
Agent Abstraction via Forgetting in the
Situation Calculus

Kailun Luo1 and Yongmei Liu∗1 and Yves Lespérance2 and Ziliang Lin1

Abstract. In an earlier paper, Banihashemi et al. proposed a
general framework for agent abstraction based on the situation
calculus. They used basic action theories (BATs) to represent agents’
behavior, and mappings to specify how high-level BATs relate to
low-level ones. They then defined the concepts of sound/complete
abstractions of BATs based on the notion of bisimulation between
high-level and low-level models. However, they didn’t address
the issue of the construction of an abstraction from a low-level
action theory when given a mapping. It turns out that their concept
of abstraction is closely related to the well-explored notion of
forgetting. In this paper, we explore agent abstraction via forgetting.
Firstly, we show that a correct (i.e., sound and complete) abstraction
can be obtained via forgetting low-level symbols from the low-level
action theory together with axioms for bisimulation. Secondly, we
show how to compute via forgetting a correct abstraction in the
form of a generalized BAT (i.e., where the initial database, action
preconditions and successor state descriptions can be second-order
formulas) under a suitable Markovian restriction. Finally, we
show that in the propositional case, under the suitable Markovian
restriction, correct abstractions are always computable.

1 Introduction
Abstraction plays an important role in problem solving. Abstraction
is used as a heuristic to guide the searching process in AI planning
[11, 10], as a technique to deal with computational complexity in
program verification [7, 18] and model checking [4, 3], and as a
method to form a general solution in generalized planning [21, 2].

Recently, Banihashemi et al. [1] proposed a general agent
abstraction framework based on the situation calculus [16, 19] and
the ConGolog agent programming language [5]. In this framework,
they assumed that there is a high-level basic action theory (BAT),
a low-level BAT, and a refinement mapping. The two theories
represent an agent’s behavior at different levels of detail. The
refinement mapping relates the two theories by associating high-
level symbols to more detailed low-level representations, such that
low-level programs are abstracted as actions and low-level properties
(represented by formulas) are abstracted as fluents. Moreover, based
on the concept of bisimulation [17] between high-level and low-level
models, they defined concepts of sound/complete abstractions of
low-level BATs under given refinement mappings.

Agent abstraction provides a framework in which one can formal-
ize a good high-level account of an agent’s possible low-level be-

1 Dept. of Computer Science, Sun Yat-sen University, Guangzhou,
China, email: luokl3@mail2.sysu.edu.cn & ymliu@mail.sysu.edu.cn & lin-
zlang@mail2.sysu.edu.cn, ∗Corresponding author

2 Dept. of Electrical Engineering and Computer Science, York University,
Toronto, ON, Canada, email:lesperan@cse.yorku.ca

havior. At the high level, one can suppress details and build complex
concepts from the low level. This can be used to plan more efficiently,
to explain the agent’s behavior in high-level terms, etc. However, it
is not obvious how to verify that there is a sound and/or complete
abstraction for a low-level BAT given a refinement mapping, and
how to construct one. To illustrate this, consider mobile robots where
high-level primitive actions contain loops and branches that build
on low-level motor commands. If a designer provides a candidate
mapping indicating the relation between the high-level actions
and their low-level representations, then one would want to know
whether this yields a correct (i.e., sound and complete) abstraction.

In this paper, we fill the gap by relating agent abstraction to the
notion of forgetting in first-order/second-order logics [14]. Similar
to abstraction that removes unimportant details, forgetting a symbol
aims at omitting the information of the symbol while retaining
all the facts that are irrelevant to the symbol. Lin and Reiter
[14] proposed forgetting to update the database in response to a
performed action. Later, many definitions of forgetting operators
were introduced in other logics, e.g., modal logics and [24] logic
programming [23, 9]. Forgetting has been studied extensively and
techniques have been developed to express and compute it [6].

We first investigate necessary and sufficient conditions under
which there exists a correct abstraction, given a low-level BAT
and a refinement mapping. These conditions are needed because
we focus on situation calculus models and Markovian theories.
At the model level, we identify a condition for the existence of a
correct high-level model. Roughly, the restriction says that when
abstracting a (possibly non-deterministic) low-level program to a
high-level action, the different executions of the program should
be indistinguishable in the high-level language, since atomic
actions in the situation calculus are assumed to be deterministic. At
the theory level, to guarantee that high-level models are uniformly
characterized in the same BAT which has the Markov property
(i.e., the executability conditions and the effects of actions are fully
determined by the present state of the system) [8], we identify a
suitable Markovian restriction at the low-level. The restriction says
that, at the low-level, for the programs that represent high-level
actions, the executability conditions and effects/postconditions
should only be determined by the abstract states formed by the
low-level formulas that represent high-level fluents.

We then show how to construct an abstraction via forgetting.
Firstly, we show that a correct abstraction can be obtained via forget-
ting low-level symbols from the low-level BAT together with axioms
for bisimulation [17]. Secondly, we show how to use forgetting to
compute a correct abstraction in the form of a generalized BAT (i.e.,
where the initial database and the action preconditions and successor
state axioms can be second-order formulas) under the Markovian

restriction. Finally, we show that in the propositional case, under the
Markovian restriction, correct abstractions are always computable.

2 Preliminaries
2.1 Situation Calculus and Basic Action Theories
The situation calculus L is a first-order (FO) language with
limited second-order features for representing dynamically changing
worlds [16, 19]. In a situation calculus language, there are three dis-
joint sorts: action for actions, situation for situations and object
for everything else. There are some special symbols: situation
constant S0 denotes the initial situation; binary function do(a, s)
denotes the situation resulting from performing action a in situation
s; relation Poss(a, s) states that it is possible to perform action a
in situation s. Dynamic properties are captured by predicates called
fluents whose truth values vary from situation to situation (we omit
functional fluents here). A situation-suppressed formula is one
where all the situation arguments of fluents are dropped and thus no
situation is mentioned. If ϕ is a situation-suppressed formula, then
we use ϕ[s] to denote the formula obtained from ϕ by restoring s as
the situation arguments to all fluents. Often, we consider a uniform
formula which refers to a particular situation τ .

Within the language, a particular domain can be specified by a
basic action theory (BAT) of the form:

D = Σ ∪ Dap ∪ Dss ∪ Duna ∪ DS0 ,where

• Σ is the set of the foundational axioms for situations;
• Duna is the set of unique name axioms for actions;
• Dap is a set of precondition axioms of the form
Poss(A(~x), s) ≡ ΠA(~x, s), where ΠA(~x, s) is a FO uniform
formula, stating when action A(~x) can be legally performed;

• Dss is a set of successor state axioms (SSAs) of the form
F (~x, do(a, s)) ≡ ΦF (~x, a, s), where ΦF (~x, a, s) is a FO
uniform formula, describing how fluents are changed by actions;

• DS0 is a set of FO sentences as the initial database, where the
only situation term that appears is S0.

We use the blocks world as our running example. The blocks
world consists of a finite number of blocks stacked into towers on
a table [20]. A blocks world problem is to turn an initial state of the
blocks into a goal state, by moving one block at a time from the top
of a tower or from the table onto another tower or to the table.

We formalize the blocks world as a BAT, where precondition
axioms and SSAs are as follows :

Example 1 In the blocks world, action stack(x, y) means moving
block x onto block y; action movetotable(x) means moving block
x to the table. Fluent clear(x, s) means that block x has no other
blocks on top of it, in situation s; fluent on(x, y, s) means that block
x is on block y, in situation s; fluent ontable(x, s) means that block
x is on the table, in situation s.

Poss(movetotable(x), s) ≡ ¬ontable(x, s) ∧ clear(x, s);
Poss(stack(x, y), s) ≡ x 6= y ∧ clear(x, s) ∧ clear(y, s);
clear(x, do(a, s)) ≡ {∃y.on(y, x, s) ∧ [∃z.a = stack(y, z)

∨ a = movetotable(y)] ∨ clear(x, s) ∧ ∀y.a 6= stack(y, x)};
ontable(x, do(a, s)) ≡ {a = movetotable(x)

∨ ontable(x, s) ∧ ∀y.a 6= stack(x, y)};
on(x, y, do(a, s)) ≡ {a = stack(x, y) ∨ on(x, y, s)

∧ a 6= movetotable(x) ∧ [∀z.a = stack(x, z) ⊃ z = y]}.

2.2 High-level Programming Language Golog
To represent and reason about complex actions, Levesque et al. [12]
introduced a high-level programming language called Golog. The
syntax of Golog is as follows:

δ ::= α | ϕ? | δ1; δ2 | δ1|δ2 | πx.δ | δ∗,
where α is an action term, possibly with parameters; formula ϕ is a
situation-suppressed formula and ϕ? tests whether ϕ holds; program
δ1; δ2 represents the sequential execution of δ1 and δ2; program δ1|δ2
denotes the non-deterministic choice between δ1 and δ2; program
πx.δ denotes the non-deterministic choice of a value for parameter
x in δ; program δ∗ means executing program δ zero or more times.

The semantics of Golog is specified by Do(δ, s, s′), which
macro-expands into a situation calculus formula, saying that it
is possible to reach situation s′ from situation s by executing a
sequence of actions specified by program δ.

2.3 Regression and Progression via Forgetting
Regression and progression are two important mechanisms for rea-
soning about actions and their effects. Regression was proposed by
Reiter [19] to reduce the evaluation of a sentence to a FO theorem-
proving task in the initial database.

Here we present one-step regression for regressable formulas.
The essence of a regressable formula is that each of its situation
terms is rooted at a certain situation s, and therefore, one can tell, by
inspection of such a term, exactly how many actions it involves [19].

Definition 1 We use RD[φ] to denote the formula obtained from
regressable formula φ by replacing each fluent atom F (~t, do(α, σ))
with ΦF (~t, α, σ) and each precondition atom Poss(A(~t), σ) with
ΠA(~t, σ), and further simplifying the result with Duna.

Proposition 1 D |= φ ≡ RD[φ].

Instead, progression means updating an agent’s knowledge base
after an action has been performed. Lin and Reiter [15] formalized
the notion of progression. Let α be a ground action, and let Sα
denote the situation term do(α, S0).

Definition 2 Let M and M ′ be two structures (for the situation cal-
culus language) with the same domains for sorts action and object.
We say that M and M ′ are isomorphic at Sα, written M ′ ∼Sα M
iff the following two conditions hold:

1. M ′ and M interpret all situation-independent predicate and
function symbols identically;

2. M ′ and M agree on all fluents at Sα: for every fluent F , and
every variable assignment v,

M ′, v |= F (~x, do(α, S0)) iff M, v |= F (~x, do(α, S0)).

Let LSα be the subset of L that mentions no other situation terms
except Sα. Let L2

Sα be the second-order extension of LSα .

Definition 3 A set of sentences DSα in L2
Sα is a progression of the

initial database DS0 to Sα (with respect to D) iff for any structure
M , M is a model of DSα iff there is a model M ′ of D such that
M ∼Sα M ′.

Progression can be viewed as a result of forgetting. The agent
needs to forget about all the facts that are no longer true, and in
such a way that this will not affect any of her reasoning about
possible future actions [14]. This relies on the following semantic
definition of forgetting. Note that forgetting about a predicate is a
second-order notion. All theories and formulas are assumed to be in
the second-order language.

Definition 4 Let µ be a ground atom or a predicate. Let M1 and
M2 be two structures (for the second-order language). We say M1,
M2 are the same except for µ, written M1 ∼µ M2, if M1 and M2

agree on everything except possibly on the interpretation of µ.

Definition 5 Let T be a theory and µ be a ground atom or a predi-
cate. A theory T ′ is a result of forgetting about µ in T , denoted by
forget(T ;µ), if for any structure M , M |= T ′ iff there is a model
M ′ of T such that M ∼µ M ′.

Forgetting a symbol results in a weaker theory which entails the
same set of sentences that are irrelevant to the symbol.

Proposition 2 Let T be a theory and µ be a ground atom or a
predicate. For any formula ϕ that does not mention µ, T |= ϕ iff
forget(T ;µ) |= ϕ;

Example 2 A result of forgetting about atom ontable(B) from the-
ory T .

= {∀x.ontable(x)} is {∀x.x 6= B ⊃ ontable(x)}. If we for-
get about predicate ontable from T , then a result is {∃R∀x.R(x)}.

Lin and Reiter [15] showed that progression is not always first-
order definable but is always second-order definable. Here we present
a variant of the progression theorem.

Theorem 1 A progression of a formula φ wrt action α and situation
σ related to theory D, denoted as PD(φ[σ], α), is the following:

∃~R.{φ[σ] ∧
∧

(Duna ∪ Dss[α, σ]) ↑ σ},

where ϕ ↑ σ means replacing every fluent of the form F (~t, σ) in ϕ
by a new predicate variable R(~t), and Dss[α, σ] is the instantiation
of Dss on α and σ.

The above progression result can be viewed as a result of forget-
ting all the predicates mentioning situation σ, from formula φ[σ]
together with the instantiated SSAs.

2.4 Agent Abstraction Framework
In the agent abstraction framework, Banihashemi et al. [1] assumed
that there is a high-level action theory Dh, a low-level action theory
Dl and a refinement mapping, where Dh (resp.Dl) contains a
finite set of action functions Ah (resp.Al) and a finite set of fluent
predicates Fh (resp.Fl).

In this paper, instead of ConGolog [5], we only consider Golog
programs as refinements of high-level actions.

Definition 6 A refinement mapping m is a function that

• maps each situation-suppressed high-level fluent F in Fh to a
situation-suppressed formula φF defined over Fl;

• associates each high-level action function A in Ah to a Golog
program δA defined over Al and Fl.

Example 3 Given the blocks world formalized as in Example 1 as
the low-level theory, at the high-level, we focus on a property that
all blocks are on the table, and a program that moves any number of
blocks onto the table. We use high-level fluent allontable to denote
the property and high-level action moveany to denote the program.
Then, a refinement mapping m is given as follows:

m(allontable) = ∀x.ontable(x),

m(moveany) = [(πx)movetotable(x)]∗.

Given a refinement mapping m, they defined an isomorphism re-
lation called m-isomorphic between a high-level situation and a
low-level situation, as follows:

Definition 7 Given a refinement mapping m, a situation sh of a
high-level model Mh and a situation sl of a low-level model Ml,
we say that sh is m-isomorphic to sl, written sh ∼Mh,Mlm sl, if for
any high-level fluent F in Fh and any variable assignment v,

Mh, v[s/sh] |= F(~x, s) iff Ml, v[s/sl] |= m(F)(~x, s),

where v[s/s′] denotes an assignment which maps s to s′ and is the
same as v elsewhere.

Based on m-isomorphism, they defined an m-bisimulation rela-
tion between a high-level model and a low-level model. Intuitively,
an m-bisimulation relation says that with the refinement mapping,
two models behave the same if the low-level model is viewed in an
abstract way that takes low-level programs as high-level actions and
low-level formulas as high-level fluents.

Let ∆M denote the domain of situations in M , and notation SM0
stands for the denotation of S0 in model M . Formally,

Definition 8 A relation B ⊆ ∆Mh × ∆Ml is an m-bisimulation
relation between models Mh and Ml if 〈sh, sl〉 ∈ B implies:

• Situations sh and sl are m-isomorphic;
• For any action A in Ah, if there exists s′h such that
Mh, v[s/sh, s

′/s′h] |= Poss(A(~x), s) ∧ s′ = do(A(~x), s), then
there exists s′l such thatMl, v[s/sl, s

′/s′l] |= Do(m(A)(~x), s, s′)
and 〈s′h, s′l〉 ∈ B;

• For any action A in Ah, if there exists s′l such that
Ml, v[s/sl, s

′/s′l] |= Do(m(A)(~x), s, s′), then there exists
s′h such that Mh, v[s/sh, s

′/s′h] |= Poss(A(~x), s) ∧ s′ =
do(A(~x), s) and 〈s′h, s′l〉 ∈ B.

If (S
Mh
0 , S

Ml
0) ∈ B, whereB is anm-bisimulation relation between

Mh and Ml, then Mh is m-bisimilar to Ml, written Mh ∼m Ml.

At the theory level, they defined the notion of a high-level action
theory being a sound/complete abstraction of a low-level action the-
ory. Sound abstraction says that every low-level (concrete) model has
an m-bisimilar high-level (abstract) model, that is,

∀Ml |= Dl,∃Mh |= Dh s.t. Mh ∼m Ml.

Complete abstraction means that every high-level model has an m-
bisimilar low-level model, that is,

∀Mh |= Dh, ∃Ml |= Dl s.t. Mh ∼m Ml.

With sound abstractions, one can reason about actions (e.g., their
executability) at the abstract level, and refine and concretely execute
them at the low level.

2.5 Least Fixed Point Logic

We present least fixed-point (LFP) logic for our later extension of
regression and progression with loops.

Definition 9 If ϕ(R, ~x) is a formula with free first-order variables
~x := x1, . . . , xk and a free second-order variable R of arity k such
that R occurs only within an even number of nested negations in ϕ,
then [lfpR,~xϕ](~t) is also a formula in LFP logic, where ~t is a tuple
of terms of the same length as ~x.

Definition 10 Let ϕ(R, ~x) be as in Def. 9. Let M be a structure
providing an interpretation of the free variables of ϕ except for ~x.
Then for any tuple ~t of terms, M |= [lfpR,~xϕ](~t) iff ~tM belongs
to the least fixed point formed by relational operation Fϕ which
transforms relation R to new relation {~e : (M,R) |= ϕ[~e]}.

According to the Knaster and Tarski Theorem [22], the least fixed
point can be approximated by constructing an inductive fixed point as
follows:R0 := ∅ andRα+1 := Fϕ(Rα), which iteratively generates
Ri until the least ordinal α such that Rα+1 = Rα.

3 Characterizing Abstractions via Forgetting
In this section, we present a necessary and sufficient condition for
using forgetting to characterize the semantics of a correct (i.e.,
sound and complete) abstraction, and we show how to obtain correct
abstractions via forgetting.

3.1 Non-Deterministic Uniform Restriction
Not every refinement mapping is suitable for constructing a correct
abstraction, since actions in the situation calculus are assumed to be
deterministic while Golog programs may be non-deterministic. This
may cause inconsistency when trying to abstract a program to an
action. We illustrate this with an example.

Example 3 cont’d Suppose the blocks world Dl has the following
initial database: there are two blocks namedB1 and B2, where B1 is
on the table and B2 is on B1. That is,

DS0 = {∀x∀y.x = B2 ∧ y = B1 ≡ on(x, y, S0), B1 6= B2,

∀x.x = B1 ≡ ontable(x, S0), ∀x.x = B2 ≡ clear(x, S0)}.

We show that there is no correct abstraction for Dl, as there is no m-
bisimilar high-level model for a certain low-level model. Consider
a low-level model Ml with domain {B1, B2}. To construct Mh,
in the initial situation S0, we know that fluent allontable is false
since block B2 is not on the table. However, in the next situation
after performing action moveany, the valuation on allontable
yields a contradiction. That is, the valuation depends on executing
the refinement of action moveany at the low-level, which involves
non-deterministic iteration of program (πx)movetotable(x): if
the number of iterations is zero, then allontable is still false;
otherwise allontable is true.

In the following, closely related to Corollary 5 in [1], we iden-
tify a necessary and sufficient condition called non-deterministic
uniformity (NDU) for a mapping given a low-level action theory.
Intuitively, it requires that different refinements of any high-level
action sequence are indistinguishable in the high-level language:

Definition 11 Given a refinement mappingm and a low-level action
theory Dl, we say m is NDU, if for any ground high-level action se-
quence ~α, action A inAh, fluent F in Fh and variable assignment v,

Dl, v |= ∀s1, s2.Do(m(~α), S0, s1) ∧Do(m(~α), S0, s2) ⊃
{∃s′1.Do(m(A)(~x), s1, s

′
1) ≡ ∃s′2.Do(m(A)(~x), s2, s

′
2)}; (1)

Dl, v |= ∀s1, s2.Do(m(~α), S0, s1) ∧Do(m(~α), S0, s2) ⊃
{m(F)(~y, s1) ≡ m(F)(~y, s2)}, (2)

where m(~α) results from refining every high-level action A in ~α to
the low-level program m(A).

Proposition 3 For the existence of sound and complete abstractions,
NDU for refinement mappings is necessary.

Proof: It is proved by contradiction. If a mapping is not NDU
and suppose that it violates condition (1) in Def .11, then there
exist two low-level situations s1, s2 that are two different re-
finements of the same high-level situation sh, and that make
∃s′1.Do(m(A)(~x), s1, s

′
1) 6≡ ∃s′2.Do(m(A)(~x), s2, s

′
2). With m-

bisimulation, we have that Poss(A, sh) 6≡ Poss(A, sh), which
comes to a contradiction. The case where (2) is violated can be han-
dled similarly.

Example 3 cont’d We revise m by adding a test action at the ending
of the non-deterministic iteration to make it be NDU:

m(moveany) = [(πx)movetotable(x)]∗; ∀x.ontable(x)?,

since iterating only zero times in the previous case will be eliminated.

3.2 Abstraction via Forgetting under NDU
We show how to characterize the semantics of correct abstractions
via forgetting under the NDU restriction.

To apply forgetting in dynamic theories, we introduce two notions:
forgetting a fluent and forgetting an action function. Since fluents are
special predicates, we reduce forgetting a fluent to the case of for-
getting a predicate. The intuition of forgetting a fluent is to forget the
interpretation of the fluent in all situations. Forgetting an action func-
tion means forgetting the denotation of the action function. In fact,
at the model level, forgetting an action function does not eliminate
any action, but just changes the denotation of actions. Compared to
predicates, we introduce forgetting a function by modifying Def. 4
and Def. 5 to allow µ to be an action function.

Example 4 A result of forgetting the action function move from
the theory {∃x∃y.ontable(x, do(move(x, y), S0))} is the theory
{∃f∃x∃y.ontable(x, do(f(x, y), S0))}.

To characterize sound abstraction and complete abstraction, we
divide forgetting into sound forgetting and complete forgetting.

Definition 12 Let T be a theory and µ be a relation or a function.
A theory T ′ is a result of sound forgetting about µ in T , written
T ′ ∈ sforget(T ;µ), if for any structure M , if there is a model M ′

of T s.t. M ′ ∼µ M , then M |= T ′.

Definition 13 Let T be a theory and µ be a relation or function. A
theory T ′ is a result of complete forgetting about µ in T , written
T ′ ∈ cforget(T ;µ), if for any structure M , if M |= T ′, then there
is a model M ′ of T s.t. M ′ ∼µ M .

Sound forgetting is weaker than forgetting, which means that its
results may contain spurious models compared with that of forget-
ting. Conversely, complete forgetting is stronger, meaning that its
results contain fewer models. The relation among forgetting, sound
forgetting and complete forgetting can be summarized as follows:

Proposition 4 Let Mod(T) be the set of models of theory T , and
T ′ ∈ sforget(T ;µ) and T ′′ ∈ cforget(T ;µ). Then

Mod(T ′) ⊇Mod(forget(T ;µ)) ⊇Mod(T ′′).

Since orders of forgotten symbols do not affect results of for-
getting, if P is a set of symbols, we use forget(T ;P) to denote
forgetting all the symbols µ (µ ∈ P) from theory T . Similar
notations are cforget(T ;P) and sforget(T ;P).

Next, we introduce mapping axioms to indicate relations
between low-level symbols and high-level ones. A set of mapping
axioms can be viewed as an axiomatization of the m-bisimulation
relation specified by a refinement mapping.

We first introduce a new predicate B over situation pairs. Then
mapping axioms specify B as follows:

Definition 14 Given a refinement mapping m, mapping axioms
Dm consist of

• B(S0, S0);
• for any high-level fluent F ∈ Fh,

B(s1, s2) ⊃ F(~x, s1) ≡ m(F)(~x, s2);

• for any high-level action A ∈ Ah,

B(s1, s2) ∧Do(A(~x), s1, s
′
1) ⊃

∃s′2.Do(m(A)(~x), s2, s
′
2) ∧ B(s′1, s

′
2);

B(s1, s2) ∧Do(m(A)(~x), s2, s
′
2) ⊃

∃s′1.Do(A(~x), s1, s
′
1) ∧ B(s′1, s

′
2).

With all the above, we show that sound abstractions can be ob-
tained via sound forgetting all low-level symbols from the low-level
action theory together with the mapping axioms for m-bisimulation.
LetD′una be the unique name axioms for both high-level actions and
low-level actions, indicating that high-level and low-level actions all
stand for different actions. Formally speaking,

Theorem 2 Given a low-level theory Dl and an NDU refinement
mapping m, if

T ∈ sforget(Dl ∪ D′una ∪ Dm;Al ∪ Fl ∪ {B}),

then T is a sound abstraction of Dl.

Proof: (sketch) According to sound abstraction, we prove that for
any model M1 of Dl, there is a model M2 of T s.t. M2 ∼m M1.
We first construct a structure M2 from M1 by extending M1 to M ′1
s.t. M ′1 |= Dl ∪ D′una ∪ Dm and then letting M2 ∼Al∪Fl∪{B} M

′
1.

According to Def. 12 (sound forgetting), it follows that M2 |= T .
We then show M2 ∼m M1 as follows: M ′1 ∼m M1 is trivial since
M ′1 |= Dl ∪Dm; because M ′1 and M2 agree on all the valuations of
high-level elements, it follows that M2 ∼m M1.

Similarly, complete abstractions can be obtained via complete
forgetting as follows.

Theorem 3 Given a low-level theory Dl and an NDU refinement
mapping m, if

T ∈ cforget(Dl ∪ D′una ∪ Dm;Al ∪ Fl ∪ {B}),

then T is a complete abstraction of Dl.

Proof: The proof is similar to the proof of Theorem 2.

According to Theorem 2, Theorem 3 and Prop. 4, we have:

Corollary 1 Given a low-level theory Dl and an NDU refinement
mapping m, we have that

forget(Dl ∪ D′una ∪ Dm;Al ∪ Fl ∪ {B})

is a sound and complete abstraction of Dl.

It follows that NDU is sufficient for the existence of a sound and
complete abstraction for a mapping. Note that our theorems char-
acterize the semantics of abstractions independently of their form,
which is that of complex second-order theories, and which may not
be representable as any kind of BAT. In the next section, we identify
a further condition on refinement mappings that ensure the latter.

4 Computing GBAT Abstractions via Forgetting
In this section, we investigate restrictions that are necessary and
sufficient for obtaining correct abstractions in the form of general-
ized BATs (GBATs). Moreover, we show how to compute GBAT
abstractions under such a restriction, by extending regression and
progression. Finally, we show that in the propositional case, GBAT
abstractions are always computable under the restriction, and show
how to decide whether a candidate mapping satisfies the restriction.

4.1 Markovian Refinement Mappings
BATs have the Markov property, which means that the executability
conditions and the effects of actions are fully determined by the
present state of the system [8]. To ensure that the abstraction we
obtain is Markovian, in the following, we define the Markovian
restriction for a refinement mapping given a low-level BAT.

First, we say that two situations are in the same state if they
evaluate all the fluents the same. Formally speaking,

Definition 15 In a situation calculus language L, we say that two
situation terms σ1 and σ2 are in the same state under two structures
M1 and M2 with the same object domain, written σ1 ≈M1,M2

L σ2,
if for any fluent F in L and any variable assignment v,

M1, v |= F (~x, σ1) iff M2, v |= F (~x, σ2).

With a refinement mapping m, one can say that two low-level
situation terms σ1 and σ2 are in the same abstract state, denoted
as σ1 ≈M1,M2

m(L) σ2, if they evaluate the refinement of any high-level
fluent F, i.e., low-level formula m(F) the same.

Based on this concept, we say that a formula is Markovian if its
truth value only depends on the current state of the system, but not
on situations which store history information. Formally,

Definition 16 In a situation calculus language L, we say that a situ-
ation calculus formula ϕ(s) whose only free variable is s, is Marko-
vian iff given any structures M1,M2 and situation terms σ1, σ2, if
σ1, σ2 are in the same state wrt M1, M2, then

M1 |= ϕ(σ1) iff M2 |= ϕ(σ2).

Note that Markovian formulas can be second-order. Based on the
notion of Markovian formulas, we extend BATs to generalized BATs.

Definition 17 A generalized BAT (GBAT) has the same form as a
BAT except that formulas inDS0 , and the right hand side of formulas
in precondition axioms and SSAs, are Markovian formulas.

We first illustrate that given a refinement mapping for a low-level
theory, correct abstractions may go beyond the form of GBATs.

Example 5 Consider the blocks world with the initial database:
DS0 = {ontable(B1, S0), ontable(B2, S0)∨on(B2, B1, S0)}We
provide a refinement mappingm: high-level fluent hontable denotes
the property that there exists one block on the table; high-level action
hmtb means the same as low-level action movetotable. That is

m(hontable) = ∃x.ontable(x),

m(hmtb)(x) = movetotable(x).

We show that the precondition axiom for high-level action hmtb(x)
cannot be any Markovian formula. Consider two low-level models

M1,M2 with object domain {B1, B2}. In the initial situation,
we only know that B1 is on the table. As for block B2, it is
on B1 in M1, while it is on the table in M2. To construct a
sound abstraction, there must be M3,M4 such that M3 ∼m M1

and M4 ∼m M2. It follows that both M3 |= hontable(S0)
and M4 |= hontable(S0), which means SM3

0 and SM4
0

are in the same state. But M3 |= Poss(hmtb(B2), S0) and
M4 2 Poss(hmtb(B2), S0), which violates the Markov property.

In the following, we introduce the notion of Markovian
refinement mappings. We first define the m-reachable
situations of a low-level action theory given a refinement
mapping m. Here m-reachable situations are situations needed
to form an m-bisimilar relation, i.e., situations that need to be
abstracted. They can be formalized by using notations in [1]:
given a refinement mapping m, let πm be a low-level program
that characterizes doing any high-level action at the low-level, i.e.,
πm

.
= [π~x1.m(A1)(~x1) | . . . | π~xn.m(An)(~xn)] for Ai ∈ Ah;

then π∗m represents doing any high-level action sequence at the low-
level; so the set of m-reachable situations, written m-reachable(s),
can be expressed as: m-reachable(s) .

= Do(π∗m, S0, s).
We then introduce the Markovian restriction on mappings at the

low level. Intuitively, it requires that for any two m-reachable situ-
ations, if they are in the same abstract (high-level) state, then for any
high-level action A, the executability condition and action effects are
indistinguishable in these two situations. It follows that the exe-
cutability conditions and action effects are describable using Marko-
vian formulas over the high-level language. Formally, we have:

Definition 18 Given a low-level action theory Dl and a refinement
mapping m, we say that m is Markovian wrt Dl, if for any models
M1,M2 of Dl, and for any ground situation terms σ1, σ2 such that
M1 |= m-reachable(σ1) and M2 |= m-reachable(σ2) and σ1, σ2

are in the same abstract state, then for any high-level action A, any
high-level fluent F and any variable assignment v, we have

• M1, v |= ∃s′Do(m(A)(~x), σ1, s
′) iff

M2, v |= ∃s′Do(m(A)(~x), σ2, s
′),

• M1, v |= ∃s′Do(m(A)(~x), σ1, s
′) ∧m(F)(~y, s′) iff

M2, v |= ∃s′Do(m(A)(~x), σ2, s
′) ∧m(F)(~y, s′).

Proposition 5 Given a low-level action theory Dl and a refinement
mapping m, if there exists a sound and complete abstraction Dh of
the form GBAT, then m is Markovian.

Proof: It is proved by contradiction. Assume that the mapping is
not Markovian and suppose it violates Item 1 in Def. 18. We know
that there are two m-reachable situations s1 and s2 that are in the
same high-level state but have different executability wrt m(A)(~t).
It follows that there are two m-isomorphic high-level situations sh1
and sh2 that are in the same state. But the evaluation on the exe-
cutability of A(~t) in sh1 and sh2 yields a contradiction: since two
situations are in the same state, it follows that Poss(A(~t), sh1) ≡
Poss(A(~t), sh2); according to the definition of m-bisimulation, we
have that Poss(A(~t), sh1) 6≡ Poss(A(~t), sh2). The case where Item
2 is violated can be handled similarly

Since the Markovian restriction is necessary for a sound and
complete abstraction, theoretically, it is implied by the results for ver-
ifying sound abstractions and complete abstractions in the agent ab-
straction framework [1]. Next, we identify it as a sufficient condition.

4.2 Computing Abstractions via Forgetting

We first define progression wrt programs to compute m-reachable
situations. Let φ[x/y] denote replacing every x in φ with y.

Definition 19 Given situation-suppressed formula φ and Golog pro-
gram δ, we define extended progression prog[φ(s), δ] inductively:

• prog[φ(s), α]
.
= PD[Πα(s)∧φ(s), α][do(α, s)/s], where Πα(s)

is a formula such that Poss(α, s) ≡ Πα(s);
• prog[φ(s), ψ?]

.
= ψ[s] ∧ φ(s);

• prog[φ(s), δ1; δ2]
.
= prog[prog[φ(s), δ1], δ2];

• prog[φ(s), δ1|δ2]
.
= prog[φ(s), δ1] ∨ prog[φ(s), δ2];

• prog[φ(s), (πx)δ(x)]
.
= (∃x)prog[φ(s), δ(x)];

• prog[φ(s), δ∗]
.
= [lfpZ,sφ(s) ∨ prog[Z(s), δ]](s).

Progressing a formula φ(s) wrt a program δ results in a state
formula which represents all the reachable situations resulting from
executing program δ in a certain situation satisfying φ.

Proposition 6 Given a basic action theory D, a Golog program δ
and a situation-suppressed formula φ, we have:

D |= prog[φ(s), δ] ≡ ∃s′.φ[s′] ∧Do(δ, s′, s).

Proof: (sketch) We prove it by structural induction. The base case
δ
.
= α is proved by Theorem 1 and the definition of progression; for

the case δ .
= δ∗, we prove that the semantics of least fixed point logic

is equivalent to the semantics of Do by induction on the number of
iterations for constructing the inductive fixed point.

Proposition 7 prog[φ(s), δ] is a Markovian formulas.

Proof: (sketch) We prove it by structural induction. The base case
δ
.
= α is proved by the definition of progression. When proving the

case δ .
= δ∗, we prove it by induction on the number of iterations of

the inductive semantics of LFP.

Note that prog[φ(s), δ] is generally second-order, and is not
guaranteed to terminate for the construction of an inductive fixed
point when mentioning δ∗.

We then have m-reachable(s) ≡ prog[Init(s), π∗m], where
Init(s)

.
=

∧
DS0 [S0/s]. We illustrate this by an example.

Example 3 cont’d In the blocks world, we restrict the number of ob-
jects to be finite via adding domain closure axiom K, i.e., ∀x.[x =
B1 ∨x = B2]. We addDuna implicitly as a component for simplifi-
cation. Let mtb be short for movetotable and ontb for ontable. We
first show the result of progression wrt Init(s) and (πx)mtb(x):

prog[Init(s), (πx)mtb(x)]

≡∃x∃~R.{Init(s) ∧
∧
Dss[mtb(x), s] ↑ s}[do(mtb(x), s)/s].

With domain closure axiom K, the above result can be reduced to
∀x.ontable(x, s) ∧ ∀x.clear(x, s) ∧ ∀x, y.¬on(x, y, s), as in the
initial situation, block B1 is on the table and block B2 is on B1, and
all the blocks are on the table after moving one block to the table.

If all the blocks are on the table, the action to move any block to
the table is no longer executable. So we have:

prog[Init(s), (πx)mtb(x); (πx)mtb(x)] ≡ ⊥.

Based on above results, we know that prog[Init(s), [(πx)mtb(x)]∗]

≡[lfpZ,sInit(s) ∨ prog[Z(s), (πx)mtb(x)]](s)

≡Init(s) ∨ prog[Init(s), (πx)mtb(x)]

∨ prog[Init(s), (πx)mtb(x); (πx)mtb(x)] . . .

≡Init(s) ∨ prog[Init(s), (πx)mtb(x)].

For high-level action moveany, prog[Init(s),m(moveany)]

≡ prog[Init(s), [(πx)mtb(x)]∗;∀x.ontb(x)?]

≡ prog[Init(s) ∨ prog[Init(s), (πx)mtb(x)],∀x.ontb(x)?]

≡ prog[Init(s), (πx)mtb(x)].

Therefore, the result of computing m-reachable(s) is as follows:

≡ prog[Init(s), [m(moveany)]∗]

≡ Init(s) ∨ prog[Init(s),m(moveany)]

≡ Init(s) ∨ prog[Init(s), (πx)mtb(x)].

To compute state descriptions for executability conditions and
effects, here we present existentially extended regression, compared
to universally extended regression introduced in [13]. Notation
R[φ(s), δ] denotes a state formula expressing that there exists an
execution of program δ starting from s and making φ hold.

Definition 20 Given a situation-suppressed formula φ and a Golog
program δ, we define the extended regressionR[φ(s), δ] inductively:

• R[φ(s), α]
.
= RD[Poss(α, s) ∧ φ(do(α, s))];

• R[φ(s), ψ?]
.
= ψ[s] ∧ φ(s);

• R[φ(s), δ1; δ2]
.
= R[R[φ(s), δ2], δ1];

• R[φ(s), δ1|δ2]
.
= R[φ(s), δ1] ∨R[φ(s), δ2];

• R[φ(s), (πx)δ(x)]
.
= (∃x)R[φ(s), δ(x)];

• R[φ(s), δ∗]
.
= [lfpZ,sφ(s) ∨R[Z(s), δ]](s).

Proposition 8 Given a basic action theory D, a Golog program δ
and a situation-suppressed formula φ, we have:

D |= R[φ(s), δ] ≡ ∃s′.Do(δ, s, s′) ∧ φ[s′].

Proof: It is similar to the proof of Prop. 6 except that the base case is
proved by the definition of one-step regression.

Proposition 9 R[φ(s), δ] is a Markovian formulas.

Proof: It is similar to the proof of Prop. 7.

Example 3 cont’d With the domain closure axiom K, given

R[∀x.ontb(x, s), [(πx)mtb(x)]∗]

≡lfpZ,s[∀x.ontb(x, s) ∨R[Z(s), (πx)mtb]](s)

≡∀x.ontb(x, s) ∨R[∀x.ontb(x, s), (πx)mtb]

∨R[∀x.ontb(x, s), (πx)mtb; (πx)mtb] . . .

≡∀x.ontb(x, s) ∨R[∀x.ontb(x, s), (πx)mtb]

≡∀x.ontb(x, s) ∨ ∃y.clear(y, s) ∧ ¬ontb(y, s)
∧ ∀x.[x = y ∨ ontb(x, s)] (1)

(note that if without K, the result is second-order), we have:

R[>,m(moveany)]

≡R[>, [(πx)mtb(x)]∗; ∀x.ontb(x)?]

≡R[∀x.ontb(x, s), [(πx)mtb(x)]∗].

To compute the result (1), intuitively, the regression of ∀x.ontb(x, s)
wrt (πx)mtb(x) results in a formula φ, stating that there is one
block not on the table. And the regression of φ wrt (πx)mtb(x)
results in two blocks not on the table. Since the domain is restricted
to have two blocks, only one of the blocks can be not on the table.

With the extensions, we show how to construct a correct abstrac-
tion of the form GBAT. Let Φm be the relation between high-level
fluents and low-level fluents, defined as

∧
F∈Fh

F(~x) ≡ m(F)(~x).

Theorem 4 Given a low-level BAT Dl and a Markovian refinement
mapping m, let T be Σ ∪ Dhuna ∪ DhS0

∪ Dhap ∪ Dhss, where

• DhS0

.
= forget(DS0 ∪ Φm[S0];Fl);

• Dhap contains the set of sentences: for any A ∈ Ah,
Poss(A(~x), s) ≡ forget(prog[Init(s), π∗m]

∧R[>(s),m(A)(~x)] ∧ Φm[s];Fl);
• Dhss contains the set of sentences: for any A ∈ Ah and F ∈ Fh,

F(~y, do(A(~x), s)) ≡ forget(prog[Init(s), π∗m]
∧R[F(~y, s),m(A)(~x)] ∧ Φm[s];Fl).

Then T is a sound and complete abstraction of Dl.

Proof: (sketch) On one side, we prove that T is a sound abstraction.
Firstly, for any model Ml of Dl, we construct a structure Mh

as follows: we first construct a substructure M ′ from Ml s.t. it
only contains fluents in the initial situation, and we expand M ′

to satisfy Φm[S0]; we then construct M ′′ s.t. M ′′ ∼Fl M
′, and

it follows M ′′ |= DhS0
; we then obtain Mh by extending M ′′ to

satisfy Σ ∪ Dhuna ∪ Dhap ∪ Dhss. Secondly, we prove Mh ∼m Ml

by induction on the length of action sequence ~α: The base case
(S0) is straightforward with properties of the structures due to
the construction. Induction: suppose Shn ∼Mh,Mlm Sln, where Shn
(resp. Sln) results from executing high-level (resp. the refinement
of high-level) actions of n-length, we prove that they have the
same executability and effects for any high-level action. We prove
the executability as follows: for any A ∈ Ah and variable as-
signment v, we prove that Ml, v |= ∃s.Do(m(A)(~x), Sln, s) iff
Mh, v |= Poss(A(~x), Shn). It follows that we prove Ml, v |=
∃s.Do(m(A)(~x), Sln, s) iff ∃M∃S such that Shn ∼Mh,Mm S and
M, v |= DS0 ∧ Do(π∗m, S0, S) ∧ ∃s.Do(m(A)(~x), S, s) (derived
from the right hand side of Poss(A(~x), Shn) with Def. 4, Prop. 6 and
Prop. 8). Proving forth is trivial, and we prove back with the property
of Markovian mappings (Def. 18). Proving the effects and the other
side (complete abstraction) is similar, so we omit them here.

The above theorem says that, to construct the precondition axiom
for high-level action A, we first compute a state description for all
m-reachable situations via extended progression; then we construct
a state description for the executability condition via extended
regression; and we finally obtain a high-level state description for
A via forgetting all low-level fluents from the conjunction of the
two state descriptions together with the fluent relation between the
two-levels. The construction of action effects is similar.

Example 3 cont’d For the executability condition for the
high-level action moveany, remember that we have computed
prog[Init(s), [m(moveany)]∗] andR[>,m(moveany)]. So

Poss(moveany, s)

≡forget(prog[Init(s), [m(moveany)]∗] ∧ Φm[s]

∧R[>(s),m(moveany)]; {ontable(x, s), clear(x, s), on(x, y, s)})
≡> (after simplification),

which means moveany is always executable. Note that a program
such as “moving all the blocks to the table”, which we abstract
to high-level action moveany, might be a useful abstract step to
achieve a goal. We could generate a plan in the high-level theory to
achieve a goal, and then perform further planning at the low level to
refine the high-level plan to a complete low-level plan.

4.3 Computability in the Propositional Case
We show that abstractions of the form GBATs are computable in the
propositional case.

Definition 21 A BAT is propositional definable (P-definable) if for-
mulas in DS0 ,Dap and Dss are P-definable.

In the propositional case, the state space of D is finite. It is
easy to show that R[φ(s), δ] and prog[φ(s), δ] are P-definable and
computable. Further, forgetting is P-definable and computable. It
follows that GBAT abstractions are P-definable and computable.

Theorem 5 Given a Markovian refinement mapping m and a low-
level action theory Dl, if Dl is P-definable, then a sound and com-
plete abstraction of the form GBAT is P-definable and computable.

4.4 Verifying that a Mapping is Markovian
We show how to decide whether a candidate mapping is Markovian
by using elements of Theorem 4. For any high-level action A(~t), we
check the requirement for the executability condition by checking
the unsatisfiability of the following formula:

forget(prog[Init(s), π∗m] ∧R[>(s),m(A)(~t)] ∧ Φm[s];Fl)

∧ forget(prog[Init(s′), π∗m] ∧ ¬R[>(s′),m(A)(~t)] ∧ Φm[s′];Fl).

If the above formula is satisfiable, then the candidate mapping
is not Markovian, since it follows that there are two low-level
situations that (via forgetting) are in the same abstract state and have
different executability conditions. Checking the requirement for
action effects is similar, so we omit the details here.

5 Conclusion
In this paper, we have shown that given a low-level action theory and
a refinement mapping: firstly, how one can characterize the semantics
of a correct abstraction via forgetting under the non-deterministic
uniform condition; secondly, how one can compute a correct abstrac-
tion of the form generalized BATs under the Markovian restriction.
Moreover, we have shown that in the propositional case, the abstrac-
tions are always computable. Our method should be adaptable to
other dynamic domain/agent modelling frameworks, such as “action
languages”, PDDL planning domain descriptions, etc.

A limitation of our current approach is the restriction to theories
that are Markovian, and to deterministic primitive actions that should
match suitable programs when programs involve non-determinism.
Extensions to non-Markovian theories and non-deterministic prim-
itive actions are interesting research directions. In the future, we
would also like to investigate sufficient conditions under which
correct abstractions are always first-order-definable. Furthermore,
based on the presented work, we would like to explore applying the
agent abstraction framework to planning by providing a mapping
as a guide. The idea is to first generate a plan in the constructed
high-level theory, and then perform further planning at the low level

to refine the high-level plan to a complete low-level plan. Also,
we would like to study (partially) automated generation of these
mappings by integrating counterexample-guided synthesis.

Acknowledgments
We thank the anonymous reviewers for helpful comments. We
acknowledge support from the Natural Science Foundation of
China under Grant No. 61572535 and the National Science and
Engineering Research Council of Canada.

References
[1] Bita Banihashemi, Giuseppe De Giacomo, and Yves Lespérance, ‘Ab-

straction in situation calculus action theories’, in AAAI, (2017).
[2] Blai Bonet, Giuseppe De Giacomo, Hector Geffner, and Sasha Rubin,

‘Generalized planning: Non-deterministic abstractions and trajectory
constraints’, in IJCAI, pp. 873–879, (2017).

[3] Edmund M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
‘Counterexample-guided abstraction refinement’, in CAV, (2000).

[4] Edmund M. Clarke, Orna Grumberg, and David E. Long, ‘Model
checking and abstraction’, ACM Trans. Program. Lang. Syst., 16(5),
1512–1542, (1994).

[5] Giuseppe De Giacomo, Yves Lespérance, and Hector J. Levesque,
‘Congolog, a concurrent programming language based on the situation
calculus’, Artif. Intell., 121(1-2), 109–169, (2000).

[6] Thomas Eiter and Gabriele Kern-Isberner, ‘A brief survey on forgetting
from a knowledge representation and reasoning perspective’, KI, 33(1),
9–33, (2019).

[7] Cormac Flanagan and Shaz Qadeer, ‘Predicate abstraction for software
verification’, in POPL, pp. 191–202, (2002).

[8] Alfredo Gabaldon, ‘Non-markovian control in the situation calculus’,
Artif. Intell., 175(1), 25–48, (2011).

[9] Ricardo Gonçalves, Matthias Knorr, and João Leite, ‘The ultimate
guide to forgetting in answer set programming’, in KR, (2016).

[10] Malte Helmert, Patrik Haslum, and Jörg Hoffmann, ‘Flexible abstrac-
tion heuristics for optimal sequential planning’, in ICAPS, (2007).

[11] Craig A. Knoblock, ‘Automatically generating abstractions for plan-
ning’, Artif. Intell., 68(2), 243–302, (1994).

[12] Hector J. Levesque, Raymond Reiter, Yves Lespérance, Fangzhen Lin,
and Richard B. Scherl, ‘GOLOG: A logic programming language for
dynamic domains’, J. Log. Program., 31(1-3), 59–83, (1997).

[13] Naiqi Li and Yongmei Liu, ‘Automatic verification of partial correct-
ness of golog programs’, in IJCAI, pp. 3113–3119, (2015).

[14] Fangzhen Lin and Ray Reiter, ‘Forget it!’, in Working Notes of AAAI
Fall Symposium On Relevance AAAI, Menlo Park, CA, 1994, (1994).

[15] Fangzhen Lin and Raymond Reiter, ‘How to progress a database’, Artif.
Intell., 92(1-2), 131–167, (1997).

[16] John McCarthy and Patrick J. Hayes, ‘Some philosophical problems
from the standpoint of artificial intelligence’, Machine Intelligence, 4,
464–502, (1969).

[17] Robin Milner, ‘An algebraic definition of simulation between pro-
grams’, in IJCAI, pp. 481–489, (1971).

[18] Peiming Mo, Naiqi Li, and Yongmei Liu, ‘Automatic verification of
golog programs via predicate abstraction’, in ECAI, (2016).

[19] Raymond Reiter, Knowledge in Action: Logical Foundations for Spec-
ifying and Implementing Dynamical Systems, MIT Press, 2001.

[20] John K. Slaney and Sylvie Thiébaux, ‘Blocks world revisited’, Artif.
Intell., 125(1-2), 119–153, (2001).

[21] Siddharth Srivastava, Neil Immerman, and Shlomo Zilberstein, ‘Learn-
ing generalized plans using abstract counting’, in AAAI, (2008).

[22] Alfred Tarski, ‘A lattice-theoretical fixpoint theorem and its applica-
tions’, Pacific Journal of Mathematics, 5(2), 285–309, (1955).

[23] Kewen Wang, Abdul Sattar, and Kaile Su, ‘A theory of forgetting in
logic programming’, in AAAI, pp. 682–688, (2005).

[24] Yan Zhang and Yi Zhou, ‘Knowledge forgetting: Properties and appli-
cations’, Artif. Intell., 173(16-17), 1525–1537, (2009).

