
INVICON: A Toolkit for Knowledge-Based Control of Vision Systems

Olena Borzenko, Yves Lespérance, and Michael Jenkin
Computer Science and Engineering, York University
4700 Keele Street, Toronto, ON M3J 1P3, Canada

{olena, lesperan, jenkin}@cse.yorku.ca

Abstract

To perform as desired in a dynamic environment a vi-
sion system must adapt to a variety of operating condi-
tions by selecting vision modules, tuning their parame-
ters, and controlling image acquisition. Knowledge-based
(KB) controller-agents that reason over explicitly repre-
sented knowledge and interact with their environment can
be used for this task; however, the lack of a unifying method-
ology and development tools makes KB controllers difficult
to create, maintain, and reuse. This paper presents the IN-
VICON toolkit, based on the IndiGolog agent programming
language with elements from control theory. It provides a
basic methodology, a vision module declaration template, a
suite of control components, and support tools for KB con-
troller development. We have evaluated INVICON in two
case studies that involved controlling vision-based pose es-
timation systems. The case studies show that INVICON re-
duces the effort needed to build KB controllers for challeng-
ing domains and improves their flexibility and robustness.

1. Introduction

Modern vision systems typically perform multiple pro-
cessing stages to acquire and map images to high-level in-
terpretations. Each of these stages can perform well only
under a limited set of conditions. Vision systems that oper-
ate in dynamic environments must be able to adapt to vary-
ing operating conditions by configuring and tuning them-
selves, preferably with minimum human intervention. A
separate software component, an autonomous vision con-
troller, can be used to achieve the desired quality of opera-
tion. Its task generally involves solving one or more of the
following sub-problems:

• Parameter Adjustment Generic vision algorithms
typically incorporate tunable parameters. A control
problem is to continually adjust the algorithms’ param-
eter values for the current conditions [16, 2].

• Module Selection Even the best vision algorithms
have a limited operating range. Another control prob-
lem is to select appropriate algorithms or software
modules for various sub-tasks [16, 4].

• Image Acquisition Image acquisition conditions
greatly influence the quality of subsequent steps. An-
other control problem is to select acquisition parame-
ters such as the intensity of illuminants or the position
and orientation of the camera [2, 13].

• Monitoring and Reconfiguration A vision system
architecture can support system integration and co-
ordination of its multiple processes. A related con-
trol problem is to monitor the system’s execution and
reconfigure the system when necessary, e.g., by au-
tonomously detecting and recovering from failures [6].

Vision system controllers are typically evaluated by how
they meet domain-specific requirements imposed by the ap-
plication. These can include various degrees of flexibil-
ity, efficient use of resources, processing speed, accuracy,
and robustness. At the same time, as domain requirements
change and new application domains arise, software engi-
neering requirements such as scalability, reusability, and
transparency also need to be taken into account [19].

Consider the example of vision-based pose estimation
for space docking [2] which is the subject of our first case
study. To correctly approach a docking platform, the dock-
ing spacecraft needs a precise estimate of its relative posi-
tion and orientation. The vision system can compute this
estimate from one or more images of the docking target.
Controllable illuminants can be used to compensate for poor
and variable on-orbit illumination. In this context, the task
of a vision controller is to select which images to use so that
the vision system can produce as precise results as possible
(accuracy) whenever a pose estimate is required (anytime-
ness). Meanwhile, it is desirable to minimize the time and
effort required for the controller’s design, maintenance, and
possibly reuse.

Several approaches to vision control have appeared in
the literature. Generic feedback control architectures can

be used to create vision controllers, but building mathe-
matical models of the vision systems controlled and their
operating environments is often unfeasible. Knowledge-
based (KB) approaches offer alternative models which ex-
plicitly represent the available incomplete and imprecise
knowledge about vision systems and their operating envi-
ronment; this knowledge can be reasoned with to make con-
trol decisions. Among major KB approaches, KB intelli-
gent agents are particularly suitable for dynamic environ-
ments. In contrast to expert systems, KB agents are able
to perceive, reason about, and interact with their environ-
ment. The main problem with KB vision controllers is that
without a generic framework they can be difficult to create,
maintain, and reuse: domain and control knowledge can be
expensive to obtain and represent and is often represented in
ways which are not easily generalizable to other tasks and
domains. What is needed is a methodology and tools that al-
leviate the effort of the designer and allow the construction
of efficient and reusable KB agent-controllers.

To this end, we have developed the INVICON (INtel-
ligent/INdigolog VIsion CONtrol) toolkit1 [1] which sup-
ports the development of KB vision controllers. Our
agent programming framework is based on the Situation
Calculus [12] for representing dynamic domains and the
high-level model-based agent programming language In-
diGolog [8] for specifying controller behaviour. We also
adopt some elements from classical control theory. The
main idea behind INVICON’s design is that a agent-
controller manages one or several vision modules. An ab-
stract vision module may refer to an implementation of a
particular vision method or to an integrated vision system
with several processing stages. In either case, following the
control metaphor, the vision module is described in terms
of control inputs (parameters) and output results and per-
formance metrics (results). In control theory terms, the vi-
sion module is then a plant integrated with a QoS (quality
of service) module. Following the basic action theory ap-
proach to domain modelling, the controller maintains repre-
sentations of the module’s dynamic state as fluents, queries
and changes the module’s parameter values via sensing and
world-changing actions, and reacts to reports about the
module’s results viewed as exogenous actions.

The rest of the paper is organized as follows. Section 2
introduces the theoretical foundations of our framework, the
Situation Calculus and IndiGolog. Section 3 describes the
architecture of a stand-alone IndiGolog-based vision con-
troller. Sections 4 and 5 present the INVICON template
controller architecture and controller development guide-
lines. Section 6 discusses the results of two case studies
where INVICON was used. Section 7 discusses related
work on vision control. Finally, Section 8 summarizes our
contributions and outlines future research directions.

1The toolkit can be obtained by contacting the first author.

α primitive action
φ? wait for a condition
δ1; δ2 sequence
δ1 | δ2 nondeterministic branch
π �x[δ] nondeterministic choice of argument
δ∗ nondeterministic iteration
if φ then δ1 else δ2 endIf conditional
while φ do δ endWhile while loop
proc β(�x) δ endProc procedure definition
β(�t) procedure call
δ1 ‖ δ2 concurrency with equal priorities
δ1 � δ2 concurrency with different priorities
δ‖ concurrent iteration
< φ → δ > interrupt
Σ(δ) search for an execution of δ
noOp do nothing

Figure 1. IndiGolog programming constructs.

2. Theoretical Foundations

The Situation Calculus [12] is a language of predicate
logic for representing dynamically changing worlds. All
changes in the world are assumed to be caused by the exe-
cution of some actions. At any moment, the world is con-
sidered to be in a particular situation, which is viewed as
the sequence of actions that has led to it. The initial sit-
uation S0 is the situation in which no action has yet oc-
curred. A binary function do(a, s) denotes the successor
situation of the situation s after the execution of action a.
Any other domain entities are referred to as domain objects.
The changing state of the domain is represented through flu-
ents, which are predicates and functions that take a situation
term as their last argument and may change value from sit-
uation to situation. The configuration of a domain is cap-
tured by the actual values assigned to its fluents in the cur-
rent situation. Overall, the dynamic world is specified by
a basic action theory, that includes the following types of
axioms: domain-independent foundational axioms for situ-
ations [12], initial state axioms, which describe the initial
situation, action precondition axioms, one for every action,
which specify the conditions under which the action can be
performed in a situation, successor state axioms, one for ev-
ery fluent, which characterize how the fluent is affected by
actions, and unique names axioms for the primitive actions.

IndiGolog (IG) [8] is a high-level model-based agent
programming language, a successor of Golog and Con-
Golog [3]. In these languages, the programmer provides a
declarative specification of the domain in the Situation Cal-
culus and develops control programs in terms of the primi-
tive actions and fluents. IG provides a rich set of program-
ming constructs for specifying agent’s behaviour (Figure 1).
This includes support for concurrency, process priorities,
interrupts, as well as for planning/search within an overall
deterministic program that is to be executed incrementally
in conjunction with sensing of the environment. The IG
planning mechanism automatically monitors the execution

% One aspect of the world state
prim_fluent(

moduleParam(vismodule, threshold1)).
% A sensing action

prim_action(% declaration
getPara(vismodule, threshold1)).

poss(% precondition
getPara(vismodule, threshold1),

connected_to(visserver) = true).
real_execute(% implementation

getPara(vismodule, threshold1), Value):-
send_get_msg(vismodule, threshold1),
get_response(Value).

senses(% fluent sensed
getPara(vismodule, threshold1),

serverPara(vismodule, threshold1)).

Figure 2. Fragment of a sample domain spec-
ification.

of the generated plan and re-plans when the current plan is
no longer appropriate due to sensed changes in the environ-
ment. IG is implemented on top of Prolog. For a controller-
agent to be able to reason about its perceived world and
its vision system, the controller needs to model all relevant
aspects of the environment and vision modules. An agent
programming language such as IG is an ideal basis for de-
veloping high-level vision controllers. IG provides a trans-
parent and scalable framework that encourages declarative
description of the domain and performs automatic state up-
dates. IG supports both planning and high-level reactivity,
and it supports rapid prototyping and programming at a high
level of abstraction.

3. Stand-alone Controllers in IndiGolog

Declarative specifications of the states of vision modules
controlled and the actions that affect those states form the
basis of a KB vision controller as they model the modules’
states and their dynamics. A code fragment for a sample
vision controller in IG is provided in Figure 2. The specifi-
cations of a sensing action, for example, contain the action
declaration, its preconditions, the procedure that carries out
the action in the physical world, and the fluent whose value
it updates. Without a generic framework, the patterns of
definitions need to be repeated for every action and fluent.

The components of an IG vision controller are shown in
Figure 3. The Declarative Part provides a declarative speci-
fication of the domain in terms of fluents and actions that
affect them. The Procedural Part provides specifications
for control procedures and complex conditions tested, us-
ing the IG programming constructs. The Parser performs
conversion between the text messages sent between the con-
troller and the vision module and the actions that they rep-

Figure 3. Stand-alone controller.

resent. The Communication component implements low-
level message handling and vision module connectivity. In
the case of a stand-alone development effort, all of these
components need to be supplied by the vision controller de-
signer.

In summary, although the agent-based approach provides
a rich framework for building vision controllers, the stand-
alone development of a controller-agent can be a difficult
task: large domain descriptions can easily become unman-
ageable; the bulk of the control and support components
needs to be developed from scratch.

4. The INVICON Template Controller

The INVICON toolkit aims to overcome these limita-
tions by offering an alternative, template-based architec-
ture (Figure 4) which covers the same functionality as the
stand-alone controller architecture (Figure 3), but eases the
designer’s task. We describe it component by component
below.

Declarative Part. To bring down the complexity of
domain specification, INVICON provides a template basic
action theory specification for an abstract vision module,
the Vision Module Declaration Template. This includes
fluents for the module’s parameters and results and actions
for the basic operations of setting/sensing parameter values
and receiving results. Instead of a lengthy, repetitive
domain description, a high-level description of a Vision
Module, which contains the module’s name, a list of
parameters, and a list of results, can now be specified using
Prolog predicates (see Figure 5). INVICON automatically
instantiates a corresponding IG representation in terms
of the fluents serverPara(Module,Time,Param)
and serverResult(Module,Time,Result),
the primitive actions setPara(Module,Param)
and getResult(Module,Result) which up-
date the parameter and request the result by sending
messages to the vision module, the sensing action
getPara(Module,Param)which senses the parameter
value by communicating with the vision module, and the
exogenous actions para(Module,Param,Value) and
result(Module,Result,Value) which update the
values of the parameter and result fluents and are generated

Figure 4. Template controller.

vision_module(vismodule, [threshold1],
[certainty]).

data_type(threshold1, float).
data_range(threshold1, 0.0, 10.0).
data_type(certainty, float).
data_range(certainty, 0.0, 1.0).
result_is_better(certainty, X, Y):- X > Y.
result_is_same(certainty, X, X).

Figure 5. An example high-level description
of a Vision Module.

when messages are received from the vision module. These
work similarly to the specifications provided in Figure 2.
To manage several vision modules, a controller can include
several vision module declarations.

Procedural Part. Building upon the generic vi-
sion module representation, we can now define domain-
independent, reusable control components. The control task
is generally posed as an optimization problem and solved
by searching through a space of possible combinations of
parameter values, seeking to maximize/minimize a perfor-
mance metric. Several classes of search methods can be
used for vision parameter control, including flavours of hill-
climbing, heuristic search, genetic algorithms, and other
methods. The initial version of the Library of Control Com-
ponents contains implementions of basic search methods
using Prolog and IG:

• Hill-climbing search, which iteratively incre-
ments/decrements the value of a parameter to
find a local optimum of a performance metric, based
on the declared ordering.

• Random search, which picks random valid values for
all parameters of the module, that is, finds a random
element of the search space.

• Heuristic search, which picks a random element that
satisfies a certain condition.

Figure 6. Default communication protocol for
a Controller and a Vision Module.

New search and other control components can easily be
added to the Library: the designer can abstract from the
specifics of the controlled module, use random value gener-
ators and other components supplied by the toolkit, and rely
on INVICON to automatically validate parameter values.

Parser and Communication Protocol. INVICON sup-
ports a default communication protocol (see Figure 6).
Three types of message exchanges can occur: the Con-
troller can set a parameter value and receive a confirma-
tion, it can request a parameter value and receive a report,
or it can receive a report of results (a requesting message
may or may not be required). The Default Parser, imple-
mented in Prolog, converts incoming messages to the cor-
responding exogenous actions understood by the controller;
it executes the actions chosen by the controller by convert-
ing them into outgoing messages. These generic conversion
procedures are also automatically instantiated by the vision
module declaration.

Low-Level Communication. These utilities imple-
mented using SWI Prolog libraries for threads and socket
connectivity are application-independent.

5. Controller Development using INVICON

In addition to the template controller architecture, IN-
VICON provides guidelines for KB vision controller de-
sign and implementation. We illustrate this with exam-
ples from Case Study I which involved the development of
high-level controllers for the “Lights and Camera” (L&C)
vision-based pose estimation testbed system [2] (see Fig-
ure 7). Within this system, the Image Server operates a
camera and three controllable lights; the Vision Server con-
structs a composite edgel map from the collection of images
and employs a model-matching genetic algorithm to esti-
mate the target’s pose; the Controller needs to select light
settings and images to use at each iteration.

5.1 Design

Choose vision parameters to control (actuator vari-
ables). Actuator variables are those adjustable parameters

Figure 7. The “Lights and Camera” pose esti-
mation system.

of a processing stage in a vision system that directly influ-
ence the performance of this stage [13]. In the L&C sys-
tem, possible parameters to control fall into the following
groups: image acquisition (shutter speed, aperture, focus,
and light intensity levels), image set selection (parameters
that control adding and removing images from the set), and
image processing (parameters for the edge detection, edge
linking, and pose estimation stages). Among these groups,
the determining factors of the system’s performance are the
image acquisition conditions, specifically, the shutter speed
of the camera (shutter) and the light intensities, with 8
possible levels each (light1, light2, light3). In the L&C
testbed, we assumed that the shutter speed had been initially
adjusted under medium-range illumination. The system is
not sensitive to the order of insertion of images in the im-
age set, so the Controller updates the set incrementally, by
extending it with a newly acquired image or by replacing
a previously added image in the set with a new one. To
simplify the control task, image processing parameters are
adjusted offline and set to fixed values during system oper-
ation. Manipulating the intensities of the three lights and
deciding which images to keep in the set is the focus of the
vision controller.

Select control granularity/architecture. Is one control
loop sufficient, or are several sub-loops for tuning different
processing stages or parameters necessary? On one hand,
if the variability in performance is coming mostly from one
stage, parameters that control this stage can be manipulated
in a single control loop, while the rest of system parame-
ters can be set to reasonable values, perhaps by tuning them
offline. On the other hand, if parameter values for certain
stages do not generalize well for all possible inputs to those
stages, then fixing these parameters will compromise per-
formance. So separate control loops may be dedicated to
tuning parameters for these critical stages, starting with the

parameters which affect earlier processing stages or cause
more variability in performance. Similarly, if the perfor-
mance of a particular stage depends jointly on several pa-
rameters, these parameters may have to be considered to-
gether and tuned inside a single control loop. Otherwise,
under the assumption that the parameter search dimensions
are independent, the parameters can be tuned separately,
e.g, in sequence.

Choose the performance metrics (controlled vari-
ables). One needs to estimate performance quality to be
able to optimize it. The basic approach is to look at the
requirements of the next processing step (or at the applica-
tion requirements when evaluating the whole system). The
goal of the L&C system is to obtain a precise estimate of
the target’s pose. Since the actual pose of the target is not
directly available during system operation, the measure of
the system’s performance is given by the value of a fitness
function that corresponds to the output of the pose estima-
tion algorithm. Minimizing this pose estimation uncertainty
optimizes the match between the L&C 3D model data and
the target’s projection into the imaging system; the better
the overall match, the more confident the system is in its
interpretation of the visual data.

In general, choosing a controlled variable/performance
metric is not a trivial problem [13]. From the point of
view of vision processing, this metric should reflect which
characteristics of output images or other intermediate repre-
sentations would be beneficial at the next processing stage.
From the point of view of control, the value of this metric
should be largely affected by the changes in actuator vari-
ables; in addition, its computation should be relatively easy.

Consider additional domain knowledge. If the effects
of parameter changes interact with each other, is there a way
to qualitatively describe (or perhaps learn) the relation? One
can find an abstract representation of the search space, re-
duce the search problem to a set of simpler problems, or
look for additional domain knowledge that could otherwise
simplify the search. In general, the vision module declara-
tion does not represent the whole action theory for the do-
main, so it is essential that the designer identify and provide
axioms for additional, application-specific knowledge.

In the L&C application, the three light intensities can-
not be considered independent search dimensions and opti-
mized separately, so a search space reduction approach was
taken. The Controller maintains qualitative representations
of system states, e.g., “low lighting coming evenly from
all the three light sources”, in essence discretizing along
the “light brightness” and “light directionality” dimensions.
The reduced search space contains four brightness and five
directionality types. Images taken under the same direction-
ality and brightness of light are assigned to the same cate-
gory. They are similar – not necessarily in terms of pixel
data, but rather in originating from comparable physical se-

Figure 8. Sample run of the two-stage con-
troller: uncertainty of the best pose estimate
at each iteration is given.

tups. The assumption is that images similar to those pre-
viously acquired are less likely to improve pose estimation
uncertainty because they carry similar information.

Experiment with control strategies. A preliminary ex-
amination of the structure of the application domain typi-
cally suggests a number of possible control strategies. Ex-
perimenting with those helps narrow down the choice. A
good place to start is the INVICON library of control com-
ponents. New search components can also be created to suit
the specifics of the application domain.

In Case Study I we experimented with 4 control ap-
proaches:

• The heuristic KB controller, implemented using the
heuristic search component, acquires images which
are not similar to images previously acquired; after
each acquisition it evaluates pose estimation uncer-
tainty and discards the last image from the image set
if the uncertainty does not decrease.

• The two-stage KB controller (Figure 8) initially fol-
lows the heuristic control procedure and then enters
the tuning stage: it determines which face of the target
contains the line matched with the highest uncertainty
and randomly selects illumination parameters that are
similar to a template associated with that face in the
knowledge base (and considered likely to reduce un-
certainty).

• The simple controller acquires and adds randomly se-
lected images, using the random search component.

• The greedy controller also acquires randomly selected
images, but keeps the new image in the image set only
if that improves the pose estimation uncertainty.

We discuss experimental results in Section 6.

5.2 Implementation

Instantiating vision module templates. Once the con-
trol granularity, parameters, and performance metrics are
chosen, the designer can provide high-level vision modules
declarations (see Figure 5). Each vision module generally
corresponds to a set of parameters and performance metrics
that are handled by one or more control loops.

Representing additional knowledge. Additional do-
main and control knowledge can be represented in both Pro-
log and IG. The designer can take advantage of the strengths
of these languages by choosing a representation suitable for
the task at hand. In Case Study I, the categorization scheme
for representing the states of the light sources could be con-
cisely defined as a Prolog predicate as follows:

img_similarity(Img1,Img2,1.0):-
same_brightness(Img1,Img2),
% AND
same_directionality(Img1,Img2), !.

img_similarity(Img1,Img2,0.5):-
same_brightness(Img1,Img2);
% OR
same_directionality(Img1,Img2), !.

img_similarity(_Img1,_Img2,0.0).

Control procedures such as the heuristic controller – which
augments the image set with images that are not similar to
the sets of current or discarded images, confirming or dis-
carding the new image until the uncertainty threshold or the
maximum number of iterations have been reached – could
be defined in IG as follows:

initialize(imgset),
while(and(high_uncertainty(pose),

less_than_max(iterations)), [
add_img(imgset, not_similar),
if(uncertainty_improved(pose),

% then
confirm_img(imgset),
% else
discard_img(imgset))

])

Changing the communication protocol. To change the
interpretation of incoming messages, the designer can add
new rules to the Parser, for example, to modify the message
format or add a new message type. To change the genera-
tion of outgoing messages, the designer can provide custom
implementations of the primitive and sensing actions.

6. Results of Case Studies

Experiments for Case Study I consisted of 30 runs of
each controller type for a simple cubical target. The aver-
age performance profiles are presented in Figure 9. Points
on the graph represent the average pose estimation uncer-
tainty at a given iteration for a given controller type. The

Figure 9. Average performance profiles. The
error bars show the standard error for the
pose estimation uncertainty.

time stamps for each data point are averaged across the con-
troller runs. The heuristic and two-stage KB controllers per-
form comparably overall, outperforming the baseline simple
and greedy controllers, although the trend is not statistically
significant during the initial iterations. Both KB controllers
have been used to successfully control the L&C system in
laboratory conditions. More details can be found in [1].
The use of INVICON has facilitated several aspects of the
development of the L&C controllers. Using INVICON, the
essential domain and control knowledge could be specified
in a high-level, compact, and extendable way. This avoided
the problems of ad-hoc controller development and saved
time and effort in testing and debugging. Due to the appro-
priate level of abstraction and the decoupling of the domain
and control knowledge, control procedures can now be eas-
ily reused. The availability of generic control components
sped up the implementation and allowed for experimenta-
tion with different control methods. Finally, the INVICON
software infrastructure fully supported high-level commu-
nication with the vision system.

Case Study II involved improvements to an existing IG
vision controller which supervises a vision module that per-
forms two-dimensional model-matching to estimate a tar-
get’s size and position on a single image. The controller ad-
justs the module’s edge detection and model-matching pa-
rameters in sequence using search techniques such as hill-
climbing. The use of INVICON drastically reduced the
amount of code required, from 1051 lines in the original
version to 354 lines in the INVICON-based version. IN-
VICON also made the code easier to modify and extend.
Should a new parameter of the module need to be adjusted,
one would only need to add the parameter in the module

declaration and provide an additional control procedure call
to adjust it. Should new control procedures be defined,
they could replace the currently used hill-climbing proce-
dures simply by changing the appropriate procedure calls.
In the original version of the controller, the control proce-
dures were heavily (and unnecessarily) mixed with domain
knowledge (parameters and results of the module), and the
logic of the control procedures themselves was not transpar-
ent. In the revised version that used the INVICON toolkit,
more abstract control procedures were used and the separa-
tion between the domain and control knowledge was made
explicit. The toolkit also helped correct minor errors and
eliminate some unused fluents and actions.

7. Related Work

Approaches to vision control. Control theory-based
approaches, more specifically, feedback control strategies
have been used in computer vision systems for tasks such
as character recognition [13], object recognition [11], and
image segmentation [14]. Although control theory notions
such as stability analysis are not directly applicable to the
vision system domain [14], empirical results show that feed-
back is essential; evaluating system performance and opti-
mizing its processing stages increases robustness and confi-
dence of the vision system.

Early KB vision control systems were expert systems
that mostly targeted image segmentation and high-level im-
age interpretation tasks (e.g., [10]). They were typically ad
hoc and difficult to port from one application domain to an-
other. In addition, expert system shells do not directly sup-
port dealing with dynamic domains. KB program supervi-
sion techniques [17] can automate the selection and tuning
of image processing procedures, e.g., for offline batch im-
age processing [16]. The existing systems, however, have
not been proven suitable for autonomous, online vision sys-
tem control as they rely on feedback from a human user.
An intelligent agent is defined as a computer system that
is able to autonomously perceive its environment, react to
changes in it, exhibit goal-directed behaviour, and interact
with other agents to meet its design objectives [18]. Exam-
ples of agent-based vision control systems include an active
perception framework by [15], which incorporates feedback
and expectation and is based on the Event Calculus, and KB
vision system supervisors described in [1], which are based
on the IG language, as is our framework, but are developed
using a stand-alone approach.

Another set of approaches is based on probabilistic mod-
eling of the control process itself, typically as a Bayesian
network or Markov decision process [4]. Probabilistic rea-
soning typically enhances the agent’s ability to act au-
tonomously in uncertain, noisy domains, but combining
quantitative and qualitative approaches can be challenging.

Tools for Vision and Robotics. One limitation of IN-
VICON is that it only supports the vision controller-side of
system development. In this sense, the INVICON toolkit
is complementary to programming platforms such as AV-
shell [5]; AV-shell is a full vision system programming en-
vironment, while INVICON provides for the actual agent-
based specification of high-level behaviours that AV-shell
lacks. Robotic architectures such as Saphira [9] do include
support for high-level specification of behaviours, e.g., for
navigation using stereo vision, but they are mostly tailored
towards robotic applications and are, therefore, difficult to
use in other vision domains. INVICON does not share
this restriction. Another robotic toolkit, GenoM [7] allows
for the specification and integration of functional modules
which perform servo-control, data processing, and event
monitoring operations. As in our work, a generic model
for modules is provided, although this is done in the context
of a distributed reactive robot architecture, while we focus
on the development of single agent module controllers.

8. Conclusions and Future Work

This paper has presented INVICON, an agent-oriented
toolkit for the developement of KB vision controllers, based
on the IndiGolog programming language. INVICON pro-
vides a design methodology, a generic vision module spec-
ification, a library of control components, and support util-
ities. Two case studies showed that INVICON reduces the
effort needed to build KB vision controllers and improves
their flexibility and robustness.

In the future, the library of control components needs
to be expanded to include implementations of other search
methods. In the case studies, we developed controllers for
vision systems that perform pose estimation. Other com-
puter vision tasks such as image segmentation, object recog-
nition, and action recognition need to be explored to fully
evaluate our tools and to develop control components suit-
able for these tasks. Finally, INVICON could be extended
to support a flexible meta-controller architecture that could
perform failure handling and algorithm selection.

References

[1] O. Borzenko. Knowledge-based control of vision systems:
Design tools and case studies. Master’s thesis, Dept. of
Comp. Science and Eng., York University, Toronto, Octo-
ber 2006.

[2] O. Borzenko, W. Xu, M. Obsniuk, A. Chopra, P. Ja-
siobedzki, M. Jenkin, and Y. Lespérance. Lights and Cam-
era: Intelligently controlled multi-channel pose estimation
system. In IEEE Int. Conf. Vision Systems, ICVS’06, New
York, USA, Jan 2006.

[3] G. De Giacomo, Y. Lespérance, and H. Levesque. Con-
Golog, a concurrent programming language based on the sit-
uation calculus. Artificial Intelligence, 121:109–169, 2000.

[4] B. A. Draper. From knowledge bases to Markov models
to PCA. In Workshop on Computer Vision System Control
Architectures, Graz, Austria, 2003.

[5] J. A. Fayman, E. Rivlin, and H. I. Christensen. AV-shell,
an environment for autonomous robotic applications using
active vision. Autonomous Robots, 6(1):21–38, Jan 1999.

[6] A. Finzi, F. Pirri, M. Pirrone, M. Romano, and M. Vaccaro.
Autonomous mobile manipulators managing perception and
failures. In 5th Int. Conf. Autonomous Agents, pages 196–
203, Montreal, Canada, May 2001.

[7] S. Fleury, M. Herrb, and R. Chatila. GenoM: a tool for the
specification and the implementation of operating modules
in a distributed robot architecture. In IEEE/RSJ Int. Conf.
Intelligent Robots and Systems, IROS’97, volume 2, pages
842–849, Sep 1997.

[8] G. D. Giacomo and H. Levesque. Logical Foundations for
Cognitive Agents: Contributions in Honor of Ray Reiter,
chapter An incremental interpreter for high-level programs
with sensing, pages 86–102. Berlin: Springer, 1999.

[9] K. Konolige, K. L. Myers, E. H. Ruspini, and A. Saffiotti.
The Saphira architecture: A design for autonomy. Jour-
nal of Experimental and Theoretical Artificial Intelligence,
9(1):215–235, 1997.

[10] T. Matsuyama. Knowledge-based aerial image understand-
ing systems. In T. Guyenne and J. Hunt, editors, IGARSS
’86. Remote Sensing: Today’s Solutions for Tomorrow’s In-
formation Needs (ESA SP-254), volume 1, pages 277–282,
1986.

[11] M. Mirmehdi, P. Palmer, J. Kittler, and H. Dabis. Feedback
control strategies for object recognition. IEEE Transactions
on Image Processing, 8(8), 1999.

[12] R. Reiter. Knowledge in action : Logical foundations for
specifying and implementing dynamical systems. MIT Press,
Cambridge, Mass., 2001.

[13] D. Ristic, S. Vuppala, and A. Graser. Feedback control
for improvement of image processing: An application of
recognition of characters on metallic surfaces. In IEEE Int.
Conf. Computer Vision Systems, ICVS’06, New York, NY,
Jan 2006.

[14] P. Robertson and M. Brady. Adaptive image analysis for
aerial surveillance. IEEE Intelligent Systems, 14(3):30–36,
1999.

[15] M. Shanahan and D. Randell. A logic-based formulation of
active visual perception. In Int. Conf. Principles of Knowl-
edge Representation and Reasoning, pages 64–72, Whistler,
BC, 2004.

[16] C. Shekhar, S. Moisan, R. Vincent, P. Burlina, and R. Chel-
lappa. Knowledge-based control of vision systems. Image
and Vision Computing, 17:667–683, 1998.

[17] M. Thonnat and S. Moisan. What can program supervision
do for program re-use? IEEE Proc.-Softw., 147(5):179–185,
Oct 2000.

[18] M. J. Wooldridge. An introduction to multiagent systems.
New York: J. Wiley, 2002.

[19] S. Wrede, M. Hanheide, C. Bauckhage, and G. Sagerer. An
active memory as a model for information fusion. In Int.
Conf. Information Fusion, number 1, pages 198–205, 2004.

