parameters of the algorithm that optimally support a new

combination of the objectives.

1.1 Contributions

1. We propose a statistical framework that can be used to identify the re-

lationship between a steering algorithm’s parameters and a set of quality

and performance objectives.

2. An analysis of the effects parameter changes have on a number of different

steering algorithms

3. A set of optimal parameter settings for each of the steering algorithms for

each of the objectives used.

4. A model-independent solution that automatically fits a steering algo-

rithm’s parameters to maximize its performance, and we demonstrate its

effectiveness with a use-case analysis of many popular crowd simulation

techniques.

5. A general method to produce a pareto-optimal front between a number of

objectives that can be used to form a dynamic blending function between

objectives.

4

1.2 Outline

The rest of this work is organized in a number of chapters. Chapter 2 de-

scribes of the recent work in the area of crowd simulation and related work on

optimization methods used in the field of computer animation. In Chapter 3

we outline the software foundation used in this research. The methodology

and mathematical formulation needed for optimization is found in Chapter 4.

Chapter 5 contains results and discussion from early experiments and studies

on independent parameters. Then in Chapter 6 we start work on multi-variet

optimization and how well genetic algorithms can optimize the behaviour of

crowds. Next, in Chapter 7 we move into multi-objective optimization and

pareto-optimal front estimation were we also blend between sample points on

the pareto-optimal front . Chapter 8 is a collection of additional results and use

cases for the created framework.

5

Chapter 2

Related Work

Since the seminal work of [Reynolds, 1987; Reynolds, 1999], crowd simulation

has been studied from many different perspectives. We refer the readers to

comprehensive surveys [Pelechano et al., 2008; Huerre et al., 2010; Thalmann

and Musse, 2013] and present a broad review below.

2.1 Steering Techniques

Centralized techniques [Milazzo et al., 1998; Hoogendoorn, 2003; Henderson,

1971; Lovas, 1994; Treuille et al., 2006] model the characteristics of the crowd

flow rather than individual pedestrians. Such models are of value in computing

macroscopic simulations involving thousands of agents (e.g. stadium evacuation

scenarios, urban simulations etc). However, these approaches are unable to

model specific agent-agent interactions which are crucial in a microscopic view

of crowd simulations that are prevalent in today’s games.

Continuum-based techniques [Treuille et al., 2006; Narain et al., 2009] model

6

the characteristics of the crowd flow to simulate macroscopic crowd phenom-

ena. Particle-based approaches [Reynolds, 1987; Reynolds, 1999] model agents

as particles and simulate crowds using basic particle dynamics. The social force

model [Helbing et al., 2005; Pelechano et al., 2007] simulates forces such as

repulsion, attraction, friction and dissipation for each agent to simulate pedes-

trians. Rule-based approaches [Lamarche and Donikian, 2004; Sud et al., 2007]

use various conditions and heuristics to identify the exact situation of an agent.

Egocentric techniques [Kapadia et al., 2009; Kapadia et al., 2012] model a local

variable-resolution perception of the simulation. Data-driven methods [Lee et

al., 2007; Lerner et al., 2007; Ju et al., 2010; Boatright et al., 2013] use ex-

isting video or motion capture data to derive steering choices that are then

used in virtual worlds, and recent work [Ondřej et al., 2010] demonstrates a

synthetic vision-based approach to steering. The works of [Paris et al., 2007;

van den Berg et al., 2011] use predictions to steer in environments populated

with dynamic threats.

Commercial and open-source software [Regelous, ; Mononen, 2009; Axel Buen-

dia, 2002; Singh et al., 2009b] provide complete steering and navigation solutions

using variations of the aforementioned techniques.

2.2 Crowd Evaluation

There has been a growing recent trend to use statistical analysis in the evalua-

tion and analysis of crowd simulations. The work by Lerner et al. [2010] adopts

a data-driven approach to evaluating crowds by measuring its similarity to real

world data. Singh et al. [2009a] proposes a compact suite of manually defined

7

test cases that represent different steering challenges and a rich set of derived

metrics that provide an empirical measure of the performance of an algorithm.

Recent extensions [Kapadia et al., 2011a] propose a representative sampling of

challenging scenarios that agents encounter in crowds to compute the coverage

of the algorithm, and the quality of the simulations produced. Density mea-

sures [Lerner et al., 2010] and fundamental diagram-based comparisons [Seyfried

et al., 2010] use aggregate metrics for quantifying similarity. The work in [Guy

et al., 2012; Pettré et al., 2009] measures the ability of a steering algorithm

to emulate the behaviour of a real crowd dataset by measuring its divergence

from ground truth. [Musse et al., 2012] presents a histogram-based technique

to quantify the global flow characteristics of crowds. Perceptual studies rely

on human factors experiments to measure the variety in appearance and mo-

tion [McDonnell et al., 2008], or perceptual fidelity of relaxing collisions [Kulpa

et al., 2011] in crowds.

2.3 Parameter Optimization

Parameter fitting is widely used in visual effects [Bruckner and Moller, 2010]

to automate the tuning of model parameters to meet certain user-defined crite-

ria. The resulting optimization problems tend to involve non-convex, and high-

dimensional spaces. For these problems evolutionary strategies are preferred

because they generally have less parameters to tune and do not require the com-

putation of derivatives. Such techniques have been successfully demonstrated

on a diverse set of application domains [Ha et al., 2013; Wang et al., 2010]. By

selecting the right set of parameters, researchers have shown improvements in

8

a steering algorithm’s ability to match recorded crowd data [Johansson et al.,

2007; Pettré et al., 2009; Pellegrini et al., 2009; Davidich and Koester, 2011;

Lemercier et al., 2012].

2.4 Concurrent Work

Concurrent work [Wolinski et al., 2014] explores parameter estimation of steer-

ing algorithms to match reference data for specific scenarios. Our method is

not tied to ground truth, and can be used to optimize quantitative metrics such

as the computational performance of the algorithm. Additionally, we leverage

the use of different test sets including small-scale interactions and high-density

crowds, to obtain optimal parameter values that generalize across the space of

possible scenarios. To offset the computational burden of optimizing an algo-

rithm for different criteria, we propose a method to precompute the mapping

between an algorithm’s parameters and objective weights, thus allowing us to

dynamically adapt the crowd behaviour at real-time rates.

Although prior work has entertained the notion of parameter tuning in cer-

tain specific cases, a methodology to identify the mapping between a steering

algorithm’s parameters and performance objectives has not been performed yet.

Such a study is an important and timely next step, and it is the main focus of

this paper

9

Chapter 3

Outline of the Framework

We built this framework off of a pre exhisting crowd simulator called SteerSuite.

We briefly describe what SteerSuite is and the modifications that were done to

the system in order to perform this research.

3.1 SteerSuite

SteerSuite is a modular framework that is used to simulate and evaluate steer-

ing algorithms. There exist few libraries that can be used to prototype and

experiment with steer algorithms. The software is designed to make it easier to

develop, test and analyze steering algorithms. The system includes a number

of example scenarios, many steering algorithms and SteerBench [Singh et al.,

2009a], which can be used to profile the performance and behaviour of steering

algorithms.

10

3.1.1 Steering Algorithms

Steering algorithms, or dynamic navigation algorithms are used to control the

locomotion decisions of agents during a simulation. The navigation problem is

complex because of the static and dynamic obstacles that exist in the environ-

ment. There are many methods that attempt to conquer this problem domain.

Every steering algorithm has a number of parameters that can be changed

by the user. Changing the parameters of a steering algorithm results in ex-

hibiting a different behaviour. for demonstration purposes, we use the following

established algorithms that model different steering approaches.

1. PPR. [Singh et al., 2011] presents a hybrid framework that combines re-

action, prediction and planning. It is an example of a rule-based method

for agent based steering and has 38 independent parameters. For example,

avoidance-turn-rate defines the turning rate adjustment speed in propor-

tion to the typical speed and query-radius controls the radius around an

agent that PPR uses to predict collisions with other objects and agents.

2. ORCA. [van den Berg et al., 2011] is a very popular method that uses

optimal reciprocal collision avoidance to efficiently steer agents in large-

scale crowds. A subset of its independent parameters are: max-neighbors,

the maximum number of nearby agents that an agent will take into con-

sideration when making steering choices; max-speed, the maximum speed

that an agent may travel with; and time-horizon, the minimal time for

which an agent’s computed velocity is safe with respect to other agents.

3. SF. [Helbing et al., 2000] uses hypothetical social forces for resolving col-

lisions between interacting agents in dense crowds. In addition to general

11

parameters similar with the other methods, each social force model has

associated parameters that govern its relative influence.

3.1.2 What is a Scenarios

A scenario is an initial configuration of a simulation. It can be thought of as

the initial positions of the obstacles and agents in the simulation and additional

information on the agents settings. Settings such as desired velocity and target

location. The space of possible scenarios is considered to be infinite. A basic

scenario can be seen in Figure 3.1.

Figure 3.1: A basic scenario in SteerSuite with 6 agents. The goals of the agents

are marked by the small flags and the dark green blocks are static obstacles.

12

3.1.3 Scenario Module

In crowd simulation it is common to evaluate steering algorithms over a small

set of possible benchmarks. The scenario module is designed to have the ca-

pability to generate massive amounts of benchmarks. This method was first

used in [Kapadia et al., 2011b], where the total space of possible scenarios was

considered and a formulation of a representative set of all of the scenario space

was created. The scenario module is used significantly in this work as a primary

means to generate and execute large amounts of scenarios.

3.2 SteerStats

SteerStats acts as a wrapper for SteerSuite in order to make the processes of

calling and collecting the statistical information a single function. When using

the scenario module all of the statistics for the simulation are recorded and

can be accessed by SteerStats. The wrapper accepts many arguments that are

passed to the scenario module when running SteerSuite that indicate, amongst

many other things, the kinds of data to be collected from the simulation and

the type of simulation to be executed.

3.2.1 SteerSuite Interface

This wrapping is not a direct Python wrapping of the C++ library. Instead,

the wrapping calls the executable using a mechanism similar to a system call,

passing all of the relevant simulation parameters to the executable program. The

wrapping of SteerSuite is done in two parts. The first part is primarily designed

to read, parse and organize the simulation data that is recorded by the scenario

13

module. The second part is used to control the execution of SteerSuite and the

arguments passed. In addition, various forms of parallelization are supported

to allow for more efficient collection of data and execution of SteerSuite on

multi-core systems.

3.2.2 SteerStats Database

The SteerStats framework also supports integration with the postgreSQL database1.

This integration provides a number of useful features:

1. Facilitates full data recording

2. Allows for easier analysis/data mining

3. Gives a structured organization to the data

Schema

The schema used to organize the data in the data base is rather standard. A

brief digram of the schema is presented in Figure 3.2. The organization uses join

tables between the different tables to organize various types of data logged by

the system. Each testcase is stored as a test in the database. Many tests can be

associated with a single test set, which also stores the simulation configuration.

If desired a video and binary recording of the simulation can also be associated

with a testcase. Last, there are a number of tables for each steering algorithm

that store information on the algorithms settings during simulation.

1http://www.postgresql.org/

14

Figure 3.2: SteerStats database schema. For brevity, not all of the columns in

the tables are listed in this figure.

3.2.3 Conclusion

This framework has been designed for ease of use. The goal is to make a call to

SteerStats a single function which can be later be used by different methods to

analyze the performance of steering algorithms.

15

Chapter 4

Preparation And

Formulation

In this chapter we present a framework for analyzing the effects of parameters

v ∈ V of an algorithm, Av. The next sections describe the elements involved in

this framework.

In order for this analysis to be more statically significant of the steering

algorithms, a number of test sets are created. These test sets will be used

across the steering algorithms for analysis and optimization. These test sets

are also supposed to be the best known samplings of the scenario space so that

the analysis and optimization results can be considered more general. We also

define a number of objectives that are used to measure different elements of the

steering algorithms performance and a weighted combination of these objectives.

16

4.1 Generating Test Sets

We employ different benchmark sets including local agent interactions and high-

density crowds to find the optimal values of an algorithm’s parameters that

generalize across the wide range of situations that agents encounter in crowds.

Note that certain performance metrics may have more meaning for specific test

sets. For example, computational efficiency is more meaningful for situations

that involve sufficiently large numbers of agents.

Large Scale Set. S contains most of the large-scale benchmarks in Table 4.1

that define large environments with many agents. Sv is a set of similar but

different large-scale benchmarks that will be used to validate the results of

parameter optimization on previously unseen cases (cross-validation).

Benchmark # Agents Description

Random 1000 Random agents in open space.

Forest 500 Random agents in a forest.

Urban 500 Random agents in an urban environment.

Hallway 200 Bi-directional traffic in a hallway.

Free Tickets 200 Random agents to same goal, then disperse.

Bottleneck 1000 Tight bottleneck.

Bottleneck evac 200 Evacuation through a narrow door.

Concentric circle 250 circle with target on opposite side.

Concentric circle 500 circle with target on opposite side.

Hallway 400 4-way directional traffic.

Table 4.1: Large scale benchmarks. The bottom three scenario are part of Sv.

All are designed to stress the steering algorithms computational efficiency.

Representative Set. The representative scenario set, R, includes 5000 sam-

ples of a wide range of local interactions. It is designed to include challenging

local scenarios and to exclude trivial or invalid cases. We construct it in a fash-

17

ion similar to [Kapadia et al., 2011a], following these general guidelines: (a)

The reference agent is placed near the center of the scenario, (b) agent targets

are placed at the environment boundary, and (c) non-reference agents are dis-

tributed at locations that maximize the likelihood that their static paths will

intersect the reference agent’s static path to its target. We use the same method

to generate another set of the same size, Rv, for cross-validation. We use the

representative set because it provides the best sampling of the full space of

possible scenarios. Therefore, optimizing for the representative set should give

good results in general for any scenario.

Combined Test Set. The union of the large scale set, S, and the representative

set, R, T = S ∪ R is the main test set that we use for algorithm analysis

and parameter fitting in a statistically significant general fashion. Here we use

statistical significance to contrast against common practice in crowd simulation

where results are demonstrated on a very limited number of test cases.

Combined Validation Set. Similarly, the combined cross-validation set is

T v = Sv ∪Rv.

Custom Scenario Set. A user can specify a subset of scenarios in T or

even design custom benchmarks to focus the parameter fitting on application-

specific requirements. Random permutations in the environment configuration

and agent placement can generate multiple samples of a custom benchmark

category. For example, one can create a set of test cases that capture two-way

traffic in orthogonally crossing hallways as is common in large buildings.

Ground Truth Test Set. There are few publicly available data sets of

recorded crowd motion which can be used to test a steering algorithm’s abil-

ity to match real world data. We use a ground truth test set G, published by

18

[Seyfried et al., 2010], for our experiments.

4.2 Performance Measures

Given an appropriate test set, we want to compute normalized quantities (met-

rics) that characterize important aspects of a steering algorithm’s performance.

Recently a number of intuitive performance metrics have been proposed that

include: (a) the fraction of scenarios that an algorithm is unable to solve in

a representative set of scenarios, (b) quality measures with respect to distance

travelled, total time taken, or energy consumption of an agent, (c) computa-

tional performance of the algorithm, and (d) statistical similarity with respect

to ground truth. The specific metrics that we use in our experiments are briefly

described below. For more details see [Kapadia et al., 2011a; Berseth et al., 2013;

Guy et al., 2010; Guy et al., 2012]. One can also define custom metrics to meet

application-specific requirements.

Failure Rate. The coverage c(Av) of a steering algorithm Av over a test set

T is the ratio of scenarios that it successfully completes in T . An algorithm

successfully completes a particular scenario if the reference agent reaches its goal

without any collisions and the total number of collisions among non-reference

agents is less than the number of agents in the scenario. The failure rate is the

complement of coverage d(Av) = 1 − c(Av). It captures the ratio between the

number of scenarios not successfully solved and the total number of scenarios

in T , and it has obvious bounds in T .

Distance Quality. For a single small scale scenario s we define the distance

quality metric qd(Av) of an algorithm Av as the complement of the ratio between

19

the length of an ideal optimal path ods , and the length of the path that the

reference agent followed, ads :

qd(Av) = 1− ods
ads

. (4.1)

The ideal optimal path is the shortest static path from the agent’s initial

position to its goal after line-of-sight smoothing [Pinter, 2001]. If the algorithm

does not successfully complete the scenario then the associated distance quality

metric is set to the worst-case value of 1. For a large-scale scenario we compute

qd(Av) as the average over all agents, and for a set of scenarios, we computed

it as the average over the set.

Time Quality. Similarly, qt(Av) characterizes how much longer the reference

agent took to reach its goal compared to an ideal optimal time. The ideal

optimal time for a single scenario corresponds to the agent reaching its goal

when moving with its desired velocity along the ideal optimal path. Defined as:

qt(Av) = 1− ots
ats

, (4.2)

where ats is the time it took the agent to reach its goal in the scenario s. If the

algorithm does not successfully complete the scenario then the metric is set to

the worst-case value of 1. For large scale scenarios this metric represents the

average over all agents, and for a set of test cases the average over the set.

PLE Quality. The principal of least effort characterizes the energy expenditure

of a reference agent over a path traveled [Guy et al., 2010] as follows:

pe = m

∫ tend

tstart

(es + ew)|v|2dt, (4.3)

where es and ew are commonly used energy terms for the average person [Whit-

tle, 2007], and the mass, m is set to 1 in our experiments. The PLE quality

20

metric, qe(Av), is computed similar to the other metrics as follows:

qe(Av) = 1− oe

ae
, (4.4)

where oes = 2 · optimal-path-length× (es + ew) is the ideal optimal effort and ae

the actual effort of the agent. If the algorithm does not successfully complete

the scenario the metric is set to the worst case value of 1. For many agents

and/or test cases the metric is computed in the average sense.

Computational Efficiency. The computational efficiency e(Av) metric is the

average CPU time consumed by all agents in all scenarios in a test set S. Unlike

the above normalized metrics, it is not straightforward to provide an ideal upper

bound for e(Av). To provide a basis for normalization, we assume that 10% of

all computational resources are allocated to the steering algorithm. Hence, the

maximum time allocated to a steering algorithm every frame is n−1
des seconds for

a desired framerate of ndes fps. For every scenario s, the maximum time tsmax

allocated to every steering agent per frame is 0.1 · (N · ndes)
−1 seconds, where

N is the number of agents in s. Let tsavg be the average time spent per frame

for all agents to reach a steering decision. The average computational efficiency

e over a test set S is computed as follows:

e(Av) = 1−

∑
s∈S

es(Av)

|S|
, es(Av) =

tsmax

tsavg

(4.5)

where es(Av) is the efficiency of Av for a particular scenario s, and |S| is the

cardinality of the test set S.

The desired framerate, ndes, provides an ideal upper bound for efficiency,

analogous to the ideal upper bounds of the other metrics, and allows us to de-

fine a normalized efficiency metric. Normalized metrics can be combined more

intuitively into optimization objectives in the forthcoming analysis. Alterna-

21

tively, we could set the desired framerate to a very high value for all algorithms

and attend to scaling issues later.

Similarity to Ground Truth. In addition to quantitatively characterizing the

performance of a steering algorithm, we can also measure its ability to match

ground truth. We compute a simulation-to-data similarity measure g(Av,G

) [Guy et al., 2012] which computes the entropy measurement of the prediction

errors of algorithm Av relative to a given example dataset, such as the test set

G defined in Section 4.1.

4.3 Weighted Multi-Objective Optimization

Given a set of performance metrics such as the ones defined in Section 4.2, M =

〈d, qd, qt, qe, e〉, we can define an objective function as a weighted combination

of these metrics:

f(Av,w) =
∑

mi∈M
wi ·mi, (4.6)

where w = {wi} contains the weights which determine the relative influence

of each individual metric. By choosing different sets of metrics and associated

relative weights, we can define custom objectives. For a steering algorithm

Av with internal parameters v ∈ V, a set of test cases, and a desired objective

f(Av,w), our goal is to find the optimal parameter values v∗w that minimize the

objective over the test set. This can be formulated as a minimization problem:

v∗w = arg min
v∈V

f(Av,w). (4.7)

This is generally a non-linear and non-convex optimization problem for the

independent parameters, v ∈ V.

22

4.4 Conclusion

We have formulated a number of objective metrics that can be used to compare

the behaviour of steering algorithms. These objectives have been formulated in

a novel way that normalizes the result in order to make optimization smoother.

23

Chapter 5

Parameter Analysis

In this chapter the results of initial experiments using the framework are dis-

cussed. Starting with a uni-variate optimization process. After which correla-

tions between the objectives and steering algorithm parameters, then between

objectives and other objectives, are explored.

5.1 Uni-Variate Optimization

This section describes a prefatory analysis we performed to understand the effect

of the independent parameters on an algorithm’s performance, and serves as a

precursor to the multi-variate analysis reported in the work in Chapter 6. By

varying each parameter in isolation and studying its effects on the performance

criteria, we can answer questions such as: Which parameters are important?

What are the bad values we need to avoid? Are the default values good?

For reference, we first compute the deficiency d(Av), distance quality qd(Av),

and efficiency e(Av) metrics for the test set, T , for the PPR algorithm using

24

Algorithm v d(Av) qd(Av) e(Av) f(Av)

PPR
DEF 0.39 0.49 0.96 0.61

UNI 0.25 0.25 0.95 0.46

Table 5.1: Comparison of d(Av),qd(Av), es(Av), and f(Av) which is the equally

weighted combination of the 3 metrics for the PPR steering algorithm using:

(a) DEF: default parameter values and (b) UNI: best parameter values obtained

using uni-variate analysis.

their default parameters, provided in Table 5.1. For default parameter settings,

PPR can respectively solve 62% of the sampled scenarios.

To study the effect of each parameter in isolation, we sample each param-

eter of the steering algorithm independently in a bounded interval taking 20

uniformly distributed samples. The parameter bounds are chosen separately for

each parameter based on intuition, physical interpretation of the parameter, or

default values provided by the algorithm’s creators. Table 10.1 enumerates the

bounds of the parameters for PPR.

We find that the deficiency of PPR is sensitive to 23 of its 38 parameters.

For each parameter we can also identify its optimal value and make trade offs.

Table 5.1 shows the maximum improvement in the value of the performance

metrics that we can achieve using this analysis (labelled UNI in the table)

compared to value of the metrics that correspond to the default values (labelled

DEF in the table).

The deficiency for PPR, d(Appr
v), decreases to 25% by selecting the optimal

values of ped-avoid-rate and typical speed. The quality with respect to distance

travelled for PPR, qd(Appr
v), decreases to 0.25 for the optimal values of ped-

25

avoid-rate and typical speed.

Efficiency is an important issue for steering algorithms. We can see that, as

expected, the e of PPR decreases with the query radius. However, the more

interesting observation comes from Table 5.1, where we can see that the e metric

for the PPR algorithm improves when we use the appropriate parameter values

from this analysis.

Optimizing for a weighted combination of all three metrics also yields inter-

esting results. We observe that ped-avoid-rate = 0.55 produces optimal results

in the PPR algorithm for an equal proportion of the 3 d(Appr
v), qd(Appr

v) and

es(A
ppr
v).

Knowing how each parameter affects each performance metric, allows us to

potentially focus our optimization efforts on specific parameters based on the

requirements of an application. We can see in Tables (5.2-5.4) some examples of

how single parameters for each steering algorithm can effect a particular metric.

We found that ped-avoid-rate has little effect on efficiency, e(Appr
v) while it

does affect deficiency, d(Appr
v), and quality, qd(Appr

v). Therefore, it may be a

suitable parameter to explore if we need to improve quality or deficiency without

affecting efficiency.

To gain insight on the simultaneous effect of multiple variables we perform

one bi-variate analysis for PPR. Figure 5.1 shows the coverage of PPR with

respect to the Cartesian product of two parameters, ped-avoid-rate, and typical

speed. The shape of the resulting surface indicates that deficiency depends

non-trivially on both parameters at the same time.

26

4 6 8 10 12 14 16 18 20 22

ped_query_radius

0.70

0.75

0.80

0.85

0.90

0.95
e
ff

(A
v
)

ped_query_radius vs eff(Av)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

ped_typical_speed

0.4

0.5

0.6

0.7

0.8

0.9

1.0

d
is

ta
n

c
e
(A

v
)

ped_typical_speed vs distance(Av)

(a) (b)

0.00 0.05 0.10 0.15 0.20 0.25

ped_max_turning_rate

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

ti
m

e
(A

v
)

ped_max_turning_rate vs time(Av)

0.0 0.5 1.0 1.5 2.0 2.5

ped_reactive_anticipation_factor

350

400

450

500

550

s
c
e
n

a
ri

o
_g

ro
u

p

ped_reactive_anticipation_factor vs scenario_group

(c) (d)

Table 5.2: Graphs of a few objectives for the PPR algorithms. These graphs

show the effects a few of the parameters have on the objectives.

5.1.1 Discussion

The analysis in this section offers valuable insights on the effects of each param-

eter on the objectives.

• We can easily identify which values of the parameters we should avoid,

and which might be good choices.

• The experiments indicate that for an algorithm the default parameters

are not necessarily optimal. They also verify that, as expected, the ob-

jectives are generally not separable functions of the parameters, v. We

27

1.0 1.5 2.0 2.5 3.0 3.5

rvo_max_speed

2100

2150

2200

2250

2300

2350

2400

s
c
e
n

a
ri

o
s
_p

a
s
s
e
d

rvo_max_speed vs scenarios_passed

2 4 6 8 10 12 14 16

rvo_time_horizon_obstacles

2500

2600

2700

2800

2900

3000

3100

3200

s
c
e
n

a
ri

o
s
 f

a
il
e
d

rvo_time_horizon_obstacles vs scenarios failed

(a) (b)

2 4 6 8 10 12 14 16

rvo_time_horizon_obstacles

0.690

0.695

0.700

0.705

0.710

0.715

0.720

ti
m

e
(A

v
)

rvo_time_horizon_obstacles vs time(Av)

1.0 1.5 2.0 2.5 3.0 3.5

rvo_max_speed

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

ti
m

e
(A

v
)

rvo_max_speed vs time(Av)

(c) (c)

Table 5.3: Graphs of a few objectives for the ORCA algorithms. These graphs

show the effects a few of the parameters have on selected objectives.

therefore need to fit the parameters simultaneously using a multi-variate

optimization method.

• For PPR we might be able reduced the number of parameters that we

need to fit from 38 to the 23 that seem much more influential, which may

significantly improve the time it takes to perform optimal fitting.

28

1 2 3 4 5 6 7 8 9 10

hidac_query_radius

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
e
ff

(A
v
)

hidac_query_radius vs eff(Av)

0.0 0.5 1.0 1.5 2.0

hidac_acceleration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p
le

(A
v
)

hidac_acceleration vs ple(Av)

(a) (b)

0 1 2 3 4 5

hidac_agent_b

120

125

130

135

140

145

150

155

160

165

s
c
e
n

a
ri

o
_g

ro
u

p

hidac_agent_b vs scenario_group

0 20 40 60 80 100

hidac_wall_a

0.0

0.2

0.4

0.6

0.8

1.0

d
is

ta
n

c
e
(A

v
)

hidac_wall_a vs distance(Av)

(c) (d)

Table 5.4: Graphs of a few objectives for the SF algorithms. These graphs

show the effects a few of the parameters have on selected objectives.

5.2 Parameter-Metric Analysis

It is interesting to identify which parameters change in relation to the objectives,

and study the trade-offs that the algorithms essentially make with these changes.

In our analysis we also computed correlations between the parameters of the

steering algorithms and the metrics. A Spearman correlation is used because it

computes a non-parametric correlation that is not based on any linearity and

we suspect that the relationships between parameters and metrics and metrics

and metrics are non-linear. Tables 5.5, 5.6, 5.7 list the results of this analysis.

29

Figure 5.1: The coverage of PPR, d(Appr
v) (vertical axis), with respect to two

parameters, ped-avoid-rate and typical speed.

1. For ORCA, the maximum number of neighbours considered has the high-

est correlation with most metrics. The max speed seems to be the second

most important parameter. It affects effort quality, qe(Av), negatively,

and time quality qt(Av) positively.

2. For PPR, the max speed factor, which is a multiplier that increases the

speed of an agent, is strongly correlated with the efficiency metric, e, and

has a negative effect on all quality metrics.

3. For PPR, the size of the neighbourhood area and the distance to the

furthest local target seem to be the parameters most strongly correlated

with efficiency, e.

4. For SF, the parameters with the highest correlation to computational

efficiency, e, have to do with proximity forces. When these are increased,

agents push each other away forcefully, decreasing the likelihood that they

30

will interact again in the the next frame.

5. The parameters of SF that affect the quality measures the most are the

wall repulsion coefficients.

The above analysis is not meant to be definite or complete, but rather to

demonstrate that the proposed methodology can be notably more effective than

manual tuning. The framework is an effective way to optimize, probe and

analyze the behaviour of a steering algorithm in relation to its parameters, over

a small or large set of test cases.

5.3 Metric-Metric Analysis

A correlation analysis clarifies the dependencies across metrics for a given algo-

rithm. We generate 1000 samples in the parameter space of ORCA, and use

them to compute each metric over the more than 5000 cases in T . We then

compute the Spearman correlation coefficients between pairs of metrics, shown

in Tables (5.8 . We can identify the following correlations:

1. A weak negative correlation between computational efficiency, es(Av), and

the other metrics.

2. A strong negative correlation between time quality, qt(Av), and effort

quality, qe(Av), which in general can be expected, as faster motion requires

more energy.

3. A weak positive correlation between time quality, qt(Av), and distance

quality, qd(Av). Also expected, since a shortest path often results in

shorter completion time.

31

Parameter d(Av) qd(Av) qt(Av) qe(Av) e(Av)

max speed −0.06 −0.12 −0.24 −0.04 −0.04

max force −0.40 −0.41 −0.45 −0.38 −0.13

max speed factor −0.58 −0.63 −0.72 −0.57 −0.23

faster speed factor 0.35 0.34 0.33 0.32 0.23

slightly faster speed factor −0.06 −0.12 −0.25 −0.08 −0.06

typical speed factor −0.40 −0.43 −0.62 −0.28 −0.26

slightly slower speed factor 0.30 0.28 0.28 0.26 0.00

slower speed factor 0.30 0.27 0.16 0.25 0.06

cornering turn rate 0.15 0.08 0.07 0.13 0.18

adjustment turn rate −0.21 −0.24 −0.23 −0.22 −0.18

faster avoidance turn rate −0.39 −0.39 −0.39 −0.35 −0.19

typical avoidance turn rate −0.33 −0.34 −0.39 −0.37 −0.27

braking rate −0.32 −0.28 −0.26 −0.27 −0.12

comfort zone −0.30 −0.26 −0.26 −0.23 0.02

query radius 0.29 0.33 0.38 0.34 0.63

similar direction threshold 0.15 0.11 0.11 0.14 0.14

same direction threshold 0.52 0.55 0.64 0.52 0.11

oncoming prediction threshold 0.03 0.02 0.04 0.05 0.13

oncoming reaction threshold −0.48 −0.50 −0.58 −0.49 −0.25

wrong direction threshold 0.23 0.25 0.29 0.23 0.05

threat distance threshold 0.12 0.10 0.14 0.13 0.00

threat min time threshold 0.38 0.40 0.46 0.37 0.19

threat max time threshold −0.01 −0.04 −0.07 −0.00 0.02

predictive anticipation factor −0.30 −0.29 −0.27 −0.28 −0.21

reactive anticipation factor 0.01 0.02 0.12 0.13 0.05

crowd influence factor −0.35 −0.35 −0.38 −0.31 −0.12

facing static object threshold 0.21 0.21 0.27 0.18 −0.05

ordinary steering strength 0.04 0.03 0.07 0.02 0.04

oncoming threat avoidance strength −0.25 −0.31 −0.35 −0.23 −0.16

cross threat avoidance strength −0.08 −0.12 −0.18 −0.14 −0.01

max turning rate 0.43 0.35 0.33 0.29 0.17

feeling crowded threshold −0.49 −0.53 −0.56 −0.46 −0.30

scoot rate −0.12 −0.17 −0.24 −0.17 −0.11

reached target distance threshold −0.26 −0.41 −0.44 −0.36 −0.30

dynamic collision padding 0.15 0.15 0.25 0.18 0.11

furthest local target distance 0.16 0.19 0.25 0.17 0.65

next waypoint distance −0.07 −0.04 0.07 −0.07 0.01

max num waypoints 0.39 0.41 0.43 0.35 0.14

Table 5.5: This tables shows Spearman rank correlation coefficients between 5

metrics and all of the parameters for the PPR algorithm

32

Parameter d(Av) qd(Av) qt(Av) qe(Av) e(Av)

max speed 0.02 0.03 −0.34 0.58 0.14

neighbour distance −0.09 −0.07 −0.13 −0.03 0.03

time horizon −0.12 −0.08 0.10 0.04 0.07

time horizon obstacles −0.09 −0.09 0.17 0.04 0.11

max neighbors 0.42 0.47 0.54 0.29 0.37

Table 5.6: This tables shows Spearman rank correlation coefficients between 5

metrics and all of the parameters for the ORCA algorithm.

Parameter d(Av) qd(Av) qt(Av) qe(Av) e(Av)

acceleration 0.14 0.18 0.15 0.18 −0.17

personal space threshold −0.02 −0.01 −0.01 −0.01 0.02

agent repulsion importance 0.04 0.04 0.04 0.04 0.04

query radius −0.01 −0.01 −0.01 −0.01 −0.00

body force 0.05 0.05 0.04 0.05 0.04

agent body force 0.00 0.01 0.00 0.01 −0.02

sliding friction force 0.00 0.01 0.01 0.01 −0.01

agent b 0.02 0.14 0.15 0.13 −0.37

agent a −0.27 −0.21 −0.24 −0.21 −0.25

wall b 0.66 0.65 0.62 0.66 −0.01

wall a 0.37 0.37 0.34 0.37 −0.04

Table 5.7: This tables shows Spearman rank correlation coefficients between 5

metrics and all of the parameters for the SF algorithm

ORCA d(Av) qd(Av) qt(Av) qe(Av) e(Av)

d(Av) 1 1.00 0.20 0.35 −0.18

qd(Av) 1.00 1 0.21 0.36 −0.16

qt(Av) 0.20 0.21 1 −0.63 −0.02

qe(Av) 0.35 0.36 −0.63 1 −0.01

e(Av) −0.18 −0.16 −0.02 −0.01 1

Table 5.8: Spearman correlation coefficients between performance metrics for

1000 parameter samples with ORCA.

33

Chapter 6

Parameter Optimization

We present an optimization based framework for automatically fitting the pa-

rameters v ∈ V of an algorithm, Av. Our framework automatically selects

optimal parameter values v∗ ∈ V such that the performance of Av∗ minimizes

certain performance criteria, over a set of benchmarks (test set). The next sec-

tions describe the elements involved in this problem and our approach to solving

it.

6.1 Multi-Variate Optimization

The Covariance Matrix Adaptation Evolution Strategy technique (CMA-ES) [Hansen

and Ostermeier, 1996; Hansen, 2011] is one of the many methods that can solve

such problems. We chose CMA-ES because it is straightforward to implement, it

can handle ill-conditioned objectives and noise, it is very competitive in converg-

ing to an optimal value in few iterations, and it has support for mixed integer

optimization. The CMA-ES algorithm terminates when the objective converges

34

to a minimum, when very little improvement is made between iterations, or

after a fixed number of evaluations. Limiting the values of an algorithm’s pa-

rameters transforms the problem of optimizing over an unbounded domain to a

bounded one, which generally decreases the number of iterations needed for the

optimization to converge. In most of our experiments the algorithm converged

within 1000 evaluations.

Algorithm 6.1 describes the details of the CMA-ES algorithm we used for

automatically selecting parameter values that optimize a given objective func-

tion.

The CMA-ES algorithm searches iteratively the parameter space for the

optimal parameter values in an evolutionary fashion. At each iteration it gen-

erates N -samples of the parameter vector and keeps a subset of the samples

that exhibit high fitness (minimize the objective). The algorithm then tries

to increase the probability of successful candidate solutions and search steps,

in a maximum-likelihood sense. The mean of the probability distribution of

the samples is updated such that the likelihood of successful solutions is in-

creased. A covariance matrix that captures the pair-wise dependencies between

parameter distributions is also updated such that the likelihood of previously

successful steps is increased. Samples are taken from a normal multivariate

distribution with the computed mean and covariance matrix. A key feature

of the algorithm is the way it controls the step size between iterations and

the evolution paths. For more details see [Hansen and Ostermeier, 1996], and

http://en.wikipedia.org/wiki/CMA-ES.

Example: Figure 6.2 illustrates an optimization process. The parameters of

ORCA v = {max speed, neighbour distance, time horizon, time horizon obsta-

35

input Test set T , Objective f(Av, w), Algorithm Av, parameters v ∈ V

Initialize, mean m, covariance matrix C

while not termination condition do

while i < N do

vi = Sample N (m,C)

Compute Objective fi = f(Avi , w)

end while

{v0,v1...vN−1} = arg sort{vi}({fi|∀i})

v∗ = Update ({v0,v1 · · · vN−1 })

Update Mean, m

Update search paths

Update Covariance Matrix, C

end while

return v∗

Figure 6.1: Main loop of CMA-ES Algorithm for parameter optimization of

steering algorithms.

cles, max neighbours} are optimally fitted to an equally weighted combination

of metrics over the test set T . After 60 iterations the optimization converges to

approximately 10% better objective value. A quick observation shows that the

optimization has reduced the number of neighbours that the algorithm considers

for each agent, max neighbours, from 10 to 2.

6.2 Objective Optimization

The default parameters for PPR, ORCA and SF cannot solve 39%, 56%, and

26% of the sampled scenarios respectively. Using the optimal parameter selec-

tion for PPR, the algorithm only fails in 9% of the scenarios, an improvement

of 30% over the default settings. The significant optimization in time quality,

36

0 20 40 60 80 100 120
0.54

0.56

0.58

0.6

0.62

0.64

iteration

m
et

ric
 v

al
ue

(a) Objective Function

0 20 40 60 80 100 120
0

5

10

15

20

iteration

pa
ra

m
te

r
va

lu
e

max speed
neighbor distance
time horizon
time horizon obstacles
max neighbors

(b) ORCA parameter values

Figure 6.2: Optimizing ORCA parameters to minimize the uniformly weighted

combination of metrics over the test set T . Each iteration is equal to 8 metric

evaluations. As can be seen convergence occurs around 60 iterations.

qt(Av), for the PPR algorithm is impressive as well. ORCA does not show sig-

nificant results over the metrics with the exception of qt. On the other hand SF

shows impressive improvement over most metrics, achieving the smallest failure

rate d and the minimum energy expenditure, qe. Table 10.4 lists the objective

values for these findings and Figure 6.3 shows the realtive percent improvement.

37

To optimize failure rate, d(Av), PPR chooses very high values for predictive

avoidance parameters and minimal values for speed thresholds, and trades off

performance by selecting higher spatial querying distances.

When optimizing distance quality qd(Av) PPR changes different speed mul-

tipliers in an attempt to minimize any extra distance covered around corners.

To improve computational efficiency e, PPR minimizes parameters that would

trigger changes in its planned path, which would require an expensive path re-

planning operation. To minimize failure rate and meet the time limit, ORCA

raises its time horizon to increase the number of agents it considers in its velocity

calculations, and increases its max speed so that agents cover as much distance

as possible. For distance quality, qd(Av), ORCA reduces max speed just like

PPR. In general, SF reduces acceleration parameters to minimum values for

all quality metrics to prevent agents from overreacting.

6.2.1 Validation

We verify the statistical significance of the results shown in Figure 6.3 in two

ways. First, we observe that for all three algorithms and for all the scenarios

in the test set, T , which are more than 5000, the optimization did not time

out but converged to at least a local minimum. In the context of numerical

optimization that is a sufficiently strong indication that the results are not

random. Second, we perform a cross validation study on an equally large test

set of similar, but previously unseen scenarios, T v. The results of this study

can be found in Table 6.1. Comparing the values of the objectives for the

default parameters of the algorithms, and for the optimized ones, we see that

the optimized parameters on average perform better even on scenarios that were

38

0
10
20
30
40
50
60
70
80
90

PPR
ORCA
SF

d qd qt qe e u

Figure 6.3: Relative percent improvement of failure rate d, distance quality

qd, time quality qt, effort quality qe, computational efficiency e, and a uniform

combination of metrics u for the three steering algorithms.

not used during the optimization.

6.3 More Metric-Metric Analysis

It is interesting to investigate whether relationships exist between performance

metrics. For example, does optimizing for distance quality, qd, also optimize

time quality qt? To answer such questions, we compute the value of each met-

ric obtained with parameter values that are optimized for the other metrics,

Tables (6.2 - 6.4). We observe that the optimal parameters for distance qual-

ity, qd(Av), produce near-optimal results for failure rate, d(Av) for PPR and

ORCA. However, the opposite does not hold true. Optimizing for failure rate

does not yield optimal results for distance quality.

39

Av v d(Av) qd(Av) qt(Av) qe(Av) es(Av) u(Av)

PPR
DEF 0.39 0.49 0.57 0.53 0.96 0.59

OPT 0.10 0.22 0.07 0.30 0.91 0.34

ORCA
DEF 0.53 0.61 0.56 0.67 0.84 0.64

OPT 0.51 0.57 0.29 0.62 0.82 0.58

SF
DEF 0.27 0.42 0.50 0.46 0.89 0.51

OPT 0.05 0.20 0.30 0.23 0.81 0.33

Table 6.1: Validation of the Comparison of qe(Av), d(Av),qd(Av), es(Av),

qt(Av), and a uniform combination of all metrics for both steering algorithms

using: (a) DEF: default parameter values and (b) OPT: optimal parameter values

on second set of scenarios that were not used in training.

PPR d qd qt qe e u

d(Av) 0.47 0.46 0.49 0.48 0.65 0.48

qd(Av) 0.59 0.56 0.58 0.57 0.71 0.57

qt(Av) 0.39 0.52 0.30 0.63 0.43 0.32

qe(Av) 0.73 0.66 0.71 0.63 0.79 0.71

e(Av) 0.72 0.74 0.71 0.74 0.67 0.74

u(Av) 0.59 0.59 0.56 0.61 0.65 0.55

Table 6.2: Comparison of failure rate d(Av), distance quality qd(Av), time

quality qt(Av), effort quality qe(Av), computational efficiency es(Av), and a

uniform combination of all metrics u(Av) for the PPR steering algorithms.

Each cell is the computation of the objective (row) using the parameters settings

from optimizing for the objective (column). The optimal value for each objective

is along the diagonal.

40

ORCA d qd qt qe e u

d(Av) 0.09 0.09 0.15 0.12 0.32 0.13

qd(Av) 0.23 0.20 0.26 0.23 0.44 0.26

qt(Av) 0.61 0.64 0.07 0.30 0.73 0.06

qe(Av) 0.41 0.42 0.34 0.28 0.57 0.34

e(Av) 0.98 0.96 0.97 0.94 0.89 0.90

u(Av) 0.46 0.46 0.36 0.38 0.59 0.34

Table 6.3: Comparison of failure rate d(Av), distance quality qd(Av), time

quality qt(Av), effort quality qe(Av), computational efficiency es(Av), and a

uniform combination of all metrics u(Av) for the ORCA steering algorithms.

Each cell is the computation of the objective (row) using the parameters settings

from optimizing for the objective (column).

SF d qd qt qe e u

d(Av) 0.04 0.05 0.05 0.05 1.00 0.05

qd(Av) 0.20 0.20 0.20 0.20 1.00 0.20

qt(Av) 0.30 0.28 0.29 0.28 1.00 0.29

qe(Av) 0.24 0.23 0.24 0.23 1.00 0.23

e(Av) 0.83 0.83 0.83 0.83 0.80 0.83

u(Av) 0.32 0.32 0.32 0.32 0.96 0.32

Table 6.4: Comparison of failure rate d(Av), distance quality qd(Av), time

quality qt(Av), effort quality qe(Av), computational efficiency es(Av), and a

uniform combination of all metrics u(Av) for the SF steering algorithms. Each

cell is the computation of the objective (row) using the parameters settings from

optimizing for the objective (column).

41

6.4 Summery

We study the effects of parameter fitting using the combined test sets, T and T v.

Our goal is to identify whether parameter fitting has a significant effect and to

understand the relation between algorithmic parameters and performance. For

each of the three algorithms, PPR, ORCA and SF, we compute the optimal

parameter values for each of the five metrics, failure rate d(Av), distance quality

qd(Av), time quality qt(Av), PLE qe(Av), efficiency e(Av), as well as a uniform

combination of these metrics, u(Av), over the entire combined set, T . For

comparison, we also compute the same metrics for all algorithms with their

parameters set to default values. The results in Figure 6.3 show a strong increase

in optimality for all metrics.

42

Chapter 7

Multi-Objective

Optimization

Optimizing a steering algorithm’s parameters across a large test set is compu-

tationally expensive. The computational complexity increases with the number

of parameters and the cardinality of a test set. For example, it takes ∼ 20 hours

to optimize the 11 parameters of SF over the representative test set T . In a

weighted multi-objective optimization application, it is desirable to model the

relationship between objectives and algorithm parameters. This avoids running

an expensive optimization every time we wish to change the associated weights.

This can be accomplished by computing the optimal parameters for a discrete

set of weighted combinations that can then be interpolated. There are two

problems with this approach. First, it can waste significant amounts of compu-

tation since each sample point is a result of an independent process that could

be visiting the same points in the domain. Second and most important, it is

43

not looking at relationships between the objectives but rather at their weighted

combination. Both of these problems can be addressed by computing a Pareto

Optimal Front. Pareto optimality is a very important concept in optimization

which has sparingly been used in computer animation. Our method based on

Pareto Optimality not only avoids unnecessary computation but also provides a

more principled model of the optimal relationships between multiple objectives.

Multi-Objective optimization using a weighted or scalarized combination of

the objectives still has many disadvantages. Small changes in the weights used

can result in large changes in the parameters and small changes in the objective

value. An uneven sampling of the trade off between objectives can occur. Re-

quires forms of scaling of the objectives in order to prevent one objective from

being over represented in the weighted sum. A user needs to provide weights

to a function that could return unintuitive results, especially when the user

wants to change the weights. If the pareto-optimal front is non-convex points

that represent optimal trade-offs between objectives can be missed [Caramia

and Dell’Olmo, 2008].

7.1 Pareto Optimal Front

Pareto Optimality (or Efficiency) refers to a situation where no objective can

be improved further without worsening one of the other objectives. The set

of points that are Pareto optimal constitute the pareto-optimal front , a hyper-

surface that captures the optimal relationships between the objectives. Com-

puting this front is not trivial and is, in fact, an active area of research. Current

state of the art techniques are primarily based on genetic algorithms. We have

44

chosen to use the software DEAP [Fortin et al., 2012] and the algorithm NSGA-

II [Deb et al., 2002] to estimate the pareto-optimal front .

7.1.1 Application

A standard evolutionary approach to solving a multi-objective optimization

problem models the fitness of samples using a single objective function that

is the weighted sum of multiple objectives, where the samples chosen in each it-

eration minimize the combined objective. In contrast, the goal of pareto-optimal

front approximation is to maximize the hyper-volume constructed by the non-

dominated samples (see Figure 7.1). A point dominates another if it is superior

in all Pareto dimensions.

First, we optimize the ORCA steering algorithm for e and qe over a bot-

tleneck scenario. The process and resulting pareto-optimal front can be seen in

Figure 7.2. Second, we optimize the SF algorithm for the same scenario and

three metrics, e, qe and g(Av,G) (the result can be found in Figure 7.3(a)). The

ground truth set G, is a recording of people funnelling into a small bottleneck,

very similar to the scenario used. We optimize for the same objectives with the

ORCA steering algorithm and the resultant pareto-optimal front can be see in

Figure 7.3(b). The pareto front is able to capture the non-linear relationships

between contradictory objectives and efficiently encodes the tradeoffs between

them. For example, optimizing qe has an adverse effect on g(Av,G), as shown

in Figure 7.3(a and b).

The pareto-optimal front provides a principled model of the optimal rela-

tionships between the objectives. The number of dimensions is equal to the

number of objectives, thus for two objectives the result is a 2D curve and for

45

0.0 0.2 0.4 0.6 0.8 1.0
objective 1

0.0

0.2

0.4

0.6

0.8

1.0

o
b
je

ct
iv

e
 1

Figure 7.1: This figure shows the construction of the hyper-volume from the

non-dominated points. Each of the points are considered more optimal than

any point in the shaded region defined by the point. The addition of the green

point increases the area of the hyper-volume by the green area.

three objectives a 3D surface. For most practical applications three objectives

should be sufficient.

7.2 Pareto Optimal Front Interpolation

Having an estimate of the pareto-optimal front for a set of objectives provides

us with the basis to estimate optimal parameters for the associated algorithm

with arbitrary combinations of the objectives.

The first step in developing an interpolation model for arbitrary combina-

tions of the objectives is to transform the pareto-optimal front from objective

46

Figure 7.2: This Figure shows the final pareto-optimal front of non-dominated

points (in green) for the ORCA steering algorithm over two objectives. The

points in blue are the samples in the last generation and the circles are from

previous generations.

space to weight space. For m objectives the pareto-optimal front contains a

set of m-dimensional points, P = {bp|∀p = 1, ..., N}, including a set of points

PO = {bO
p |∀p = 1, ...,m}, that correspond to minimizing each objective while

ignoring the others. These latter points have known coordinates in weight space

that correspond to the standard unit vectors, and hold the minimum value in

the associated dimension.

We transform the pareto-optimal front from the m-dimensional objective

space, [bi], to the m-dimensional weight space, [wi], using the following steps:

(a) we normalize the pareto-optimal front so that each dimension maps to [0, 1],

47

Efficency Metric

0.0
0.2

0.4
0.6

0.8
1.0 PLE Metric

0.0
0.2

0.4
0.6

0.8
1.0

E
n
tr

o
p
y
 M

e
tr

ic

0.0

0.2

0.4

0.6

0.8

1.0

(a)

Efficency Metric

0.0
0.2

0.4
0.6

0.8
1.0 PLE Metric

0.0
0.2

0.4
0.6

0.8
1.0

E
n
tr

o
p
y
 M

e
tr

ic

0.0

0.2

0.4

0.6

0.8

1.0

(b)

Figure 7.3: Figures (a and b) show the final computed pareto-optimal front of

three objectives for the SF and ORCA steering algorithms over a bottleneck

scenario.

48

0.0
0.2

0.4
0.6

0.8
1.0

0.0
0.2

0.4
0.6

0.8
1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.01.0

1.0

Figure 7.4: Projecting the 3D pareto-optimal front from Figure 7.3 (a) to a

triangular normalized weight domain.

(b) we replace each point with its distances from the normalized points in PO, (c)

we project the points, b′, resulting from the previous stage onto the
∑

i b
′
i = 1

plane and (d) we subtract them from 1. The transformed pareto-optimal front is

now mapped onto a normalized simplex from which we can compute the relative

weights of each original point as its barycentric coordinates, (Figure 7.4).

Having the pareto-optimal front in weight space, we can now use a standard

multidimensional interpolation method such as Mardy quadratics or variants of

Shepard’s method. A common choice within the Mardy quadratics family of

methods is radial basis function interpolation. For three objectives, the associ-

ated domain forms a triangle. In this case, given a new set of weights, we can use

Delaunay triangulation to compute the three points that make up the bound-

ing simplex whose associated parameters will be interpolated with a standard

inverse distance approach.

49

Chapter 8

Additional Results And

Examples

Chapter 6 demonstrates that it is both beneficial and revealing to fit the pa-

rameters of a steering algorithm to performance objectives over a large set of

test cases. This section presents a series of experiments that demonstrate the

potential applications of parameter fitting for more specific cases. We refer the

reader to the accompanying video for a visual demonstration of the results and

additional experiments.

8.1 Single-Objective Results

Circlular Benchmark. A popular and challenging scenario, often used to test

the effectiveness of a steering algorithm, distributes the agents on a circular

fashion with diametrically opposite goals. Such a configuration forces dense si-

multaneous interactions in the middle of the circle. Using a group of 500 agents,

50

we compare the results of ORCA with the default and optimized parameter val-

ues that minimize time quality qt(Av). With the optimal parameters, ORCA

takes 50% less time to complete the benchmark and exhibits a more organized

emerging behaviour. Agents seem to form groups that follow a smooth curved

trajectory, Figure 8.1 (top). For reference, the optimal parameter set in this

case is: {max speed: 3.2, neighbour distance: 13.63, time horizon: 2.32, time

horizon obstacles: 5.30, max neighbours: 7}.

Room Evacuation. Evacuation benchmarks are important for a range of

application domains. In this benchmark, a group of 500 agents must exit a

room. For this experiment, we use the social forces, SF, method with the

default as well as optimized parameter values that minimize the effort quality

metric, qe(Av). SF with optimal parameters spends 66% less energy on average

per agent, exhibits tighter packing, and visibly reduces the turbulence of the

crowd’s behaviour, Figure 8.1 (bottom).

Office Evacuation. A more challenging evacuation scenario places 1000 agents

in a complex, office-like ground floor. Optimizing ORCA for time quality,

qt(Av), reduces the average time it takes to exit the building by almost 60%. In

addition, it exhibits higher crowd density and higher throughput at the exits,

as seen in Figure 8.2. Here we use ADAPT [Kapadia et al., 2014] to render

bipedal characters.

Optimizing for Ground Truth. There are a few methods that use recorded

crowd motion to influence and direct virtual crowds. Here, we simply show that

our methodology can also support this application. We optimize the behaviour

of the three test algorithms to match real world data contained in the ground

truth test set, G, Section 4.1. Our experiments showed that, in most cases,

51

(a) Scenario I : default (b) Scenario I: optimal time

(c) Scenario II: default (d) Scenario II: optimal effort

Figure 8.1: Comparison of simulations using default [(a), (c)] and optimized [(b),

(d)] parameters. Top: Agents are initially in a circle with anti-diametric goals.

The ORCA algorithm, optimized to reduce time-to-completion, completes the

task twice as fast as its default configuration and exhibits a less turbulent

pattern. Bottom: The SF algorithm, optimized to minimize effort, requires a

third of the energy spent by its default configuration, and produces a smoother,

faster and tighter room evacuation.

52

Figure 8.2: Office evacuation with ORCA. Simulation with parameters opti-

mized for time quality (bottom) take half the time to complete as compared to

the default parameters (top).

53

0

10

20

30

40

50

60

70

80

PPR
ORCA
SF

2-agent-crossing 2-way hallway

Figure 8.3: Relative percent improvement of entropy metric values after opti-

mization on two different benchmarks.

the optimization was able to significantly alter the resulting steering behaviour

and increase the similarity to the recorded data. Figure 8.3 reports the reduc-

tion in the entropy metric, g, (increase in similarity) as a result of parameter

optimization for all three algorithms and two different benchmarks.

Dynamically Adapting Steering Parameters. Our methodology can create

a large number of samples that relate parameter values to performance metrics.

Figure 8.4 shows a snapshot from an interactive demo of a busy bi-directional

hallway, that allows the user to switch dynamically between optimal parameter

values that correspond to different objectives. The parameter settings used in

this demo are fundamentaly the standard unit vectors described in Section 7.2.

8.2 Pareto Optimal Front Results

Interactive Parameter Blending. Using a precomputed pareto-optimal front ,

Chapter 7, we can automatically adapt an algorithm’s parameters to provide

optimal trade-offs for interactively defined combinations of the associated ob-

jectives. Figure 8.5 shows a snapshot of such blending between three objectives.

54

Figure 8.4: A prototype system for interactively setting the relative weights

of the metrics in the objective. When the weights change, the algorithm’s

parameters are set automatically to the corresponding optimal values.

This process is best demonstrated in the accompanying video.

8.3 Implementation details

The primary factors affecting the computational performance of the optimiza-

tion are the size of the test set, the number and range of parameters that are

fitted, and the number of agents in the test cases. Although CMA-ES is an

efficient optimization method, fitting a large number of parameters over a size-

able test set is computationally expensive. For reference, a 12 core, 2.4 GHz,

12 GB, computer (with hyper-threading), using 10 parallel threads, takes ∼ 20

hours to optimize the SF algorithm over the representative test set T . It takes

∼ 3 days running 16 parallel threads to compute a pareto-optimal front with 3

objectives. Interactive blending the pareto-optimal front is done in realtime.

55

Figure 8.5: Blending interactively three objectives (Efficiency, Entropy, and

Effort) using a pre-computed pareto-optimal front .

56

Chapter 9

Conclusion

We have presented a framework for optimizing the parameters of a steering algo-

rithm for multiple objectives. Using cross-validation, we show that optimizing

over a representative set of scenarios produces optimal parameters that general-

ize well to new test cases. We have also proposed a method to model trade-offs

between the objectives using a pareto-optimal front . The pareto-optimal front

essentially captures the optimal relationships between objectives. Although our

approach can be applied to any number of objectives, three is a practical choice.

Thus, we have demonstrated an interactive example that uses the computed

pareto-optimal front to blend between three objectives.

Our study shows that parameter fitting not only can be used to improve the

performance of an algorithm, but it can also serve as an analysis tool to pro-

duce a detailed view of an algorithm’s range of behaviour relative to its internal

parameters. This detailed view can be the basis of a thorough introspective

analysis that allows both developers and end-users to gain insights on the per-

formance and behaviour of an algorithm. Our framework and methodology are

57

general. Most elements can be tailored to the needs of a particular application.

For example, one can use different performance metrics, objectives, test sets,

and optimization methods. The supplementary document provides the optimal

parameter values of the three steering algorithms for the different objectives

which AI developers and enthusiasts can directly use to improve the perfor-

mance of their crowd simulations. The computational expense of optimizations,

especially for large-scale crowds is one of the reasons why we are committed to

sharing our results with the community.

9.1 Limitations

Optimization-based methods have certain well-known limitations. For example,

it might not be easy or even possible for an optimization process to construct

what is essentially a relationship between the parameters of a steering algorithm

and global, or long-term, type of objectives. Furthermore, describing desired

behaviours as combinations of objectives is not always straightforward and may

require experimentation. Although estimating the pareto-optimal front is much

more efficient and effective than naive domain sampling, it still requires signifi-

cant offline computation.

9.2 Future Work

We plan to address heterogeneous crowds by using different parameters per

agent or group of agents. We also plan to thoroughly investigate the sampling

and complexity issues related to the estimation of the pareto-optimal front ,

focusing on objectives that are common in crowd simulation. Evaluating ad-

58

ditional crowd simulation techniques with different agent representations and

parameterizations is the subject of future work.

59

Chapter 10

Appendix

10.1 Parameter Settings

The Tables (10.1 - 10.3) list the default parameters for each algorithm as well as

the optimal parameter settings for the first 5 objectives and the equally weighted

combination of the first 5 objectives.

10.2 Optimization Values

Table 10.4 contains the default and optimized objective values for the three

steering algorithms over the first 5 objectives and their combination. Similarly,

Table 10.5 shows the default and optimized objective values for the three steering

algorithms but specifically for the entropy metric for two scenarios.

60

Parameter Name DEF Min Max d qd qt qe e u

max speed 2.60 1 4 3.29 1 4.00 1.66 4 3.03

max force 14 8 22 14.45 15.15 22 18.76 15.62 19.50

max speed factor 1.70 0.60 4.70 3.38 1.11 4.70 0.60 3.77 3.45

faster speed factor 1.31 0.55 4.20 0.62 3.92 0.81 2.84 1.22 0.71

slightly faster speed factor 1.15 0.40 3.40 1.72 2.41 3.40 3.09 0.90 2.29

typical speed factor 1 0.50 1.50 0.53 0.50 1.50 1.04 0.50 1.50

slightly slower speed factor 0.77 0.15 1.20 0.22 0.19 1.20 0.70 0.59 0.84

slower speed factor 0.50 0.10 1 0.11 0.10 0.10 0.10 0.57 0.10

cornering turn rate 1.90 0.83 3.76 3.45 2.30 1.69 3.51 2.64 1.53

adjustment turn rate 0.16 0.03 1.54 0.03 0.58 0.29 0.13 0.29 0.37

faster avoidance turn rate 0.55 0.15 1.87 0.72 1.06 1.01 0.79 0.89 1.30

typical avoidance turn rate 0.26 0.08 0.75 0.66 0.62 0.75 0.59 0.62 0.71

braking rate 0.95 0.50 1.50 0.52 1.50 0.55 1.17 0.67 1.44

comfort zone 1.50 0.70 2.80 1.41 1.70 1.32 2.01 0.86 1.63

query radius 10 5 21 17.40 11.03 5 8.22 5 5

similar direction threshold 0.94 0.78 1.00 0.93 0.95 0.78 0.89 0.99 0.80

same direction threshold 0.99 0.89 1.00 0.90 0.89 0.91 0.92 0.91 0.93

oncoming prediction threshold −0.95 −0.99 −0.78 −0.97 −0.81 −0.81 −0.92 −0.99 −0.92

oncoming reaction threshold −0.95 −0.99 −0.78 −0.87 −0.85 −0.78 −0.94 −0.95 −0.87

wrong direction threshold 0.55 0.23 0.78 0.26 0.23 0.23 0.29 0.45 0.25

threat distance threshold 8 3 16.80 13.70 16.19 8.59 6.02 6.90 9.48

threat min time threshold 0.80 0.37 1.45 0.38 0.79 1.17 0.39 1.11 0.37

threat max time threshold 4 1.22 8.77 7.99 5.15 6.46 8.21 3.97 3.99

predictive anticipation factor 5 2.33 8.39 4.30 4.74 4.78 6.87 5.85 5.38

reactive anticipation factor 1.10 0.33 2.31 0.95 1.03 0.97 1.01 0.62 0.99

crowd influence factor 0.30 0.11 0.61 0.35 0.22 0.30 0.44 0.11 0.59

facing static object threshold 0.30 0.08 0.61 0.09 0.34 0.29 0.61 0.19 0.46

ordinary steering strength 0.05 0.00 0.20 0.02 0.00 0.00 0.08 0.11 0.02

oncoming threat avoidance strength 0.15 0.05 0.40 0.40 0.12 0.06 0.09 0.17 0.08

cross threat avoidance strength 0.90 0.73 1.00 0.76 0.91 0.95 0.74 0.90 0.95

max turning rate 0.10 0.02 0.23 0.10 0.10 0.15 0.13 0.10 0.10

feeling crowded threshold 3 1 8 2 2 1 4.06 1 5

scoot rate 0.40 0.17 0.78 0.78 0.60 0.78 0.78 0.72 0.71

reached target distance threshold 0.50 0.10 0.90 0.78 0.90 0.90 0.90 0.12 0.89

dynamic collision padding 0.20 0.02 0.43 0.43 0.24 0.17 0.20 0.16 0.19

furthest local target distance 20 10 50 34 22 39 15 10 10

next waypoint distance 50 30 70 62 39 64 38 32 44

max num waypoints 20 10 50 22 15 10 44 32 13

Table 10.1: Parameters for PPR algorithm with their default values, bounds,

and optimal values obtained using multi-variate analysis for different objective

functions.

61

Parameter Name DEF Min Max d qd qt qe e u

max speed 2 1 3.20 3.20 2.15 3.20 1.52 3.14 3.14

neighbor distance 15 2 22 17.39 13.37 14.75 12.08 8.18 8.99

time horizon 10 2 16 16 3.71 2 2.72 8.44 2.92

time horizon obstacles 7 2 16 12.30 16 9.60 11.81 2 10.92

max neighbors 10 2 22 8 11 2 15.03 2 2

Table 10.2: Parameters for ORCA algorithm with their default values, bounds,

and optimal values obtained for each metric separately, and a uniform combi-

nation of the metrics.

Parameter Name DEF Min Max d qd qt qe e u

acceleration 0.50 0.05 2 0.05 0.05 0.05 0.05 1.90 0.05

personal space threshold 0.30 0.10 1 0.69 0.28 0.50 0.10 0.10 0.41

agent repulsion importance 0.30 0.05 1 0.05 0.05 0.05 0.11 0.66 0.38

query radius 4 1 10 1 10 9.44 10 2.08 3.28

body force 1500 500 5000 2431.40 2778.10 3832.20 500 3498.40 4858.80

agent body force 1500 500 5000 500 4677.80 1573.70 4027.40 3009.50 1073.20

sliding friction force 3000 1000 10 000 3281.10 1000 6795.70 10 000 8489.20 6091.30

agent b 0.08 0.01 5 0.09 0.08 0.09 0.11 3.81 0.13

agent a 25 1 100 46.25 48.21 58.27 53.24 52.00 53.37

wall b 0.08 0.01 5 0.15 0.10 0.18 0.08 5 0.09

wall a 25 1 100 100 67.15 55.05 61.65 98.20 60.87

Table 10.3: Parameters for SF algorithm with their default values, bounds,

and optimal values obtained using multi-variate analysis for different objective

functions.

62

Av v d(Av) qd(Av) qt(Av) qe(Av) es(Av) u(Av)

PPR
DEF 0.39 0.49 0.56 0.53 0.96 0.58

OPT 0.09 0.20 0.07 0.28 0.89 0.34

ORCA
DEF 0.56 0.61 0.56 0.67 0.75 0.62

OPT 0.47 0.56 0.30 0.63 0.67 0.55

SF
DEF 0.26 0.41 0.50 0.45 0.87 0.50

OPT 0.04 0.20 0.29 0.23 0.78 0.32

Table 10.4: Comparison of failure rate d(Av), distance quality qd(Av), time

quality qt(Av), effort quality qe(Av), computational efficiency es(Av), and a

uniform combination of all metrics u(Av) for the three steering algorithms using:

(a) DEF: default parameter values and (b) OPT: optimal parameter values.

Av v g(Av,2-agent-crossing) g(Av,two-way-hallway)

PPR
DEF 3.42 3.40

OPT 1.92 2.27

ORCA
DEF 2.12 2.95

OPT 0.63 2.20

SF
DEF 3.74 3.62

OPT 3.10 2.76

Table 10.5: Comparison of entropy metric values before and after optimization

to match real world data. DEF: default parameter values, OPT: optimal parameter

values.

63

Bibliography

[Axel Buendia, 2002] Jerome Hoibian Axel Buendia. SpirOps: Scientific Re-

search Labs in Artificial Intelligence, 2002.

[Berseth et al., 2013] Glen Berseth, Mubbasir Kapadia, and Petros Faloutsos.

Steerplex: Estimating scenario complexity for simulated crowds. In Proceed-

ings of Motion on Games, MIG ’13, pages 45:67–45:76, New York, NY, USA,

2013. ACM.

[Boatright et al., 2013] Cory D. Boatright, Mubbasir Kapadia, Jennie M.

Shapira, and Norman I. Badler. Context-sensitive data-driven crowd simula-

tion. In Proceedings of the 12th ACM SIGGRAPH International Conference

on Virtual-Reality Continuum and Its Applications in Industry, VRCAI ’13,

pages 51–56, New York, NY, USA, 2013. ACM.

[Bruckner and Moller, 2010] Stefan Bruckner and Torsten Moller. Result-

driven exploration of simulation parameter spaces for visual effects design.

IEEE Transactions on Visualization and Computer Graphics, 16(6):1468–

1476, November 2010.

[Caramia and Dell’Olmo, 2008] M. Caramia and P. Dell’Olmo. Multi-objective

Management in Freight Logistics: Increasing Capacity, Service Level and

64

Safety with Optimization Algorithms. Springer, 2008.

[Davidich and Koester, 2011] M. Davidich and G. Koester. Towards automatic

and robust adjustment of human behavioral parameters in a pedestrian

stream model to measured data. In Richard D. Peacock, Erica D. Kuligowski,

and Jason D. Averill, editors, Pedestrian and Evacuation Dynamics, pages

537–546. Springer US, 2011.

[Deb et al., 2002] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and

elitist multiobjective genetic algorithm: Nsga-ii. Evolutionary Computation,

IEEE Transactions on, 6(2):182–197, Apr 2002.

[Fortin et al., 2012] Félix-Antoine Fortin, François-Michel De Rainville, Marc-

André Gardner, Marc Parizeau, and Christian Gagné. DEAP: Evolutionary

algorithms made easy. Journal of Machine Learning Research, 13:2171–2175,

jul 2012.

[Guy et al., 2010] Stephen J. Guy, Jatin Chhugani, Sean Curtis, Pradeep

Dubey, Ming Lin, and Dinesh Manocha. Pledestrians: a least-effort approach

to crowd simulation. In Proceedings of SCA, pages 119–128. Eurographics

Association, 2010.

[Guy et al., 2012] Stephen J. Guy, Jur van den Berg, Wenxi Liu, Rynson Lau,

Ming C. Lin, and Dinesh Manocha. A statistical similarity measure for ag-

gregate crowd dynamics. ACM Trans. on Graphics, 31(6):11, 2012.

[Ha et al., 2013] Sehoon Ha, Jim McCann, C. Karen Liu, and Jovan Popović.

Physics Storyboards. Computer Graphics Forum (The proceeding of Euro-

graphics 2013), 2013.

65

[Hansen and Ostermeier, 1996] N. Hansen and A. Ostermeier. Adapting arbi-

trary normal mutation distributions in evolution strategies: the covariance

matrix adaptation. In Evolutionary Computation, 1996, Proceedings of IEEE

International Conference on, pages 312–317, 1996.

[Hansen, 2011] Nikolaus Hansen. A CMA-ES for Mixed-Integer Nonlinear Op-

timization. Research Report RR-7751, INRIA, October 2011.

[Helbing et al., 2000] Dirk Helbing, Illes Farkas, and Tamas Vicsek. Simulating

dynamical features of escape panic. Nature, 407(6803):487–490, 2000.

[Helbing et al., 2005] Dirk Helbing, Lubos Buzna, Anders Johansson, and

Torsten Werner. Self-organized pedestrian crowd dynamics: Experiments,

simulations, and design solutions. Transp. Science, 39(1):1–24, 2005.

[Henderson, 1971] L. F. Henderson. The statistics of crowd fluids. Nature,

229(5284):381–383, February 1971.

[Hoogendoorn, 2003] Serge P. Hoogendoorn. Pedestrian travel behavior mod-

eling. In In 10th International Conference on Travel Behavior Research,

Lucerne, pages 507–535, 2003.

[Huerre et al., 2010] Stephanie Huerre, Jehee Lee, Ming Lin, and Carol

O’Sullivan. Simulating believable crowd and group behaviors. In ACM SIG-

GRAPH ASIA 2010 Courses, SA ’10, pages 13:1–13:92, New York, NY, USA,

2010. ACM.

[Johansson et al., 2007] A Johansson, D Helbing, and P Shukla. Specification of

the social force pedestrian model by evolutionary adjustment to video tracking

data. Advances in Complex Systems, 10(supp02):271–288, 2007.

66

[Ju et al., 2010] Eunjung Ju, Myung Geol Choi, Minji Park, Jehee Lee,

Kang Hoon Lee, and Shigeo Takahashi. Morphable crowds. In ACM SIG-

GRAPH Asia 2010 papers, SIGGRAPH ASIA ’10, pages 140:1–140:10, New

York, NY, USA, 2010. ACM.

[Kapadia et al., 2009] Mubbasir Kapadia, Shawn Singh, William Hewlett, and

Petros Faloutsos. Egocentric affordance fields in pedestrian steering. In Pro-

ceedings of the 2009 symposium on Interactive 3D graphics and games, I3D

’09, pages 215–223, New York, NY, USA, 2009. ACM.

[Kapadia et al., 2011a] Mubbasir Kapadia, Matt Wang, Shawn Singh, Glenn

Reinman, and Petros Faloutsos. Scenario space: characterizing coverage,

quality, and failure of steering algorithms. In Proceedings of SCA, SCA ’11,

pages 53–62. ACM, 2011.

[Kapadia et al., 2011b] Mubbasir Kapadia, Matthew Wang, Shawn Singh,

Glenn Reinman, and Petros Faloutsos. Scenario space: Characterizing cover-

age, quality, and failure of steering algorithms. In Proceedings of SCA, SCA

’11, New York, NY, USA, 2011. ACM.

[Kapadia et al., 2012] Mubbasir Kapadia, Shawn Singh, William Hewlett,

Glenn Reinman, and Petros Faloutsos. Parallelized egocentric fields for au-

tonomous navigation. The Visual Computer, 28(12):1209–1227, 2012.

[Kapadia et al., 2014] Mubbasir Kapadia, Nathan Marshak, and Norman I.

Badler. Adapt: The agent development and prototyping testbed. IEEE

Transactions on Visualization and Computer Graphics, 99(PrePrints):1, 2014.

[Kulpa et al., 2011] Richard Kulpa, Anne-Hélène Olivierxs, Jan Ondřej, and

Julien Pettré. Imperceptible relaxation of collision avoidance constraints in

67

virtual crowds. In Proceedings of the 2011 SIGGRAPH Asia Conference, SA

’11, pages 138:1–138:10, New York, NY, USA, 2011. ACM.

[Lamarche and Donikian, 2004] F. Lamarche and S. Donikian. Crowd of virtual

humans: a new approach for real time navigation in complex and structured

environments. In Computer Graphics Forum 23., 2004.

[Lee et al., 2007] Kang Hoon Lee, Myung Geol Choi, Qyoun Hong, and Jehee

Lee. Group behavior from video: a data-driven approach to crowd simulation.

In Proceedings of SCA, pages 109–118. Eurographics Association, 2007.

[Lemercier et al., 2012] Samuel Lemercier, A. Jelic, Richard Kulpa, Jiale

Hua, Jérôme Fehrenbach, Pierre Degond, Cécile Appert-Rolland, Stéphane

Donikian, and Julien Pettré. Realistic following behaviors for crowd simula-

tion. Comput. Graph. Forum, 31(2):489–498, 2012.

[Lerner et al., 2007] Alon Lerner, Yiorgos Chrysanthou, and Dani Lischinski.

Crowds by example. Computer Graphics Forum, 26(3):655–664, September

2007.

[Lerner et al., 2010] Alon Lerner, Yiorgos Chrysanthou, Ariel Shamir, and

Daniel Cohen-Or. Context-dependent crowd evaluation. Comput. Graph.

Forum, 29(7):2197–2206, 2010.

[Lovas, 1994] G.C. Lovas. Modeling and simulation of pedestrian traffic flow.

In Transportation Research Record, pages 429–443, 1994.

[McDonnell et al., 2008] Rachel McDonnell, Michéal Larkin, Simon Dobbyn,

Steven Collins, and Carol O’Sullivan. Clone attack! perception of crowd

variety. ACM Trans. Graph., 27(3):26:1–26:8, 2008.

68

[Milazzo et al., 1998] J. Milazzo, N. Rouphail, J. Hummer, and D. Allen. The

effect of pedestrians on the capacity of signalized intersections. In Trans-

portation Research Record, pages 37–46, 1998.

[Mononen, 2009] Mikko Mononen. Recast: Navigation-mesh Construction

Toolset for Games, 2009.

[Musse et al., 2012] Soraia R. Musse, Vinicius J. Cassol, and Cludio R. Jung.

Towards a quantitative approach for comparing crowds. Computer Animation

and Virtual Worlds, 23(1):49–57, 2012.

[Narain et al., 2009] Rahul Narain, Abhinav Golas, Sean Curtis, and Ming C.

Lin. Aggregate dynamics for dense crowd simulation. In ACM SIGGRAPH

Asia 2009 Papers, SIGGRAPH Asia ’09, pages 122:1–122:8, New York, NY,

USA, 2009. ACM.

[Ondřej et al., 2010] Jan Ondřej, Julien Pettré, Anne-Hélène Olivier, and

Stéphane Donikian. A synthetic-vision based steering approach for crowd

simulation. ACM Trans. Graph., 29(4):123:1–123:9, July 2010.

[Paris et al., 2007] Sébastien Paris, Julien Pettré, and Stéphane Donikian.

Pedestrian reactive navigation for crowd simulation: a predictive approach.

In EUROGRAPHICS 2007, volume 26, pages 665–674, 2007.

[Pelechano et al., 2007] N. Pelechano, J. M. Allbeck, and N. I. Badler. Con-

trolling individual agents in high-density crowd simulation. In Proceedings of

SCA, pages 99–108. Eurographics Association, 2007.

[Pelechano et al., 2008] Nuria Pelechano, Jan M. Allbeck, and Norman I.

Badler. Virtual Crowds: Methods, Simulation, and Control. Synthesis Lec-

69

tures on Computer Graphics and Animation. Morgan & Claypool Publishers,

2008.

[Pellegrini et al., 2009] S. Pellegrini, A. Ess, K. Schindler, and L. Van Gool.

You’ll never walk alone: Modeling social behavior for multi-target tracking.

In Computer Vision, 2009 IEEE 12th International Conference on, pages

261–268, 2009.

[Pettré et al., 2009] Julien Pettré, Jan Ondřej, Anne-Hélène Olivier, Armel Cre-

tual, and Stéphane Donikian. Experiment-based modeling, simulation and

validation of interactions between virtual walkers. In Proceedings of the 2009

ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA

’09, pages 189–198, New York, NY, USA, 2009. ACM.

[Pinter, 2001] Marco Pinter. Toward more realistic pathfinding. Gamasutra.

com, 2001.

[Regelous,] Stephen Regelous. Massive. www.massivesoftware.com.

[Reynolds, 1987] Craig W. Reynolds. Flocks, herds and schools: A distributed

behavioral model. In Proceedings of ACM SIGGRAPH, pages 25–34. ACM,

1987.

[Reynolds, 1999] C W Reynolds. Steering behaviors for autonomous characters.

Game Developers Conference, 1999(9602):763–782, 1999.

[Seyfried et al., 2010] Armin Seyfried, Maik Boltes, Jens Khler, Wolfram

Klingsch, Andrea Portz, Tobias Rupprecht, Andreas Schadschneider, Bern-

hard Steffen, and Andreas Winkens. Enhanced empirical data for the funda-

mental diagram and the flow through bottlenecks. In Wolfram W. F. Klingsch,

70

www.massivesoftware.com

Christian Rogsch, Andreas Schadschneider, and Michael Schreckenberg, ed-

itors, Pedestrian and Evacuation Dynamics 2008, pages 145–156. Springer

Berlin Heidelberg, 2010.

[Singh et al., 2009a] By Shawn Singh, Mubbasir Kapadia, Petros Faloutsos, and

Glenn Reinman. Steerbench : a benchmark suite for evaluating steering

behaviors. Computer Animation And Virtual Worlds, 20(February):533–548,

2009.

[Singh et al., 2009b] Shawn Singh, Mubbasir Kapadia, Petros Faloutsos, and

Glenn Reinman. An open framework for developing, evaluating, and sharing

steering algorithms. In Proceedings of MIG, pages 158–169. Springer-Verlag,

2009.

[Singh et al., 2011] Shawn Singh, Mubbasir Kapadia, Billy Hewlett, Glenn

Reinman, and Petros Faloutsos. A modular framework for adaptive agent-

based steering. In Proceedings of I3D, I3D ’11, pages 141–150, New York,

NY, USA, 2011. ACM.

[Sud et al., 2007] Avneesh Sud, Russell Gayle, Erik Andersen, Stephen Guy,

Ming Lin, and Dinesh Manocha. Real-time navigation of independent agents

using adaptive roadmaps. In Proceedings of VRST, pages 99–106. ACM, 2007.

[Thalmann and Musse, 2013] Daniel Thalmann and Soraia Raupp Musse.

Crowd Simulation, Second Edition. Springer, 2013.

[Treuille et al., 2006] Adrien Treuille, Seth Cooper, and Zoran Popović. Con-

tinuum crowds. ACM Trans. Graph., 25(3):1160–1168, 2006.

71

[van den Berg et al., 2011] Jur van den Berg, Stephen J. Guy, Ming Lin, and Di-

nesh Manocha. Reciprocal n-body collision avoidance. In Robotics Research,

volume 70 of Springer Tracts in Advanced Robotics, pages 3–19. Springer

Berlin Heidelberg, 2011.

[Wang et al., 2010] Jack M. Wang, David J. Fleet, and Aaron Hertzmann. Op-

timizing walking controllers for uncertain inputs and environments. ACM

Trans. Graph., 29(4):73:1–73:8, July 2010.

[Whittle, 2007] M. Whittle. Gait analysis: an introduction. Butterworth-

Heinemann, 2007.

[Wolinski et al., 2014] David Wolinski, Stephen Guy, Anne-Helene Olivier,

Ming Lin, Dinesh Manocha, and Julien Pettré. Parameter estimation and

comparative evaluation of crowd simulations. In Eurographics, 2014.

72

	Introduction
	Contributions
	Outline

	Related Work
	Steering Techniques
	Crowd Evaluation
	Parameter Optimization
	Concurrent Work

	Outline of the Framework
	SteerSuite
	Steering Algorithms
	What is a Scenarios
	Scenario Module

	SteerStats
	SteerSuite Interface
	SteerStats Database
	Conclusion

	Preparation And Formulation
	Generating Test Sets
	Performance Measures
	Weighted Multi-Objective Optimization
	Conclusion

	Parameter Analysis
	Uni-Variate Optimization
	Discussion

	Parameter-Metric Analysis
	Metric-Metric Analysis

	Parameter Optimization
	Multi-Variate Optimization
	Objective Optimization
	Validation

	More Metric-Metric Analysis
	Summery

	Multi-Objective Optimization
	Pareto Optimal Front
	Application

	Pareto Optimal Front Interpolation

	Additional Results And Examples
	Single-Objective Results
	Pareto Optimal Front Results
	Implementation details

	Conclusion
	Limitations
	Future Work

	Appendix
	Parameter Settings
	Optimization Values

