
Alexei Lapouchnian and Yves Lespérance
Department of Computer Science,

York University,
Toronto, ON M3J 1P3

Canada
email: {alexei, lesperan}@cs.yorku.ca

Abstract
In this paper we describe an interface library
IG-OAAlib that supports the development of
Open Agent Architecture (OAA) agents using
the IndiGolog agent programming language.
OAA is a multiagent infrastructure that sup-
ports facilitated communication. IndiGolog is
a high-level agent programming language
based on logic that supports planning and al-
lows complex agent behaviours to be speci-
fied. Full-fledged IndiGolog agents written
using our interface library can be both reac-
tive and proactive, thus overcoming one of the
limitations of the OAA framework. The inter-
face hides all of the low-level procedures that
are used to communicate with the OAA sys-
tem as well as OAA initialization, thereby
leaving the IndiGolog programmer free to
concentrate on the functionality of the agent.

1 Introduction
IndiGolog [De Giacomo and Levesque, 1999] is a
very-high-level programming language for intelligent
agents and robots that supports on-line planning and
plan execution in dynamic and incompletely known
environments. It allows the programmer to specify a
logical model of the domain in the situation calculus
and uses it to perform projection in planning/search
and update when actions occur. Complex behaviours
combining planning and reactivity can be specified in
a rich concurrent programming language. It has been
implemented on top of Prolog and is a very effective
tool for programming individual agents for tasks that
require planning and reasoning.

However, many applications are best delivered as
multiagent systems that involve multiple interacting
agents with specialized skills. Agents programmed in
IndiGolog can be included in such systems, but until
recently, they had always been interfaced using low-
level protocols such as TCP/IP. In this paper, we de-
scribe a new interface mechanism IG-OAAlib that al-
lows the easy integration of IndiGolog agents in multi-
agent systems that use SRI's Open Agent Architecture
(OAA) [Martin et al., 1999] infrastructure. OAA pro-

vides high-level brokered communication facilities
that can automatically route requests to agents that
have the capabilities to serve them. It uses a Prolog-
like Interagent Communication Language that makes it
a good match for IndiGolog. The combination of
OAA and IndiGolog provides a very powerful tool for
developing multiagent systems for advanced applica-
tions (such as [McIlraith and Son, 2001]). As an ex-
ample, we describe a multirobot mail delivery system
that has been implemented using the framework.

Our IndiGolog-OAA interface mechanism allows
IndiGolog agents to be both proactive and reactive.
This overcomes a major limitation of Prolog-based
agents in OAA since both IndiGolog and OAA require
them to run their separate event loops. Here, we pro-
pose a solution that integrates these event loops, there-
fore allowing an IndiGolog agent to monitor both
OAA and IndiGolog events concurrently.

2 IndiGolog

2.1 IndiGolog Agent Structure
An IndiGolog agent includes the following:

• A specification of the application domain dynam-
ics. This is done declaratively in situation calculus
[McCarthy and Hayes, 1979; Reiter, 2001].

• Behaviour specification. This is specified proce-
durally in a rich programming language with loops,
non-determinism, concurrency, interrupts, etc. In-
diGolog agents may perform sensing actions to ac-
quire information at runtime as well as react to ex-
ogenous events.

2.2 Specifying Domain Dynamics in
Situation Calculus

In IndiGolog domain theories are specified in the
situation calculus [McCarthy and Hayes, 1979; Reiter,
2001], a language of predicate logic for representing
dynamically changing worlds. In this language, a pos-
sible world history, which is simply a sequence of ac-
tions, is represented by a first order term called a
situation. The constant So is used to denote the initial

Interfacing IndiGolog and OAA – A Toolkit for Advanced Multiagent
Applications

situation and the term do(a,s) denotes the situation
resulting from action a being performed in situation s.

Relations and functions that vary from situation to
situation, called predicate fluents and functional flu-
ents respectively, are represen ted by predicate and
function symbols that take a situation term as last ar-
gument. A domain of application will be specified by
theory that includes the following types of axioms [De
Giacomo and Levesque, 1999; Reiter, 2001]:

• Axioms describing the initial situation, So.

• Action precondition axioms, one for each primitive
action a, characterizing Poss(a,s), which means
that primitive action a is possible in situation s.

• Successor state axioms, one for each fluent F,
which characterize the conditions under which
F(x,do(a,s)) holds in terms of what holds in situa-
tion s; they provide a solution to the frame problem
[Reiter, 1991].

• Sensed fluent axioms, which relate the value re-
turned by a sensing action to the fluent condition it
senses in the environment.

• Unique names axioms for the primitive actions.

• Some foundational, domain independent axioms.
In the current IndiGolog implementation, the initial

situation is specified as a set of Prolog clauses, which
means that only completely specified initial situations
can be handled. We hope to accommodate limited
forms of incompleteness in the future implementations

2.3 Behaviour specification
The behaviour of an IndiGolog agent is specified pro-
cedurally using a rich set of high-level programming
constructs which include recursive procedures, if-then-
else, while loops, non-deterministic execution of two
programs, non-deterministic choice of arguments, non-
deterministic iteration of a program, concurrent execu-
tion of two programs with or without prioritization,
interrupts, etc.

A powerful search block facility is available in In-
diGolog. By default IndiGolog programs are executed
in an on-line fashion: all the non-deterministic choices
are treated as random ones and, any action selected is
executed immediately. On the other hand, for a pro-
gram in a search block the interpreter does an offline
search. It looks for a sequence of actions constituting a
legal execution of the program resolving non-
deterministic choices appropriately, before actually
executing them. After a sequence of actions is found
for the search block, it needs to be rechecked if an ex-
ogenous action occurs to see if it still leads to the final
situation for the search block. If the previously found
sequence of actions is no longer valid, replanning (a
new search) is done.

3 The Open Agent Architecture
The Open Agent Architecture is a framework for con-
structing multiagent systems developed at SRI Interna-
tional [Martin et al., 1999]. The primary goal of OAA

is to provide a means for integrating heterogeneous
applications in a distributed infrastructure. OAA in-
corporates some of the dynamism and extensibility of
blackboard approaches, the efficiency associated with
distributed objects (e.g. CORBA, DCOM), and the rich
and complex interactions of communicating agents.
 OAA provides a communication infrastructure for
the agents as well as the Interagent Communication
Language (ICL) that is used to exchange information
between agents. The system has at least one special
agent called facilitator. This agent acts as a bro-
ker/matchmaker and all interagent communication
goes through it. The facilitator keeps track of all the
agents in its system, their addresses, and their capa-
bilities. Requests are automatically routed to agents
that have the capabilities to handle them. It is possible
to create a hierarchy of facilitators, each with its own
subsystem of agents. The current version of OAA sup-
ports such agents written in Java, Quintus and SICStus
Prolog, C/C++, and Compaq's Web Language.

When a client agent enters the system, it connects to
the facilitator agent and provides it with a list of solv-
ables – the agent's capabilities. These provide the high
level interface to the agent. A callback method associ-
ated with a capability is invoked when a request in-
volving that capability is received. Agents can dy-
namically add and remove solvables. The solvables
can be of two types: procedure and data. Procedure
solvables describe some service that can be performed
by the agent, while data solvables are most commonly
used to create a data storage that is shared among the
agents in the system.

When an agent wants some services performed by
other agents, it issues an oaa_Solve(goal, parameters)
request that is forwarded to an appropriate agent by the
facilitator. The goal part of such request is an ICL de-
scription of the service to be performed. A number of
parameters can be used in the oaa_Solve request to
specify, for example, whether this call should be
blocking, or to say whether multiple agents are al-
lowed to attempt to solve the problem simultaneously.
The result of the query is returned by binding variables
as in Prolog.

4 Our IndiGolog-OAA Interfacing
Scheme

Our interfacing scheme is designed to integrate full-
fledged IndiGolog agents in an OAA-based system
without giving up any of the usual functionalities (e.g.
data solvables, interrupts, etc.) of either tools. It sup-
ports the integration into an OAA system of IndiGolog
agents that are both reactive and proactive, thus over-
coming one of the major limitations of Prolog-based
agents in OAA (see Figure 1). To be able to execute
IndiGolog program while keeping track of incoming
OAA events, we need to integrate the event loops of
IndiGolog and OAA.

To allow this, we need to use an asynchronous
communication scheme. Other agents should be using
non-blocking calls when requesting services from In-
diGolog OAA agents built using this interface. It is up

Figure 1. IndiGolog-OAA Interface

to the IndiGolog program to decide when and how to
respond to these requests. We advise that the calls to
OAA made from an IndiGolog agent using this inter-
face also be non-blocking, to allow the agent to react
promptly to its incoming events.

An IndiGolog OAA agent using this interface will
be able to execute its program (e.g. reason-
ing/planning) while still keeping track of incoming
OAA messages (most notably requests for service
coming from other agents in the system). Support for
exogenous events in IndiGolog allows us to automati-
cally check the OAA library for incoming events after
every action executed by the IndiGolog interpreter.
The process of receiving OAA events is completely
transparent to the programmer: they appear in the pro-
gram as IndiGolog exogenous actions.

The OAA primitives can be used in the implementa-
tions of IndiGolog primitive actions. The interface lets
the OAA library handle all the incoming messages that
are not calls to the solvables the agent has defined.
Such events may be related to the management of data
solvables defined at this agent and auxiliary activities
such as message tracing.

In order to be able to react to OAA events appropri-
ately, an IndiGolog agent needs to have exogenous
actions defined, one for every procedure solvable that
the agent declares. Incoming OAA events that are in-
tercepted by this interface appear in IndiGolog pro-
gram as these exogenous actions. They are inserted
into the action history in the order that they are re-
ceived. Successor state axioms involving these exoge-
nous actions should be defined, changing the values of
certain fluents in accordance with the event received.

The interface also hides all of the code that is
needed to connect to the OAA facilitator, declare solv-
ables, etc. However, here we concentrate on the other
benefits of this interface.

We next present an example application before re-
turning to the details of the interface implementation.

5 Example Application: Multirobot
Mail Delivery

5.1 Overview
Let us now describe an application that we have im-
plemented with our toolkit. It involves a multirobot
mail delivery system. The setting is a virtual office
environment, which models the graduate labs area in
our department. This environment is populated by a
varying number of robots capable of delivering pack-
ages (the robots are currently simulated). The assign-
ment of packages to robots is the responsibility of a
dispatcher agent. The dispatcher and the robots im-
plement a variant of the contract net protocol to select
the best robot to deliver a package. The system is open
in the sense that the robots can come online and go
offline (presumably after completing the orders they
were assigned) at any time. If no robot can deliver a
package, the order is queued until there is a robot
available. The GUI agent is used to get users’ orders
and visualize the system by displaying the status and
locations of all the robots in the system.

This example system includes six different agents.
Five of them are implemented in Java. The mail deliv-
ery robots are actually implemented using an architec-
ture that involves two agents: a high-level control
agent written in IndiGolog and a low-level control
agent written in Java. The IndiGolog-based High-
Level Control agent (HLC) is responsible for bidding
for available mail delivery orders and for constructing
optimal plans for carrying out the orders awarded to
the robot. It takes full advantage of the IndiGolog-
OAA interface through which it can execute its pack-
age delivery plan while responding to requests for bids
coming from the dispatcher and modifying the plan to
incorporate newly awarded orders. The Java-based
Low-Level Control agent (LLC) simulates the move-
ment of the robot through the environment. Each robot
has a unique ID. This ID is given to both the LLC and
the HLC and is used by them to find each other and
form a single logical robot controller while still re-
maining two separate agents.

5.2 Individual Agent Details

5.2.1 The GUI, PathPlanner, and DB Agents
The GUI agent displays the virtual environment with
the current position and status of every mail delivery
robot and package as well as the status of all delivery
orders. It is used by the user of the system to place
orders for package delivery. This agent is multi-
threaded and all the synchronous calls to OAA are
executed in their own threads, thus allowing it to ac-
commodate a large number of robots and orders. The
robots use the GUI’s solvables action_update (we
omit parameters here) and position_update to send
information about their current activity and location
respectively.

The PathPlanner agent knows the distances and
paths between any pair of locations. It is used mainly
by the robots to prepare bids for new orders and for

traveling from location to location. It has two solv-
ables: distance returns the distance between a pair of
locations while path returns a list of locations that
constitutes a path from one location to another.

The DB agent accepts bids from robots and sends
them to the Dispatcher while also keeping track of
queued orders. Since the DB agent acts like a black-
board, its functionality could have been easily imple-
mented by the OAA facilities such as triggers and data
solvables. Unfortunately, there were difficulties with
that approach and we decided to have a dedicated DB
agent instead of relying on the OAA functionality.

5.2.2 The Dispatcher
The Dispatcher is responsible for taking orders from
the GUI agent and distributing them among available
robots. After receiving an order, the Dispatcher checks
it for validity and then issues a call for bids that is sent
to all the mail delivery robots currently online. The
Dispatcher does not have to know the addresses of the
agents it is sending this call for bids to, or how many
such agents are currently in the system. The OAA Fa-
cilitator automatically forwards this query to all the
agents that are capable of handling it, thus illustrating
the openness and scalability of OAA.

The robots will reply to the call for bids by sending
their bids to the Dispatcher. It will then compare the
bids and select the robot that is the closest to the origin
of the mail package being processed by the Dispatcher
and award the order to that robot. If there are no re-
plies to the call for bids, the order is queued. The re-
quest for bids will then be sent to any robot that posts
“available” status and automatically awarded to the
first robot that replies with a bid.

The GUI uses the Dispatcher’s solvable re-
quest_delivery to inform it of a new order.

5.2.3 The Low-Level Robot Control Agent
The LLC is the low-level motion control subsystem of
a mail delivery robot. It acts on orders from the corre-
sponding High-Level Control agent. From the point of
view of the HLC moving from one location to another
is a primitive action go(Loc1,Loc2). On the other
hand, the LLC is interested in the exact path it needs to
follow. The LLC uses the PathPlanner’s path solvable
to get that path. While following the path the LLC
sends updates on the position of the robot to the GUI
agent. To simulate the lengthy task of moving from
one location to another, the time that the LLC “trav-
els” between two locations is proportional to the dis-
tance between them. When LLC reaches its destina-
tion, it sends a movement_complete event to its
HLC.

5.2.4 The High-Level Control Agent
The HLC is the high-level reasoning part of the mail
delivery robot. It is implemented in IndiGolog and is
responsible for bidding for new delivery orders and
constructing and executing plans for delivering the
awarded packages. This agent uses the IndiGolog-
OAA interfacing mechanism described earlier and is
able to effectively execute its package delivery plans

while monitoring for incoming OAA events and react-
ing appropriately to calls for bids and new contract
assignments. The agent has three solvables defined:
request_for_bids is used by the Dispatcher to ask
the robot to bid on a newly placed order; the deliver
event is sent by the Dispatcher to award an order to the
robot; and the movement_complete event is used by
the LLC to notify the HLC of its arrival at the destina-
tion.

The following fluents are used by the HLC to model
the world state:

• current_location – stores the current lo-
cation of the robot

• next_location – stores the next location of
the robot, where it is currently moving

• canmove – true when the robot is stationary,
false otherwise

• delivery(From,To,OrderNo) – stores or-
der status (ordered / onboard / completed)

• bid_requested(From,To,OrderNo) – true
when the robot has to bid on the order

• llc_address – stores the OAA address of
the corresponding LLC agent

• dist(From,To) – stores the distance be-
tween From and To locations

The following causal laws are used to update these
fluents’ values when OAA events arrive.

Fluent bid_requested becomes true for a particu-
lar order when request_for_bids is received:

causes_val(request_for_bids(F,T,ON),
bid_requested(F,T,ON),true,true).

Fluent delivery becomes 'ordered' when the agent
is awarded the delivery:

causes_val(deliver(F,T,ON),
delivery(F,T,ON),ordered,true).

The movement_complete message from the asso-
ciated Low-Level Control agent signals that the robot
has reached the destination:

causes_val(movement_complete,
canmove,true,true).

causes_val(movement_complete,
current_loc,N,N=next_location).

Most of the primitive actions used by HLC have
self-explanatory names and we will only mention that
the delivery_completed action sends a message to
the GUI agent saying that the robot has successfully
completed the delivery; the primitive action
go(LLC_addr,From,To) sends the go(From,To)
event to LLC agent. The extra parameter LLC_addr is
used in the call to oaa_Solve to tell the Facilitator
that this event has to be sent only to the one particular
LLC agent associated with the given robot, not all the
agents capable of handling go. Similarly the LLC uses
the address of the corresponding HLC to send move-
ment_complete events. Presented below is the main
procedure of the HLC agent (see
http://www.cs.yorku.ca/~lesperan/IG-OAAlib/ for
the complete source code).

proc(control, [
prioritized_interrupts([
 %high priority: handles bid requests
 interrupt([f,t,o],
 bid_requested(f,t,o)=true,
 pi([l,d], [?(l=next_location),
 ?(d=dist(l,f)), bid(o,d)])),
 %medium priority: handles newly assigned orders
 interrupt([f,t,o], and(canmove,
 delivery(f,t,o)=ordered),
 search(pconc(minimize_distance(0),
 envSimulator))),
 %low priority interrupt: when nothing to do, wait
 interrupt(true,no_op)])]).

%Environment simulator – simulates exogenous actions
proc(envSimulator,while(canmove=false,
 sim(movement_complete))).

The high priority interrupt fires when the agent re-
ceives a request_for_bids event from the Dis-
patcher. It produces a bid that is sent back to the Dis-
patcher. Presently, the bid is simply based on the dis-
tance from the location where it is currently heading
(for simplicity we do not allow the robots to change
directions midway) to the new package sender’s loca-
tion; more interesting bidding strategies could be used.
The medium priority interrupt fires when the Dis-
patcher awards a new delivery to this robot. Then, the
HLC plans an optimal delivery route that serves all
orders assigned to the robot. The lowest priority inter-
rupt is there simply to prevent the HLC from terminat-
ing when it has nothing to do.

To plan a delivery route, the second interrupt runs
an iterative deepening search procedure (mini-
mize_distance) to come up with an offline plan that
minimizes the distance the agent has to travel. In our
domain theory the precondition axiom for the go ac-
tion requires the robot to be stationary – the canmove
fluent has to be true. The only way for canmove to
become true is through one of the causal laws above.
This in turn is triggered by the arrival of a move-
ment_complete event from the LLC. Since HLC is
doing offline planning, and the plan has to be ready
before it is executed, we run the offline planning rou-
tine concurrently with an environment simulator
[Lespérance and Ng, 2000] that simulates move-
ment_complete events. When the plan is executing,
HLC will actually wait for the arrival of move-
ment_complete before asking LLC to move to a new
location.

The HLC code for route planning appears below.
The iterative deepening search routine tries to come up
with a plan to deliver all of the assigned packages with
a given distance bound. If unable to do so, it incre-
ments the bound.

%Iterative deepening search
proc(minimize_distance(Max),

ndet(serve_customers(Max),
pi(nd,[?(nd is Max+1),

minimize_distance(nd)]))).

proc(serve_customers(Max),
 ndet([%Have all the orders been delivered?

?(neg(some([from,to,orderNo],
or(delivery(from,to,orderNo)=ordered,

 delivery(from,to,orderNo)=onboard)))),
 no_op %Ground case - done
],[% Nondet. pick up or drop off an order
 ndet([% Pick values s.t. the tests (?) succeed
 pi([f,t,on,llc,l,m,d],[
 ?(delivery(f,t,on)=ordered),
 ?(l = current_location),
 ?(llc = llc_address),
 %Execute actions with the picked params
 go(llc,l,f), pickUp(on),
 ?(d=dist(l,f)), ?(m is Max - d),
 %If the distance allowed is not used up,
 %recurse, else fail

?(m>=0), serve_customers(m)
])
],[
 pi([f,t,on,l,llc,m,d],[
 ?(delivery(f,t,on)=onboard),

 ?(l = current_location),
 ?(llc = llc_address),
 go(llc,l,t), dropOff(on),

 delivery_completed(on,f,t),
 ?(d=dist(l,t)), ?(m is Max - d),
 ?(m>=0), serve_customers(m)

])])])).

6 Interface Implementation Details
To allow IndiGolog agents to be both proactive and
reactive, we want our IndiGolog-OAA interface to
process incoming OAA events without giving com-
plete control to the OAA library. A special exogenous
action get_event is defined as part of the interface
(see below). It runs after every primitive action in an
IndiGolog program (unless it is specifically disabled).
get_event first executes the procedures found in the
main OAA event loop: it gets the top priority OAA
event from the communication library and lets OAA
process it. It repeats this until there are no more events
waiting (i.e., until it receives 'timeout' event).

exog_occurs(get_event,E,H) :-
%Get OAA events. For events that we are interested in,
%get_event will automatically add them to oaa_event_queue
 oaa_loop,
 oaa_event_queue(Q), %Get the queue
 \+ Q = [], %Succeeds if the queue is not empty
 %Add OAA events to IndiGolog history
 extract_events(E,H,Q).

The reason why we need to let OAA process the
events rather than extract them manually is simple: in
addition to events that result from some agents re-
questing the services of our IndiGolog agent there are
other OAA events that we don't want to deal with.
These could be events that update a data solvable de-
clared at this particular agent, or these could be events
that turn on the system's tracing facility, and so on. We

let the OAA library handle these events since we want
the combined IndiGolog OAA agent to be compliant
with OAA specifications to the maximum degree pos-
sible.

To achieve the task of separating OAA events that
are calls to user-defined solvables from other OAA
events, we define and register with OAA a default
callback that is called every time some agent requests
the services of our IndiGolog OAA agent. This call-
back is given the goal (the problem that we have to
solve) and adds this goal to a queue that holds the
OAA events to be processed by the IndiGolog agent.
The OAA library sends the success message to the
caller immediately. This is why other agents should
only send non-blocking requests for the services pro-
vided by IndiGolog OAA agents. If some other agent
waits for the answer to its query, its oaa_Solve call
will return successfully, but the variables through
which that agent expects to get the answer will remain
unbound.
get_event then calls the extract_event proce-

dure that processes the queue and extracts the events
from it. It adds the events to IndiGolog program his-
tory, thus turning the newly received goals into exoge-
nous actions that appear to have been executed and
changing the value of fluents appropriately. The pro-
grammer has to provide the appropriate causal laws/
successor-state axioms. Suppose that we register the
solvable: movement_complete(Location). This
could be a notification from a certain mobile robot that
our IndiGolog agent controls. The following axiom
specifies one of the possible changes in the system
caused by the arrival of the goal move-
ment_complete(Location):

causes_val(movement_complete(Loc),
current_location,Loc,true).

This effectively says that the value of the fluent
current_location changes to become the location
that the robot has just arrived at.

7 Conclusion and Future Work
In this paper, we have presented an IndiGolog-OAA
interfacing mechanism that we think adds value to
both tools. It provides easy access to a multiagent plat-
form for IndiGolog, allowing us to use this language in
a wide range of new applications. Moreover, since
OAA’s ICL is Prolog-based, it makes it a great match
to the current implementation of IndiGolog. On the
other hand, the built-in concurrency of IndiGolog al-
lows IndiGolog-based OAA agents to be both reactive
and proactive and thus much more powerful than the
previously supported Prolog-based agents. This inter-
face adds a new powerful high-level programming
language to the set of languages supported by OAA.
The system is available for download at
http://www.cs.yorku.ca/~lesperan/IG-OAAlib/.

We are interested in applying this work in a variety
of domains. One area of interest is personal service
robotics with robots having multiple skills such as
finding people, giving tours, etc. With Erich Leung,
we have started integrating software agents into the

system that locates people based on where they
logged-in and their typical schedule. We would also
like to use IndiGolog to program a smarter match-
maker for some domain, one that supports compound
queries. Other potentially interesting applications in-
clude semantic web services [McIlraith et al., 2001].

The choice of OAA as a multiagent platform to in-
terface IndiGolog to arose from their common Prolog
heritage, which suits them to developing agents that
perform reasoning and planning. We are also examin-
ing the use of IndiGolog in combination with FIPA-
compliant platforms and would like to develop tools
for this.

References
[De Giacomo and Levesque, 1999] G. De Giacomo and H.

Levesque. An incremental interpreter for high-level pro-
grams with sensing. In Logical Foundations for Cognitive
Agents, Contributions in Honor of Ray Reiter, pages 86–
102, 1999. Agent-Based Systems, LNCS. Springer-Verlag,
2000.

[De Giacomo et al., 2000] G. De Giacomo, Y. Lespérance,
and H.J. Levesque. ConGolog, a concurrent programming
language based on the situation calculus. Artificial Intelli-
gence, 121, 109-169, 2000.

[Lespérance and Ng, 2000] Y. Lespérance and H.-K. Ng.
Integrating Planning into Reactive High-Level Robot Pro-
grams. In Proceedings of the Second International Cogni-
tive Robotics Workshop, 49-54, Berlin, Germany, August,
2000.

[Martin et al., 1999] D. L. Martin, A. J. Cheyer, and D. B.
Moran. The open agent architecture: A framework for
building distributed software systems. Applied Artificial
Intelligence, 13:91–128, January-March 1999.

[McCarthy and Hayes, 1979] John McCarthy and Patrick
Hayes, ‘Some philosophical problems from the standpoint
of artificial intelligence’, in Machine Intelligence, eds., B.
Meltzer and D. Michie, volume 4, 463–502, Edinburgh
University Press, Edinburgh, UK, (1979).

[McIlraith and Son, 2001] S. McIlraith and T. C. Son.
Adapting Golog for Programming the Semantic Web.
Proceedings of the Fifth Symposium on Logical Formal-
izations of Commonsense Reasoning (Common Sense
2001), May 2001.

[McIlraith et al., 2001] S. McIlraith., T.C. Son, and H. Zeng
‘Semantic Web Services’ , IEEE Intelligent Systems. Spe-
cial Issue on the Semantic Web. 16(2):46-53, March/April,
2001. Copyright IEEE, 2001.

[Reiter, 2001] R. Reiter, Knowledge in Action: Logical
Foundations for Specifying and Implementing Dynamical
Systems, MIT Press, 2001.

[Reiter, 1991] R. Reiter. The frame problem in the situation
calculus: A simple solution (sometimes) and a complete-
ness result for goal regression. In V. Lifschitz, editor, Ar-
tificial Intelligence and Mathematical Theory of Computa-
tion: Papers in Honor of John McCarthy, pp. 359-380,
Academic Press, San Diego, CA, 1991.

