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Abstract. Many practical problems where the environment is not in the system’s
control can be modelled in game-theoretic logics (e.g., ATL). But most work on
verification methods for such logics is restricted to finite state cases. De Giacomo,
Lespérance, and Pearce have proposed a situation calculus-based logical frame-
work for representing such infinite state game-type problems together with a ver-
ification method based on fixpoint approximates and regression. Here, we extend
this line of work. Firstly, we describe some case studies to evaluate the method.
We specify some example domains and show that the method does allow us to
verify various properties. We also find some examples where the method must
be extended to exploit information about the initial state and state constraints in
order to work. Secondly, we describe an evaluation-based Prolog implementation
of a version of the method for complete initial state theories with the closed world
assumption. It generates successive approximates and checks if they hold in the
situation of interest. We describe some preliminary experiments with this tool and
discuss its limitations.

1 Introduction

Many practical problems where the environment is not completely under the system’s
control, such as service orchestration, contingent planning, and multi-agent planning,
can be modeled as games and specified in game-theoretic logics. There has been much
work to define such logics (e.g., Alternating-Time Temporal Logic (ATL)) and develop
verification methods for them, mainly model checking techniques [1]. However, most
such work is restricted to finite state settings. De Giacomo, Lespérance, and Pearce
[8] (hereafter DLP) have developed an expressive logical framework for specifying
such problems within the situation calculus [16]. In their approach, a game-like prob-
lem/setting is represented as a situation calculus game structure, a special kind of action
theory that specifies who the players are, what the legal moves are, etc. They also de-
fine a logic that combines the µ-calculus, game-theoretic path quantifiers (as in ATL),
and first-order quantification, for specifying properties about such game settings. Ad-
ditionally, they propose a procedural language for defining game settings, GameGolog,
which is based on ConGolog [9]. Finally, they propose a method for verifying temporal
properties over infinite state game structures that is based on fixpoint approximates and
regression.

While DLP give examples to illustrate the expressiveness and convenience of their
formalism, they recognize that their work is essentially theoretical and call for experi-
mental studies to understand whether these techniques actually work in practice. This is



what we begin to address in this paper. We develop several example problems involving
infinite state domains and represent them as situation calculus game structures. We then
examine whether the DLP fixpoint approximates verification method works to verify
common temporal properties. In many cases, it does indeed work. So to some extent,
our work validates the DLP proposal.

We do however find other examples where the DLP method does not converge in a
finite number of steps. We note that the method uses only the simplest part of the ac-
tion theory, the unique name and domain closure axioms, to try to show that successive
approximates are equivalent (after performing regression). Clearly, using the whole ac-
tion theory is problematic as it includes a second-order axiom to specify the domain of
situations. We show that in some cases, adding a few key facts that are entailed by the
entire theory (from simple axioms about the initial state to state constraints proven by
induction) is sufficient to get convergence in a finite number of steps. This means that
the method can be used successfully in a wider range of problems if we can rely on the
modeler to identify such facts. Thus, our case studies show that the kind of method pro-
posed by DLP (and related approaches like [5, 6]) often does work for infinite domains,
where very few verification methods are available, and allows reasoning about a range
of game problems.

Note that in our case studies, the fixpoint approximation method was performed
manually. We also describe an evaluation-based Prolog implementation of a version
of the method for complete initial state theories with the closed world assumption. It
generates successive approximates and checks if they hold in the situation of interest.
We describe some experiments with this tool and discuss its limitations.

The paper is organized as follows. In the sext section, we review the situation cal-
culus and the DLP framework for representing infinite state game problems and their
verification method. In Section 3, we present our three case studies and discuss the re-
sults. In Section 4, we discuss our implementation of the method and how it handles the
problems in two of our case studies. In the last section, we review the contributions of
this work, discuss related work, and mention some issues for future work.

2 Situation Calculus Game Structures

The situation calculus (SitCalc) is a many-sorted predicate logic language for represent-
ing dynamically changing worlds in which all changes are the result of named actions
[16, 18]. Actions are terms in the language, e.g., pickup(R,X) could represent an ac-
tion where a robotR picks up an objectX . Action terms are denoted by α possibly with
subscripts to differentiate different action terms. Action variables are denoted by lower
case letters a possibly with subscripts. Action types, i.e., actions functions, which may
require parameters, are denoted by upper case letters A possibly with subscripts. Situa-
tions represent possible world histories and are terms in the language. The distinguished
constant S0 denotes the initial situation where no action has yet been performed. The
distinguished function symbol do is used to build sequences of actions such that do(a, s)
denotes the successor situation that results from performing action a in situation s. Flu-
ents are predicates or functions whose values may vary from situation to situation. They
are denoted by symbols that take a situation term as their last argument. A distinguished



predicate symbol Poss(a, s) is used to state that an action a is physically possible (i.e.
executable) in a situation s.

Given this language, one can specify action theories that describe how the world
changes as the result of the available actions. We focus on basic action theories as
proposed in [18]. We assume that there is a finite number of action types in the domains
we consider. Thus, a basic action theoryD is the union of the following disjoint sets: the
foundational, domain independent axioms of the situation calculus (Σ); precondition
axioms stating when actions are executable (Dposs); successor state axioms describing
how fluents change between situations (Dssa); unique name axioms for actions and
domain closure on action types (Dca); and axioms describing the initial configuration
of the world (DS0

). Successor state axioms specify the value of fluents in situation
do(a, s) in terms of the action a and the value of fluents in situation s; they encode the
causal laws of the world and provide a solution to the frame problem.

Situation calculus game structures, proposed by DLP, are a specialization of ba-
sic action theories that allow multi-agent game-like settings to be modeled. In SitCalc
game structures, every action a has an agent parameter and the distinguished function
agent(a) returns the agent of the action. Axioms for the agent function are specified
for every action type and by convention the agent parameter is the first argument of any
action type. It is assumed that there is a finite set Agents of agents who are denoted by
unique names. Actions are divided into two groups: choice actions and standard actions.
Choice actions model the decisions of agents and they are assumed to have no effect on
any fluent other than Poss, Legal, and Control. Standard actions are the other non-
choice actions. Choice actions are always physically possible, i.e., for all choice actions
a and situations s, Poss(a, s). DLP introduce a distinguished predicate Legal(s) that
is a stronger version of possibility/legality and models the game structure of interest. It
specifies what actions an agent may execute and what choices can be made according to
the rules of the game. The axioms provided for Legal specify the game of interest. It is
required that the axioms for Legal entail three properties: (1) Legal implies physically
possible (Poss), (2) legal situations are the result of an action performed in legal situ-
ations, and (3) only one agent can act in a legal situation, i.e., the game is a turn-taking
game. Control(agt, s) holds if agent agt is the one that is in control and can act in a
legal situation s; it is defined as follows:

Control(agt, s)
.
= ∃a.Legal(do(a, s)) ∧ agent(a) = agt.

As a result of the above constraints on Legal, it follows that the predicate Control
holds for only one agent in any given legal situation. As explained in DLP, games
where several agents act simultaneously can often be modeled using a round-robin
of choice actions. If the result of such simultaneous choices is non-deterministic, a
“game master” agent that makes the decision can be introduced. Note however that
the framework assumes that the agents all have complete information and that actions
are fully observable. Note also that the state of the game in situation s is captured
by the fluents. Finally, DLP define a SitCalc game structure to be an action theory
DGS = Σ ∪Dposs ∪Dssa ∪Dca ∪DS0

∪Dlegal, where Dlegal contains the axioms for
Legal and Control and for the function agent(), and the other components are as for
standard basic action theories [18]. Note that here, a game structure is a type of situation
calculus theory and not a single game model as is often the case.



DLP introduce a logical language L for expressing temporal properties of game
structures. It is inspired by ATL [1] and based on the µ-calculus [17], as used over
game structures as in [4]. The key element of the L-logic is the 〈〈G〉〉 © ϕ operator
defined as follows:

〈〈G〉〉 © ϕ
.
=

(∃agt ∈ G. Control(agt, now) ∧
∃a. agent(a) = agt ∧ Legal(do(a, now)) ∧ ϕ[do(a, now)]) ∨

(∃agt /∈ G. Control(agt, now) ∧
∀a. agent(a) = agt ∧ Legal(do(a, now)) ⊃ ϕ[do(a, now)])

This operator, in essence, specifies that a coalition G of agents can ensure that ϕ holds
next, i.e., after one more action, as follows. If an agent from the coalitionG is in control
in the current situation, then all we need is that there be some legal action that this agent
can perform to make the formula ϕ hold. If the agent in control is not in coalition G,
then what we need is that regardless of the action taken by the in-control agent (for all)
the formula ϕ holds after the action. The whole logic L is defined as follows:

Ψ ::= ϕ | Z(x) | Ψ1 ∧ Ψ2 | Ψ1 ∨ Ψ2 | ∃x.Ψ | ∀x.Ψ |
〈〈G〉〉 © Ψ | [[G]]© Ψ | µZ(x).Ψ(Z(x)) | νZ(x).Ψ(Z(x)).

In the above, ϕ is an arbitrary, possibly open, situation-suppressed situation calculus
uniform formula, Z is a predicate variable of a given arity, 〈〈G〉〉 © Ψ is as defined
above, [[G]]© Ψ is the dual of 〈〈G〉〉 © Ψ (i.e., [[G]]© Ψ ≡ ¬〈〈G〉〉 © ¬Ψ 1), and
µ (resp. ν) is the least (resp. greatest) fixpoint operator from the µ-calculus, where
the argument is written as Ψ(Z(x)) to emphasize that Z(x) may occur free, i.e., not
quantified by µ or ν, in Ψ .

The language L allows one to express arbitrary temporal/dynamic properties. For
example, the property that group G can ensure that eventually ϕ(x) (or has a strategy
to achieve ϕ(x)), where ϕ(x) is a situation suppressed formula with free variables x,
may be expressed by the following least fixpoint construction:

〈〈G〉〉♦ϕ(x) .= µZ(x). ϕ(x) ∨ 〈〈G〉〉 © Z(x)

Similarly, group G’s ability to maintain a property ϕ(x) can be expressed by the fol-
lowing greatest fixpoint construction:

〈〈G〉〉�ϕ(x) .= νZ(x).ϕ(x) ∧ 〈〈G〉〉 © Z(x)

We say that there is a path where ϕ(x) holds next if the set of all agents can ensure
that ϕ(x) holds next: ∃ © ϕ(x)

.
= 〈〈Agents〉〉 © ϕ(x). Similarly there is a path

where ϕ(x) eventually holds if the set of all agents has a strategy to achieve ϕ(x):
∃♦ϕ(x) .= 〈〈Agents〉〉♦ϕ(x).

DLP propose a procedure based on regression and fixpoint approximation to verify
formulas of logic L given a SitCalc game structure theory. This recursive procedure

1 Although ¬〈〈G〉〉©¬Ψ is not in L according to the syntax, the equivalent formula in negation
normal form is.



τ(Ψ) tries to compute a first-order formula uniform in current situation now that is
equivalent to Ψ :

τ(ϕ) = ϕ
τ(Z) = Z
τ(Ψ1 ∧ Ψ2) = τ(Ψ1) ∧ τ(Ψ2)
τ(Ψ1 ∨ Ψ2) = τ(Ψ1) ∨ τ(Ψ2)
τ(∃x.Ψ) = ∃x.τ(Ψ)
τ(∀x.Ψ) = ∀x.τ(Ψ)
τ(〈〈G〉〉 © Ψ) = R(〈〈G〉〉 © τ(Ψ))
τ([[G]]© Ψ) = ¬R(〈〈G〉〉 © τ(NNF(¬Ψ)))
τ(µZ.Ψ) = lfpZ.τ(Ψ)
τ(νZ.Ψ) = gfpZ.τ(Ψ)

In the above, R represents the regression operator and 〈〈G〉〉 © Ψ is regressable if
Ψ is regressable, NNF(¬Ψ) denotes the negation normal form of ¬Ψ , and lfpZ.Ψ and
gfpZ.Ψ are formulas resulting from the following least and greatest fixpoint procedures:

lfpZ.Ψ = gfpZ.Ψ =
R := False; R := True;
Rnew := Ψ(False); Rnew := Ψ(True);
while (Dca 6|= R ≡ Rnew){ while (Dca 6|= R ≡ Rnew){

R := Rnew; R := Rnew;
Rnew := Ψ(R) } Rnew := Ψ(R) }

The fixpoint procedures test if R ≡ Rnew is entailed given only the unique name and
domain closure for actions axioms Dca. In general, there is no guarantee that such
procedures will ever terminate i.e., that for some i Dca |= Ri ≡ Ri+1. But if the lfp
procedure does terminate, then DGS |= Ri[S] ≡ µZ.Ψ(Z)[S] and Ri is first-order and
uniform in now (and similarly for gfp ). In such cases, the task of verifying a fixpoint
formula in the situation calculus is reduced to that of verifying a first-order formula. We
have the following result:

Theorem 1. of DLP [8]: Let DGS be a situation calculus game structure and let Ψ
be an L-formula. If the algorithm above terminates, then DGS |= Ψ [S0] if and only if
DSo
∪ Dca |= τ(Ψ)[S0].

3 Case Studies

3.1 Light World (LW)

Our first example domain is the Light World (LW), a simple game we designed that
involves an infinite row of lights, one for each integer. A light can be on or off. Each
light has a switch that can be flipped, which will turn the light on (resp., off) if it was
off (resp., on). There are 2 players, X and O. Players take turns and initially it is X’s
turn. The goal of player X is to have lights 1 and 2 on in which case player X wins the
game. Initially, lights 1 and 2 are known to be off and light 5 is known to be on. Note
that this is clearly an infinite state domain as the set of lights that can be turned on or off



is infinite. Note also that the game may go on forever without the goal being reached
(e.g., if player O keeps turning light 1 or 2 off whenever X turns them on).

We will show that the DLP method can be used to verify some interesting proper-
ties in this domain. We apply the method with one small modification: when checking
whether the two successive approximates are equivalent, we use an axiomatization of
the integers DZ in addition to the unique names and domain closure axioms for actions
DLW

ca , as our game domain involves one light for every integer.2 The game structure
axiomatization for this domain is:

DLW
GS = Σ ∪ DLW

poss ∪ DLW
ssa ∪ DLW

ca ∪ DLW
S0
∪ DLW

Legal ∪ DZ .

We have only one action flip(p, t), meaning that player p flips light t, with the precon-
dition axiom (inDLW

poss):Poss(flip(p, t), s) ≡ Agent(p). We have the fluentsOn(t, s),
meaning that light t is on in situation s, and turn(s), a function that denotes the agent
whose turn it is in s. The successor state axioms (in DLW

ssa ) are as follows:

On(t, do(a, s)) ≡ ∃p a = flip(p, t) ∧ ¬On(t, s) ∨On(t, s) ∧ ∀p.a 6= flip(p, t)

turn(do(a, s)) = p ≡ p = O ∧ turn(s) = X ∨ p = X ∧ turn(s) = O

The rules of the game are specified using the Legal predicate. We have the following
axioms in DLW

legal:

Legal(do(a, s)) ≡ Legal(s) ∧ ∃p, t. Agent(p) ∧ turn(s) = p ∧ a = flip(p, t)

Control(p, s)
.
= ∃a.Legal(do(a, s)) ∧ agent(a) = p

agent(flip(p, t)) = p, ∀p.{Agent(p) ≡ (p = X ∨ p = O)}, X 6= O

Thus legal moves involve the player whose turn it is flipping any switch. We have the
following unique name and domain closure axioms for actions in DLW

ca :

∀a. { ∃p, t. a = flip(p, t)}
∀p, p′, t, t′. { flip(p, t) = flip(p′, t′) ⊃ p = p′ ∧ t = t′ }

Finally, the initial state axioms in DLW
S0

are: turn(S0) = X , ¬On(1, S0), ¬On(2, S0),
On(5, S0), and Legal(S0).

For our first verification example, we consider the property that it is possible for X
to eventually win assuming O cooperates, which can be represented by the following
formula:

∃♦Wins(X)
.
= µZ.Wins(X) ∨ ∃© Z,

where Wins(X, s)
.
= Legal(s) ∧ On(1, s) ∧ On(2, s). We apply the DLP method to

this example. We can show that the regressed approximations simplify as follows (see
2 Our axioms and the properties we attempt to verify only use a very simple part of integer

arithmetic. It should be possible to generate the proofs using the decidable theory of Pres-
burger arithmetic [11] after encoding integers as pairs of natural numbers in the standard way
[12]. Most theorem proving systems include sophisticated solvers for dealing with formulas
involving integer constraints and it should be possible to use these to perform the reasoning
about integers that we require.



[14] for more detailed versions of all proofs in this paper):

DLW
ca |= R0(s)

.
=Wins(X, s) ∨R(∃© False) ≡

Legal(s) ∧On(1, s) ∧On(2, s)
This approximation evaluates to true if s is such that X is winning in s already (in no
steps), i.e., if light 1 and light 2 are on in s.

DLW
ca ∪DZ |= R1(s)

.
=Wins(X, s) ∨R(∃©R0) ≡

Legal(s) ∧On(1, s) ∧On(2, s) ∨
Legal(s) ∧ (turn(s) = X ∨ turn(s) = O) ∧On(1, s) ∨
Legal(s) ∧ (turn(s) = X ∨ turn(s) = O) ∧On(2, s)

This approximation evaluates to true if s is such that X can win in at most 1 step; these
are legal situations where player X is already winning or where one of lights 1 or 2 is
on, as X or O can turn the other light on at the next step.

DLW
ca ∪DZ |= R2(s)

.
=Wins(X, s) ∨R(∃©R1) ≡

Legal(s) ∧On(1, s) ∧On(2, s) ∨
Legal(s) ∧ (turn(s) = X ∨ turn(s) = O)

This approximation evaluates to true if s is such that X can win in at most 2 steps; this
is the case if X is winning already or if s is any legal situation where it is X or O’s
turn, as the controlling player can turn light 1 on at the next step and the other player
can and light 2 on at the second step.

DLW
ca ∪DZ |= R3(s) ≡Wins(X, s) ∨R(∃©R2) ≡
Legal(s) ∧On(1, s) ∧On(2, s) ∨
Legal(s) ∧ (turn(s) = X ∨ turn(s) = O)

The fixpoint iteration procedure converges at the 4th step as we have: DLW
ca ∪ DZ |=

R2(s) ≡ R3(s). Note that it can be shown using the entire theory (by induction on
situations) that DLW

GS |= R2(s) ≡ Legal(s), as it is always either X’s or O’s turn.
Thus, it is possible for X to eventually win in any legal situation. It then follows by
Theorem 1 of DLP that:DLW

GS |= ∃♦Wins(X)[S0] if and only ifDLW
GS |= Legal(S0)∧

{On(1, S0)∧On(2, S0)∨turn(S0) = X∨turn(S0) = O}. By the initial state axioms,
the latter holds so DLW

GS |= ∃♦Wins(X)[S0], i.e., player X can eventually win in the
initial situation.

For our second example, we look at the property that X can ensure that he/she
eventually wins no matter what O does, i.e., the existence of a strategy that ensures
Wins(X). This can be represented by the following formula:

〈〈{X}〉〉♦Wins(X)
.
= µZ. Wins(X) ∨ 〈〈{X}〉〉 © Z

We apply the DLP method to try to verify this property. We can show that the regressed
approximations simplify as follows:

DLW
ca ∪ DZ |= R0(s)

.
=Wins(X, s) ∨R(〈〈{X}〉〉 © False) ≡

Legal(s) ∧On(1, s) ∧On(2, s)
This approximation evaluates to true if s is such that X is already winning in s (in no
steps); these are situations where lights 1 and 2 are already on.

DLW
ca ∪ DZ |= R1(s)

.
=Wins(X, s) ∨R(〈〈{X}〉〉 ©R0) ≡

Legal(s) ∧On(1, s) ∧On(2, s) ∨



Legal(s) ∧ turn(s) = X ∧On(1, s) ∨
Legal(s) ∧ turn(s) = X ∧On(2, s)

This approximation evaluates to true if s is such that X can ensure it wins in at most 1
step. This holds if lights 1 and 2 are already on or if either light 1 or 2 is on and it is
X’s turn, as X can then turn the other light on at the next step.

The next approximate R2 simplifies to the same formula as R1 and DLW
ca ∪ DZ |=

R1(s) ≡ R2(s), so the fixpoint iteration procedure converges in the 3rd step. There-
fore by Theorem 1 of DLP: DLW

GS |= 〈〈{X}〉〉♦Wins(X)[S0] ≡ R1(S0) Since both
lights 1 and 2 are off initially, it follows by the initial state axioms that DLW

GS |=
¬〈〈{X}〉〉♦Wins(X)[S0], i.e., there is no winning strategy for X in S0. However,
we also have that DLW

GS |= 〈〈{X}〉〉♦Wins(X)[S1], where S1 = do(flip(O, 3),
do(flip(X, 1), S0)), i.e., X has a winning strategy in the situation S1 where X first
turned light 1 on and then O flipped light 3, as X can turn on light 2 next.

Note that when the fixpoint approximation method is able to show that a coalition
can ensure that a property holds eventually, the theory is complete, and we have domain
closure, we can always extract a strategy that the coalition can follow to achieve the
property: a strategy works if it always selects actions for the coalition that get it from
one approximate to a lower approximate (Ri to Ri−1).

3.2 Oil Lamp World (OLW)

The DLP method tries to detect convergence by checking if the i-th approximate is
equivalent to the (i+1)-th approximate using only the unique name and domain closure
axioms for actionsDca (to which we have added the axiomatization of the integers). We
now give an example where this method does not converge in a finite number of steps.
However, we also show that if we use some additional facts that are entailed by the
entire theory DOLW

GS , including the initial state axioms, when checking if successive
approximates are equivalent, then we do get convergence in a finite number of steps.

Consider the Oil Lamp World (OLW), a variant of the Light World (LW) domain
discussed earlier. It also involves an infinite row of lamps, one for each integer, which
can be on or off. A lamp has an igniter that can be flipped. When this happens, the lamp
will go on provided that the lamp immediately to the right is already on, i.e., flipping
the igniter for lamp t will turn it on if lamp t+1 is already on. There is only one agent,
X . The goal of X is to have lamp 1 on, in which case X wins. Observe that the game
may go on indefinitely without the goal being reached, e.g., if X keeps flipping a lamp
other than lamp 1 repeatedly.

The game structure axiomatization for this domain is: DOLW
GS = Σ ∪ DOLW

poss ∪
DOLW

ssa ∪ DOLW
ca ∪ DOLW

S0
∪ DOLW

Legal ∪ DZ . As in the previous example, we have only
one action, flip(p, t), meaning that p flips the igniter on light t, with the following
precondition axiom (in DOLW

poss ): Poss(flip(p, t), s) ≡ Agent(p). But there is no turn
taking in this game as there is only one agent X . We have the successor state axiom (in
DOLW

ssa ):

On(t, do(a, s)) ≡ ∃p a = flip(p, t) ∧On(t+ 1, s) ∨On(t, s).

Note that once a lamp is turned on it remains on. The axioms in DOLW
legal specifying the

rules of the game are similar to the ones given earlier for the Light World domain, and



include:

Legal(do(a, s)) ≡ Legal(s) ∧ ∃p, t. Agent(p) ∧ a = flip(p, t).

Thus legal moves involve X flipping any igniter. The unique name and domain closure
axioms for actions and the initial state axioms are exactly as in the Light World example.

We are interested in verifying the property that it is possible for X to eventually
win, which is represented by the following formula:

∃♦Wins(X)
.
= µZ.{Wins(X) ∨ ∃© Z }

whereWins(X, s)
.
= Legal(s)∧On(1, s). We begin by applying the DLP method and

try to show that successive approximates are equivalent using only the unique name and
domain closure axioms for actions DOLW

ca and the axiomatization of the integers DZ .
We can show that the regressed approximations simplify as follows:

DOLW
ca ∪ DZ |= R0(s)

.
=Wins(X, s) ∨R(∃© False) ≡ Legal(s) ∧On(1, s)

This approximation evaluates to true if s is such thatX is already winning (in no steps);
these are situations where lamp 1 is on.

DOLW
ca ∪ DZ |= R1(s)

.
=Wins(X, s) ∨R(∃©R0) ≡

Legal(s) ∧ (On(1, s) ∨On(2, s))
This approximation evaluates to true if s is such that X can win in at most 1 step; these
are legal situations where either lamp 1 is on or where lamp 2 is on, and then X can
turn lamp 1 on at the next step.

DOLW
ca ∪ DZ |= R2(s)

.
=Wins(X, s) ∨R(∃©R1) ≡

Legal(s) ∧ (On(1, s) ∨On(2, s) ∨On(3, s))
This approximation evaluates to true if s is such thatX can win in at most 2 steps; these
are legal situations where either lamp 1 is on, or where lamp 2 is on (and then X can
turn lamp 1 on at the next step), or where lamp 3 is on (and then X can turn on lamps 2
and 1 at the next steps).

We can generalize and show that for all natural numbers i,

DOLW
ca ∪DZ |= Ri ≡ Legal(s) ∧

∨
1≤j≤i+1

On(j, s).

That is, X can win in at most i steps if some lamp between 1 and i+ 1 is on. It follows
that for all i, DOLW

ca ∪DZ 6|= Ri ≡ Ri+1, since one can always construct a model of
DOLW

ca ∪DZ where every light except i+2 is off. Thus, the plain DLP method fails to
converge in a finite number of steps.

Nonetheless, there is a way to strengthen the DLP method to get convergence in a
finite number of steps. The idea is to use some facts that are entailed by the entire theory
in addition to the unique name and domain closure axioms for actions DOLW

ca and the
integer axioms DZ . First, we can show by induction on situations that any lamp that is
on in the initial situation will remain on forever, i.e.,

DOLW
GS |= ∀k(On(k, S0) ⊃ ∀sOn(k, s)).



Then, it follows that for any natural numbers i, j, i ≤ j,

DOLW
ca ∪ DZ ∪ {On(i+ 1, S0),∀k(On(k, S0) ⊃ ∀sOn(k, s))} |= Rj ≡ Legal(s).

In essence, X can eventually win in any legal situation where some lamp n is known to
be on. It follows that:

DOLW
ca ∪ DZ ∪ {On(i+ 1, S0),∀k(On(k, S0) ⊃ ∀sOn(k, s))} |= Ri ≡ Ri+1.

Thus, the method converges in a finite number of steps if we use the facts that some lamp
n is known to be on initially and that a lamp that is on initially remains on forever. More-
over, our initial state axioms include On(5, S0). Thus, DOLW

GS |= ∃♦Wins(X)[S0],
i.e., X can eventually win in the initial situation, as it is legal and lamp 5 is on.

We can also show by induction on situations that if all lamps are off initially, they
will remain so forever:

DOLW
GS \ DOLW

S0
|= (∀k¬On(k, S0)) ⊃ (∀s∀k¬On(k, s)).

Then, we can show by a similar argument as above that the fixpoint approximation
method converges in a finite number of steps if we use the facts that all lamp are off
initially and that if all lamps are off initially, they remain off forever.

3.3 In-Line Tic-Tac-Toe (TTT1D)

Our final example domain is more like a traditional game. It involves a one-dimensional
version of the well-known Tic-Tac-Toe game that is played on an infinite vector of
cells, one for each integer. We show that the DLP method does work to verify both
the possibility of winning and the existence of a winning strategy in this game, al-
though in the former case the proof is long and tedious. There are two players, X
and O, that take turns, with X playing first. All cells are initially blank, i.e., marked
B. Players can only put their mark at the left or right edge of the already marked
area. The functional fluent curn denotes the marking position on the left (negative)
side of the marked area and similarly curp denotes the marking position on the right
(positive) side of the marked area. Initially, curn refers to cell 0 and curp to cell 1.
Player p can put its mark in the cell on the left (negative) side of the marked area,
i.e., the cell referred to by curn, by doing the action markn(p). This also decreases
the value curn by 1 so that afterwards, it points to the next cell on the left. There
is an analogous action markp(p) for marking the cell on the right (positive) side of
the marked area denoted by curp. A player wins if it succeeds in putting its mark
in 3 consecutive cells. E.g., if initially we have the following sequence of moves:
[markp(X),markn(O),markp(X),markn(O),markp(X)], then in the resulting sit-
uation the board is as follows:

. . . , B−3, B−2, O−1, O0, X1, X2, X3, B4, B5, . . .

(with the subscript indicating the cell number) and X wins. Note that the game may go
on indefinitely without either player winning, for instance if player O always mimics
the last move of player X .



The game structure axiomatization for this domain is:DT 31D
GS = Σ∪DT 31D

poss ∪DT 31D
ssa ∪

DT 31D
ca ∪ DT 31D

S0
∪ DT 31D

Legal ∪ DZ . The precondition axioms (in DT 31D
poss ) state that the

actions markn(p) and markp(p) are always possible if p is an agent. The successor
state axioms (in DLW

ssa ) are as follows:

curn(do(a, s)) = k ≡
∃p.{a = markn(p)} ∧ curn(s) = k + 1 ∨ curn(s) = k ∧ ∀p.{a 6= markn(p)}

curp(do(a, s)) = k ≡
∃p.{a = markp(p)} ∧ curp(s) = k − 1 ∨ curp(s) = k ∧ ∀p.{a 6= markn(p)}

cell(k, do(a, s)) = p ≡
a = markp(p) ∧ curp(s) = k ∨ a = markn(p) ∧ curn(s) = k ∨
cell(k, s) = p ∧ ¬∃p′.{a = markp(p′) ∧ curp(s) = k}

∧ ¬∃p′.{a = markn(p′) ∧ curn(s) = k}
turn(do(a, s)) = p ≡ agent(a) = X ∧ p = O ∧ turn(s) = X

∨ agent(a) = O ∧ p = X ∧ turn(s) = O

The rules of the game are specified (in DT 31D
legal ) as follows:

Legal(do(a, s)) ≡ Legal(s) ∧
∃p.{ turn(s) = p ∧ agent(a) = p ∧ (a = markn(p) ∨ a = markp(p)) }

Control(p, s)
.
= ∃a.Legal(do(a, s)) ∧ agent(a) = p

agent(markn(p)) = p, agent(markp(p)) = p
∀p. {Agent(p) ≡ (p = X ∨ p = O)}, X 6= O

The unique name and domain closure axioms for actions are specified in the usual
way. Finally, we have the following initial state axioms in DT 31D

S0
: curn(S0) = 0,

curp(S0) = 1, turn(S0) = X , and Legal(S0).
We first consider whether it is possible forX to eventually win ∃♦Wins(X), where

Wins(p, s)
.
= ∃k(Legal(s) ∧

((curn(s) = k − 2 ∧ cell(k − 1, s) = p ∧ cell(k, s) = p ∧ cell(k + 1, s) = p) ∨
(curp(s) = k + 2 ∧ cell(k + 1, s) = p ∧ cell(k, s) = p ∧ cell(k − 1, s) = p)))

(Note that this simple definition allows both players to win.) If we apply the original
DLP method to this property (using only the unique name and domain closure axioms
for actionsDT 31D

ca and the axiomatization of the integersDZ to show that successive ap-
proximates are equivalent), the fixpoint approximation procedure does eventually con-
verge, but only after 11 steps. The proof is very long and tedious and there are numerous
cases to deal with. The reason for this is that we cannot use the fact that curn is always
less than curp and that the cells that are between them are non-blank and that the other
cells are blank; these state constraints are consequences of the initial state axioms and
successor state axioms. So our proof has to deal with numerous cases where there are
non-blank cells to the left of curn or to the right of curp (if we use these state con-
straints, the proof becomes much simpler). We omit the detailed proof (which appears
in [14]). But we have that:

DT 31D
ca ∪ DZ |= R10(s)

.
=Wins(X, s) ∨R(∃©R9) ≡ Legal(s)



Thus, it is possible for X to win in at most 10 steps in all legal situations. Moreover
we have that DT 31D

ca ∪ DZ |= R10(s) ≡ R11(s), and thus the fixpoint approxima-
tion procedure converges in the 11th step. There are situations where it does take at
least 10 steps/moves for X to win, for instance if we have curp < curn with two
blank cells in between, i.e., ↑p BB ↑n, where ↑n represents the position of curn and
similarly for ↑p and curp, and it is O’s turn. The fact that curp < curn means that
the initial marks that are made will later be overwritten. It is straightforward to check
that it takes at least 10 moves for X to have 3 X’s in a row and win (O wins as well),
for instance if O keeps playing markn and X keeps playing markp. It follows from
our convergence result by Theorem 1 of DLP that: DT 31D

GS |= ∃♦Wins(X)[S0] ≡
R10(S0) ≡ Legal(S0). Since we have Legal(S0) in the initial state axioms, it follows
that DT 31D

GS |= ∃♦Wins(X)[S0], i.e., it is possible for X to win in the initial situation.
Finally, we consider the property that X can ensure that it eventually wins

〈〈{X}〉〉♦Wins(X). We can apply the original DLP method to this property (using
only the unique name and domain closure axioms for actions DT 31D

ca and the axiomati-
zation of the integers DZ to show that successive approximates are equivalent). We can
show that the regressed approximations simplify as follows:

DT 31D
ca ∪ DZ |= R0(s)

.
=Wins(X, s)∨R(〈〈{X}〉〉 ©False) ≡Wins(X, s)

DT 31D
ca ∪ DZ |= R1(s)

.
=Wins(X, s) ∨R(〈〈{X}〉〉 ©R0)

≡ R0(s) ∨XCanPlayToWinNext(s)
where XCanPlayToWinNext(s)

.
= Legal(s) ∧ turn(s) = X ∧

(∃k.(curn(s) = k − 1 ∧ cell(k, s) = X ∧ cell(k + 1, s) = X) ∨
∃k.(cell(k − 2, s) = X ∧ cell(k − 1, s) = X ∧ curp(s) = k) ∨
∃k.(cell(k − 2, s) = X ∧ cell(k − 1, s) = X ∧ curn(s) = k ∧ curp(s) = k + 1) ∨
∃k.(curn(s) = k − 2 ∧ curp(s) = k − 1 ∧ cell(k, s) = X ∧ cell(k + 1, s) = X) ∨
∃k.(cell(k − 2, s) = X ∧ curn(s) = k − 1 ∧ cell(k, s) = X ∧ curp(s) = k + 1) ∨
∃k.(curn(s) = k − 2 ∧ cell(k − 1, s) = X) ∧ curp(s) = k ∧ cell(k + 1, s) = X))

This approximation evaluates to true if s is such that X can ensure to win in at most 1
step. These are legal situations where there are 3 X marks in a row on either side, i.e.
↑n XXX or XXX ↑p, or where it is X’s turn and there are 2 X marks already and
X can fill in the missing cell to get 3 in a row, i.e. ↑nXX or XX ↑p or ↑n↑pXX or
XX ↑n↑p or ↑n X ↑p X or X ↑nX ↑p.
DT 31D

ca ∪ DZ |= R2(s)
.
=Wins(X, s) ∨R(〈〈{X}〉〉 ©R1) ≡

R1(s)∨ Legal(s) ∧ turn(s) = O ∧
∃m.(curn(s) < m−2∧cell(m−2, s) = X∧cell(m−1, s) = X∧curp(s) = m)∧
∃n.(curn(s) = n− 1 ∧ cell(n, s) = X ∧ cell(n+ 1, s) = X ∧ n+ 1 < curp(s))

This approximation evaluates to true if s is such that X can ensure to win in at most
2 steps. These are legal situations where X can ensure to win in at most 1 step as
above, or where it is O’s turn and we have both XkX ↑p with ↑n< k and ↑n XXk

with ↑p> k; then if O plays markn then X can play markp to win afterwards, and
if O plays markp then X can play markn to win afterwards. The next approxima-
tion R3(s) simplifies to exactly the same formula as R2(s). Thus the procedure con-
verges in the 4th step as we have: DT 31D

GS ∪ DZ |= R2(s) ≡ R3(s). Therefore by
Theorem 1 of DLP: DT 31D

GS |= 〈〈{X}〉〉♦Wins(X)[S0] ≡ R2(S0). It follows by



the initial state axioms that DT 31D
GS |= ¬〈〈{X}〉〉♦Wins(X)[S0] i.e., there is no win-

ning strategy for X in S0. But DT 31D
GS |= 〈〈{X}〉〉♦Wins(X)[S1], where S1 = do(

[markp(X),markn(O),markp(X),markn(O)], S0), i.e., there is a winning strategy
for X in a situation where X has marked twice on the right and O has marked twice
on the left. We have also developed two other examples of games played on an infinite
vector of cells to evaluate the DLP method; see [14] for details.

4 An Evaluation-Based Verification Tool

To further examine the feasibility of automating the DLP method, we have developed
an evaluation-based Prolog implementation of a version of the method for complete
initial state theories with the closed world assumption. The system can correctly verify
many properties in infinite state game structures. The method is completely automated,
unlike most theorem proving-based approaches. Here “evaluation-based” refers to the
use of evaluation instead of entailment to check state properties under the condition of
complete information (i.e., single model) and the closed-world assumption. The verifier
is domain-independent. One major limitation of the current prototype is that it does
not actually check for convergence of the fixpoint approximation, and thus may not
terminate when the DLP method does, as we discuss later.

Our verifier builds on the logic programming evaluator for situation calculus projec-
tion queries developed by Reiter [18] for complete initial state theories with the closed
world assumption. That approach uses a Prolog encoding of the domain’s basic action
theory as defined in [18]. For example, for the In-Line Tic-Tac-Toe domain, we have:

% Precondition Axioms
poss(markn(P),S) :- agent(P).
poss(markp(P),S) :- agent(P).
% Successor State Axioms
curn(K,do(A,S)) :- A=markn(_), curn(KX,S), K is KX - 1;

not(A=markn(_)), curn(K,S).
curp(K,do(A,S)) :- A=markp(_), curp(KX,S), K is KX + 1;

not(A=markp(_)), curp(K,S).
cell(K,M,do(A,S)) :- A=markp(M), curp(K,S); A=markn(M), curn(K,S);

(not(A=markn(M)); not(curn(K,S))),
(not(A=markp(M)); not(curp(K,S))), cell(K,M,S).

turn(P,do(A,S)) :- turn(x,S), P = o; turn(o,S), P = x.
legal(do(A,S)) :- turn(P,S), (A=markn(P) ; A=markp(P)), legal(S).
% Initial State Axioms
cell(_,b,s0). % all cells are initially blank
curn(0,s0). curp(1,s0). turn(x,s0). legal(s0).

One can evaluate projection queries using such a program, e.g., check whether
cell(2,b,do(markp(x),s0)), i.e., that cell 2 is still blank after agent X marks
right in the initial situation. The program works essentially by regressing the query to
the initial situation and evaluating it against the initial state axioms. Regression involves
replacing fluent atoms by the instantiated right-hand side of their successor state axiom,
thus transforming a query about a situation into an equivalent one about the previous
situation. For example, cell(2,b,do(markp(x),s0)) is regressed into



markp(x)=markp(b), curp(2,s0);
markp(x)=markn(b), curn(2,s0);
(not(markp(x)=markn(b)); not(curn(2,s0))),
(not(markp(x)=markp(b)); not(curp(2,s0))), cell(2,b,s0)

which succeeds because the last disjunct holds according to the encoded initial state
axioms and the unique name assumption.

Reiter [18] shows how to define an evaluator for a rich set of first-order queries on
top of such an encoding of the basic action theory. Here is some of the evaluator code:

holds(P & Q,S) :-!, holds(P,S), holds(Q,S). % conjunction
holds(P v Q,S) :-!, (holds(P,S); holds(Q,S)). % disjunction
holds(some(V,P),S) :-!, subst(V,_,P,P1), holds(P1,S). %existential
% handled by replacing the variable by a fresh Prolog variable
holds(all(V,P),S) :-!, holds(-some(V,-P),S). % universal
...
% handling negation
holds(-P,S) :- ll_atom(P), !, not(holds(P,S)).
holds(-(-P),S) :- !, holds(P,S).
holds(-(P & Q),S) :- !, holds(-P v -Q,S).
holds(-(P v Q),S) :- !, holds(-P & -Q,S).
...
holds(-all(V,P),S) :- !, holds(some(V,-P),S).
holds(-P,S) :- not(holds(P,S)).
% handling atoms
holds(Pred,S) :- restoreSitArg(Pred,S,PredEx), !, PredEx.

The evaluator recursively evaluates the arguments of conjunctions and disjunctions. Ex-
istential quantification is left for Prolog to handle. Universal quantification is rewritten
using negation and existential quantification. Negation is distributed over conjunction
and disjunction. Finally, atomic fluents are regressed and evaluated using the Prolog
encoding of the basic action theory.

Our verifier checks if a given temporal property expressed in theL-Logic holds for a
given situation. It is defined by extending Reiter’s evaluator. We handle the key temporal
operator 〈〈G〉〉© Ψ [S] essentially by translating it into its situation calculus definition,
and then checking the result in the usual way using a combination of regression and
evaluation:

holds(canEnsureNext(G,F),S) :- !, (
incontrol(G,S), holds(exists_successor(G,F),S);
incontrol(-G,S), holds(forall_successors2(-G,F),S)).

holds(exists_successor(G,F),S) :- !, member(P,G),
agent_action(P, A), S1=do(A,S), legal(S1), holds(F,S1), !.

holds(forall_successors2(-G,F),S) :- !,
not(holds(exists_successor2(-G,-F),S)).

holds(exists_successor2(-G,F),S) :- !, agent(P), not(member(P,G)),
agent_action(P, A), S1=do(A,S), legal(S1), holds(F,S1), !.

The [[G]]© Ψ [S] case is handled as ¬〈〈G〉〉 © ¬Ψ [S].



The µ and ν operators are handled by generating successive fixpoint approximates
Ri as in the DLP method, except that we bound the number of approximates generated
and we do not check for convergence, we simply check if the successive approximates
hold in the situation of interest S:

holds(mu(z,F),S) :- !, mu_approx(z,F,false,1,S).
holds(nu(z,F),S) :- !, mu_approx(z,F,true,1,S).
mu_approx(Z,F,Int,N,S) :- binding_diameter(Max), N>Max, !,

write(’binding diameter ’), write(N),
write(’ reached - stop’), nl, !, fail.

mu_approx(Z,F,Int,N,S) :- subst(Z,Int,F,Fx), holds(Fx,S), !,
output1(N,Fx).

mu_approx(Z,F,Int,N,S) :- M is N+1, subst(Z,Int,F,Int2), !,
mu_approx(Z,F,Int2,M,S).

By not checking for convergence, i.e. whether D |= Ri+1 ≡ Ri, we avoid the need
for complex logical reasoning requiring theorem proving techniques. The downside is
that the verifier will never terminate on µZ.Ψ queries that are false even if the fixpoint
approximation converges, as it does not detect this. To ensure termination, the user may
impose a bound on the number of approximates that are generated and evaluated. The
idea is similar to the binding diameter concept in bounded model checking [3]. In some
cases, the bound can be a number of moves that is reasonable in the game modeled. The
formula 〈〈G〉〉♦Ψ is defined in terms of the µ operator as µZ.Ψ ∨ 〈〈G〉〉 © Z:

holds(canEnsureEventually(G,F),S):-
!,holds(mu(z,F v canEnsureNext(G,z)),S).

For this, our verifier generates fixpoint approximates and evaluates them in the given
situation S, stopping as soon as one of the approximates evaluates to true:

let R0 := Ψ ∨ 〈〈G〉〉 © False and evaluate R0[S]; if it succeeds, return success;
else let R1 := Ψ ∨ 〈〈G〉〉 ©R0 and evaluate R1[S]; if it succeeds, return success;
. . .
else let Rlimit := Ψ ∨ 〈〈G〉〉 © Rlimit−1 and evaluate Rlimit[S]; if it succeeds,
return success;
else return failure.

We have tested our verifier on some of our infinite state game structure examples.
On the In-Line Tic-Tac-Toe domain, the verifier can confirm that both agents can coop-
erate to ensure that X wins (in 5 steps) in the initial situation, i.e., the following query
succeeds after generating and evaluating 6 approximates:

?- holds(canEnsureEventually([x,o],wins(x)),s0).
trying ##### approximation 1 ---> wins(x) v next([x, o], false)
[...]
trying ##### approximation 6 ---> wins(x) v

next([x, o], wins(x) v
next([x, o], wins(x) v

next([x, o], wins(x) v



next([x, o], wins(x) v
next([x, o], wins(x) v next([x, o], false))))))

[...]
> successor EXISTS for G --->

next([x, o], wins(x) v next([x, o], false)) ---> for
do(markn(o), do(markp(x), do(markn(o), do(markn(x), s0))))

[...]
> ##### approximation 6 holds --->
[...]
wins(x) v

next([x, o], wins(x) v
next([x, o], wins(x) v

next([x, o], wins(x) v
next([x, o], wins(x) v

next([x, o], wins(x) v next([x, o], false))))))
yes

As part of doing the verification, the system finds a sequence of actions by the two
cooperating agents that allows X to win.

The verifier can also confirm that agent X can ensure that it wins (in 1 step) in the
situation do(markn(o), do(markp(x), do(markn(o), do(markp(x), s0)))), whereX
has already put 2 marks on the right and O had already put 2 marks on the left. How-
ever, if we try to check if X can ensure that it wins in the situation do(markp(x),
do(markn(o), do(markp(x), s0))), where X has already put 2 marks on the right and
O had already put 1 mark on the left, the verifier cannot confirm that the query is in fact
false; it keeps generating successive approximates and eventually gives up after reach-
ing the binding diameter. The problem is that O can always prevent X from winning at
the next step and the verifier is not checking whether it has converged to a fixpoint in
the approximation.

We have also tested our verifier on the Light World domain. This is more challeng-
ing because there are infinitely many legal actions at every state, as any switch can be
flipped. The verifier succeeds in confirming that X can ensure that it wins in the situ-
ation where it flipped light 2 on initially and then O flipped light 4 on, as X can win
in one step by flipping light 1 on next. But it cannot confirm that the two agents can
cooperate to ensure that X eventually wins in the initial situation S0. The problem is
that this requires two steps (where X first flips light 1 or 2 on and then O flips the other
one on) and there is an infinite number of flipping actions that can be performed at the
first step, all of which must be considered before concluding that X cannot win in one
step in S0. If we bound the set of switches that are considered (e.g., only allow flipping
the first 10 switches), then the verifier will be able to successfully verify that the query
holds. It first establishes that X cannot win in one step (e.g., by flipping any of the 10
available switches) and then succeeds in finding a sequence of two actions that allows
X to win. However, bounding the set of switches essentially makes the game finite state
and changes what temporal properties hold. A better approach would be to modify the
game to allow the set of switches considered to be progressively expanded, perhaps by
a neutral agent. The important thing is to allow more actions/branches in a state only as
longer sequences of actions are considered.



Additionally, the verifier cannot show that X cannot ensure that it eventually wins
in the situation where it has already flipped light 2 on (as O can flip it off next and con-
tinue undoing any progress that X makes towards the goal). The verifier succeeds in
showing that O can prevent X from winning at the next step (O can flip any switch ex-
cept 1). It then generates the third approximate and tries to show that X can win in one
step after every action that O makes next. If we bound the set of switches that are con-
sidered, the verifier can confirm that X cannot win in two steps as O can flip light 2 off
next. The verifier keeps generating and evaluating successive approximates and eventu-
ally gives up after reaching the binding diameter. It does not check whether successive
approximates are equivalent, and thus fails to detect that the fixpoint approximation has
converged after generating the fourth approximate.

We have also tested our verifier on a formalization of the standard 2D Tic-Tac-Toe
game (used as an example in [8]), a finite state domain. In this case the verifier can
do a complete search and correctly answers queries about the existence of a winning
strategy. For example, it can confirm that X cannot ensure that it eventually wins in
the initial situation with a blank board; it can also confirm that X can ensure that it
eventually wins in a situation where X has marked the center square and O has then
marked a non-corner square.

To summarize, in finite state domains the verifier correctly answers queries as it can
do a complete search. In infinite state domains, our verifier can often show that least fix-
point queries are true but cannot show that least fixpoint queries are false (and greatest
fixpoint queries are true), because it does not check whether successive approximates
are equivalent. We hope to address this in future work.

In many cases, we would like to verify properties assuming that agents are following
certain strategies, or have certain strategic preferences. For example, in standard 2D Tic-
Tac-Toe, one might know that a player always tries to mark corners first. This would
allow modelling more realistic types of agents. It can also cut down significantly on
the number of alternative actions that must be considered and speed up verification.
Knowing that the opponent follows certain strategic preferences may provide the player
with a way to ensure it eventually wins when it could not otherwise.

We have extended the DLP formalization to support this. There are many ways to
model strategic preferences. A simple approach is to assume that the modeler defines a
predicate Preferred(p, a, s) that holds if and only if action a is a preferred action for
player p in situation s. Note that there may be several alternative preferred actions in a
situation. Other specifications of strategic preferences can be mapped to this form.

It is straightforward to modify the logic to only consider paths where all players
select actions according to their preferences. We change the semantics of the 〈〈G〉〉©Ψ
operator as follows. If a player in G is in control in the current situation, Ψ must hold
after some preferred action for him if there is one; if there is no preferred action, Ψ
must hold after some legal action. If a player not in G is in control, Ψ must hold after
all preferred actions for him if there is some preferred action, and after all legal actions
if there is none. This means that Preferred(p, a, s) represents soft constraints. If there
are no preferred actions in a situation, we revert to considering all legal actions. Our
implementation supports this type of specification of player action preferences and we
have tested it on some standard 2D Tic-Tac-Toe examples.



Our verifier also supports the use of the GameGolog language proposed in DLP
to specify the game structure procedurally. See [14] for more details. The current pro-
totype implemented in SWI Prolog (www.swi-prolog.org), together with some
examples, is available at www.cse.yorku.ca/∼skmiec/SCGSverifier/. We
believe that our verifier implementation is sound (assuming a “proper” Prolog inter-
preter is used, i.e., one that flounders on negative queries with free variables). It is not
complete, in part for the same reasons that Prolog is not a complete reasoner for first
order logic. We leave the proof of soundness for future work.

5 Discussion and Related and Future Work

In this paper, we described the results of some case studies to evaluate whether the
DLP verification method actually works. We developed various infinite state game-type
domains and applied the method to them. Our example domains are rather simple, but
have features present in practical examples (e.g., the T 31D domain is 1D version of Tic-
Tac-Toe on an infinite board). Our experiments do confirm that the method does work
on several non-trivial verification problems with infinite state space. We also identify
some examples where the method, which only uses the simplest part of the domain
theory, the unique names and domain closure for action axioms, fails to converge in a
finite number of steps. We show that in some of these cases, extending the method to use
some selected facts about the initial situation and some state constraints does allow us to
get convergence in a finite number of steps. Our example domains and properties should
be useful for evaluating other approaches to infinite state verification and synthesis.

We also described an evaluation-based Prolog implementation of a version of the
DLP method for complete initial state theories with the closed world assumption. It
generates successive approximates and checks if they hold in the situation of interest,
but does not check if the sequence of approximates converges. Our verifier is fully auto-
matic, unlike most theorem proving-based tools. We have also extended the framework
to allow agents’ strategic preferences to be represented and used in verification. See [14]
for more details about our verification experiments, proofs, and implemented verifier.

Among related work that deals with verification in infinite-states domains, let us
mention [5, 6], which also uses methods based on fixpoint approximation. There, char-
acteristic graphs are introduced to finitely represent the possible configurations that a
Golog program representing a multi-agent interaction may visit. Their specification lan-
guage is rich modal variant of the situation calculus with first and second order quanti-
fiers, temporal operators and path quantifiers as in CTL∗, and dynamic logic operators
labeled with Golog programs. However, the language does not include fixpoint opera-
tors or alternating-time quantifiers, and is not a game structure logic. In their verification
procedure, like DLP, they check for convergence using only the unique name axioms
for actions part of the action theory. Also closely related is [19], which uses a fixpoint
approximation method to compose a target process expressed as a ConGolog program
out of a library of available ConGolog programs. Earlier, [13] proposed a fixpoint ap-
proximation method to verify a class of temporal properties in the situation calculus,
called property persistence formulas. [20] shows how a theorem proving tool can be
used to verify properties of multi-agent systems specified in ConGolog and an extended



situation calculus with mental states. A leading example of a symbolic model checker
for multi-agent systems is MCMAS [15]. [2] shows that model checking of an expres-
sive temporal language on infinite state systems is decidable if the active domain in
all states remains bounded. As well, [10] shows that verification of temporal properties
in bounded situation calculus theories where there is a bound on the number of fluent
atoms that are true in any situation is decidable. [7] identifies an interesting class of
Golog programs and action theories for which verification is decidable.

In future work, we would like to further develop our evaluation-based verifier. We
plan to extend it to perform limited symbolic reasoning to detect if successive approxi-
mates are equivalent. We will also do more experimental evaluation. We would also like
to implement an open-world symbolic version of the DLP method, perhaps by writing
proof tactics in a theorem proving environment. It would also be desirable to develop
techniques for identifying initial state properties and state constraints that can be used
to show finite convergence in cases where these are needed. More generally, we need a
better characterization of when this kind of method can be used successfully. The DLP
framework assumes that only one agent can act in any situation, and that all agents
have complete knowledge of the situation and that actions are fully observable. As a
first step, it would be interesting to extend it to support synchronous moves by mul-
tiple agents. Going further, the framework should be generalized to deal with private
knowledge and partial observability. Finally, the approach should be evaluated on real
practical problems.
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