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Abstract

It is difficult to build an autonomous robot controller that can control a
robot to perform complex tasks. It should not only generate plans for the
robot to accomplish tasks, but also be able to handle unexpected events and
run-time failures with incomplete knowledge of the environment. This thesis
presents a robust approach for constructing high-level robot control programs
using the agent-oriented programming language IndiGolog. Its predecessor
ConGolog has been shown to be an effective programming language for con-
structing reactive and deliberative agent programs. By improving the plan-
ning and plan execution mechanisms in IndiGolog, planning and reactivity
can be integrated effectively to optimize the actions performed by the robot
while maintaining robustness in a dynamic environment. Our approach is
also applied on a real shipment delivery application with multiple robots, to
demonstrate how one can build a distributed control system to coordinate

multiple robots to accomplish a task using IndiGolog.
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Chapter 1

Introduction

When executing complex tasks in a real environment, a mobile robot may
need to perform many actions to accomplish its goals, as well as monitor
relevant conditions in the environment and react to problems that occur at
run-time. It is very important that the robot should plan the actions it

should perform to reach its goals quickly and correctly.

This thesis presents an approach to model a mobile robot’s environment
and capabilities and implement high-level control programs which combine
planning and reactivity, for robots working in dynamic environment. This
kind of controller can reason about the actions that should be performed,
generate plans to achieve goals in different situations, and adjust them ac-
cording to changes in the environment. We also examine how the approach

can be used to coordinate multiple robots.



1.1 The Problems that Will Be Addressed

1.1.1 Planning in Dynamic and Incompletely Known

Environment

A plan can be viewed as a sequence of actions the robot can perform to
accomplish its task. Planning is useful to optimize the performance of a
robot when its tasks are complicated and to deal with unexpected goals or
situations. But this can be difficult if some of the necessary information can
only be obtained at run-time or the environment can change. Suppose that
a robot has to move several boxes to different locations inside a building. It
has to construct a route for moving all boxes that requires the least amount
of time and power. However, the robot cannot know what will happen on its
way to each location in advance. It may not be able to reach a place because
of a locked door. Also, the destination of a box may only be known after the
box has been picked up. In either case, the robot must be able to construct a
plan at the beginning, and adjust it according to what happens at execution
time. Without the ability to plan with incomplete information and adjust
the plans to deal with environmental changes at run-time, the robot may not

able to work efficiently or even accomplish its task at all.

1.1.2 Combining Reactive and Planned Behaviors

A robot must not only perform a specific sequence of actions to accomplish
its task. It must also sense for changes in the environment and react imme-

diately to avoid running into problems and doing harm to itself or people,



and to take advantage of opportunities. The robot controller should be able
to plan and determine what actions it should perform to achieve its goal,
and also be able to monitor the environment for changes and to react to
handle different problems that arise. For example, the controller of a secu-
rity guard robot must generate routes for the robot to patrol in the building.
It must also keeps sensing to determine if there is any intruder, smoke, gas
leak, etc. in the surrounding area. One can build a robot controller by com-
bining everything into a single control thread that does both route planning
and event monitoring. However, developing appropriate plans and reasoning
about such a complex task can be quite complicated and time consuming.
The robot may spend most of its time on planning and not react fast enough
to avoid problems. Planning and reactivity are best done by different control
threads, but how they interact with each other then becomes an important

issue.

1.1.3 Coordinating Multiple Robots to Accomplish a
Task

How to coordinate multiple robots to accomplish a task is a difficult problem.
For example, in serving tables in a restaurant, two robots should not try
to serve the same table. If possible, the nearest robot to the table should
be chosen as the server. In addition, the work must be distributed to all
robots evenly so that a robot does not have to serve too many tables while
another robot has nothing to do. A centralized control system can collect
the necessary information from every robot and generate plans to control all

of them, but then every significant piece of information each robot obtains



must be sent back to the central system and the search space of planning may
becomes huge. A large amount of time may be spent on communication and
planning instead of performing actions to accomplish the task. The system
may even fail if the communication link to one of the robots is defective. The
plans for controlling multiple robots that must be generated will be large and
complex. A better approach is to use a distributed system where each robot

has its own planner and they cooperate by communicating with each other.

1.2 Our Approach

To control robots in a dynamic environment, our approach is to construct
robot controllers as high-level agent control programs which combine plan-
ning and reactivity, while the physical motion of the robot is governed by
a low-level module which can perform very fast reactions to avoid collisions
and deal with other emergencies. Our control programs are written in an
agent programming language called IndiGolog [10]. We have made several
enhancements to this language so that planning, reactivity, and sensing can
be integrated effectively in the control programs. Each program contains a
planning component that generates plans to optimize the actions of the robot
in order to achieve the goal, and other reactive components for responding
to changes in the environment at the same time. We have also developed
meta-level planning and execution facilities for programs to have more con-
trol on plan generation and execution. We also explore how multiple robots
can cooperate with each other in our framework by developing a distributed

framework with a bid-for-order mechanism [60] to accomplish a delivery task.



1.3 Research Objectives

The main research objectives of this thesis are as follows:

e To develop an adequate programming language for building high-level
robot controllers which combine planning, sensing, and reactivity. It
should support handling run-time failures and changes in the environ-

ment, and also perform replanning when it is needed.

e To test our robot programming language on a real robot in a real

environment.

e To extend our approach to handle multiple-robot applications and show
they can be delivered efficiently with the robots cooperating by com-

municating with each other.

1.4 Outline of the Thesis

In Chapter 2, we discuss related work in robot architecture and high-level
robot control with planning and reactivity. In Chapter 3, we present the
logical foundations of situation calculus and the components of the Indigolog
programming language. In Chapter 4, we describe the enhancements we have
made to Indigolog to support planning, replanning, and reactivity. Chapter
5 presents some meta-level facilities for the program to have access to and
control of the plan generation and execution process. In Chapter 6, we
show how IndiGolog can be used to program multiple robots that cooperate
on a shipment delivery task; we develop an efficient and robust distributed

system architecture for this. Chapter 7 describes the internal architecture of



our implemented robot control system, and presents the tests that have been
performed on this system. In Chapter 8, we give our conclusions regarding

this work.



Chapter 2

A Review of Agent
Architectures and

Programming Languages

In a classical intelligent autonomous robot system, there is a distinction
between planning and execution, in which the system first constructs a plan
and then executes all the actions in the plan. The first problem with this
kind of structure is that the environment of the robot is usually dynamic.
What the robot assumes to be true during planning may become false as a
result of the actions of other agents during execution. By arranging planning
and execution in sequence, the robot may run into the risk of constructing
a plan that is not valid because changes in the environment later invalidate
some preconditions. Another problem with this approach is that the robot
may not have complete information about its environment and cannot always

decide which action should be performed without getting additional data at



run-time.

This chapter provides a brief introduction to some of the architectures
and reasoning frameworks that have been proposed for robots which work in

dynamic environments.

2.1 Deliberative Architectures

The most obvious approach to building an intelligent robot controller is to
specify all the actions that the robot can perform, and build a planner which
can generate a sequence of actions to achieve the robot’s goals automati-
cally. Genesereth and Nilsson [23] introduced the term deliberative agent,
where a robot is treated as an agent who can plan and perform actions in
an environment that is represented in some symbolic model. Objects in the
environment are represented by symbols and their relationships are modeled
by symbolic rules. The agent takes an initial description of the environment,
a list of rules which specifies the actions available to change the environ-
ment, and then it decides which actions in what order should be performed
to achieve the goal by using pattern matching and symbolic manipulation.
This is somewhat similar to a logic theorem prover, where a formula to be
proved and some symbolic rules and axioms are given and the system has to

derive the formula from the rules based on logic.

The Shakey robot [44] built by Nilsson was constructed using this delib-
erative idea. Its main component is a plan generation system called STRIPS
[44]. Tt has a symbolic representation of both the robot’s world and the de-

sired goal state, and a set of operators/actions that the robot can perform
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with their preconditions and effects. See Figure 2.1 for a simple example for
moving a robot to a storage room. The system attempts to construct a se-
quence of operations that will achieve the goal by using a simple means-ends
analysis, which involves matching the effects of the operations against the
goal (regression planning). Although the STRIPS planning algorithm is very
simple, a linearity assumption is embodied in its means-ends analysis and as
a result it cannot find the optimal solution or even any solution to problems
such as the Sussman anomaly. STRIPS assumes that its world model is
complete (the closed world assumption) and represents the effects of actions
by lists of atomic formulas to be added and deleted from the world model.
This provides a restricted but quite efficient solution to the frame problem

[50] (i.e. representing what is not affected by the actions).

The type of reasoning that is used in most of the deliberative approaches
is commonly referred to the Sense-Model-Plan-Act framework. The robot
first obtains information from its environment through sensing. Next, it
constructs a model of the world based on the perceptual data. Then, it
generates a plan for accomplishing its tasks; and finally, it performs the
actions in the plan to accomplish the task. The advantage of this approach
is that the robot can deal with arbitrary goals and automatically figure out a
plan or sequence of actions for accomplishing the goal. This works reasonably
well in small domains where the robot is the only one who can change the
world. However, it often fails in a dynamic environment where the state of
the environment can be changed by other agents during the execution of the
plan. Also, it assumes that all necessary information about the environment

is available. However, sensor data may not be available or accurate and it is



often impossible to sense every aspect of the world to construct a complete
world model. Even if it can build such a model, many symbol manipulation
algorithms that can be used for theorem proving are intractable and time-
consuming. The robot may not be able to generate a plan in this way before

the environment changes to another state.

2.2 Reactive Architectures

In contrast to the deliberative approach, the reactive approach aims for con-
structing autonomous robot controllers that do not maintain complex models
of the world and can act quickly without planning. Basically, a reactive ar-
chitecture does not contain a symbolic model of the world and a reasoner
for manipulating rules and finding plans. Instead, it consists of a set task-
oriented behaviors that examine sensor data and then immediately make
decisions on which action should be performed. It focuses on reacting to
changes in the environment quickly rather than wasting time on doing com-

plex reasoning.

The approach was first popularized by Brooks with his Subsumption
Architecture [5, 6]. It can be viewed as a control system which consists of a
hierarchy of task-achieving behaviors. Each layer in the hierarchy is a simple
state machine which represents a behavior of the robot for accomplishing
a specific task. Each layer is completely independent from the others and
all of them run in parallel. As a result, the robot is capable of reacting
immediately when an appropriate layer detects a new condition in the robot’s

environment. The layers are arranged hierarchically according to their levels
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of competence. Figure 2.2 shows an example of the architecture for a mobile
robot controller. A higher level layer, such as building plans in the example,
can take control of the robot by subsuming the execution of a lower level layer,
such as moving to a location, which was controlling it. In this architecture
there is no explicit representation of the robot’s goals or knowledge of the
world. Each layer decides which action should be performed to change the
environment based on only the data returned from the sensors and its internal
state. This is the ideal reactive architecture because it only maps the sensory

inputs to the robot’s actuators and does not require any reasoning.

A major issue in reactive architectures is behavior arbitration, that is,
deciding which behavior should run at any given moment. For example, if
one is not careful, it can easily get into a situation where the robot keeps

switching between two behaviors and never accomplishes anything useful.

Similar to the structure of layers in the subsumption architecture, the
Agent Network Architecture [38] proposed by Maes treats a robot as a
set, of competence modules. The designer of the robot controller specifies
the function of each module in terms of preconditions and postconditions
and a priority value to indicate the relevance of the module in a particular
situation. Before the robot can execute, all the modules are linked together
to form a spreading activation network according to their preconditions and
postconditions. This allows the robot to react quickly and several modules
can be activated at a particular situation for completing several tasks at
the same time. Performing an execution step may either cause the robot to

execute an action, or change the relevance level of a module.
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The Concrete-Situated architecture [1] proposed by Agre and Chapman
is another example of a reactive architecture. They argue that the world can
be characterized as complex, uncertain, and immediate, and that the robot
can simply react to the world and does not need to maintain a model of the
world or store any state in memory. They also argue that the world is actually
the best model for itself and information can be gathered directly from it.
This architecture consists of patterns of behavior, which are called routines.
Routines are implemented on low-level structures such as digital circuits and
do not require any explicit world model or symbolic manipulation. The
robot can interact with the environment according to the routines it has
without constructing any plan. This idea was applied to build the software
agent PENGI [1] for playing a computer game. It neither has any internal
memory nor makes any plans. It uses only the information it gets from the
environment during execution as the inputs to its routines to determine the

actions that should be performed.

The situated automata framework [53, 54] developed by Rosenschein and
Kaelbling models the robot’s operation in terms of a perception and an action
module, and provides tools for doing off-line reasoning to synthesize reactive
controllers. The perception component of the robot is specified using a tool
called RULER, while the action module is implemented using GAPPS. The
behaviors of the robot are generated from a set of goal reduction rules and a
list of prioritized goals. The rules describe how the actions achieve the goals.
GAPPS translates this information into specifications that can be further
simplified into digital circuits. The process of converting the programs into

digital circuits is done at compile time. Therefore, the robot does not have

12



to manipulate any symbolic representation of the world.

An important characteristic of the robot controllers built under these
reactive approaches is that they do not contain an explicit world model or
planner for doing complex reasoning. Reasoning and decision making are
distributed into various components in the system. Since they are hard-coded
or compiled before the robot’s execution, the controllers are only required to
sense the environment and then instruct the robot how to act afterwards.
The main problems with this approach are that it is hard to specify complex
robot behaviors and to deal with unanticipated situation. Without a model
of the world and explicit reasoning, they cannot be used for complex tasks in
which search and planning are required. They cannot be guaranted to pick
the best action for the robot and handle unexpected situations. The robot
may keep reacting to the changes in the environment and may not do any

action to achieve its goals.

2.3 Hybrid Architectures

For applications where the robot has to reason about the world to make a
decision and react quickly to changes in the environment, an obvious alter-
native is to combine the deliberative approach and the reactive approach.
A hybrid architecture is defined as a system that consists of a deliberative
component and a reactive component. The deliberative component keeps
an explicit world model and makes decisions on action to achieve the goal
by reasoning and planning, while the reactive component provides quick re-

sponse to changes in the environment without doing any complex reasoning.
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GOAL : in_room(robot, storage)
INITIAL : in_room(robot,rooml)
connected (rooml , room?2 )
connected (rooml , room3)
connected (room2, storage)
OPERATOR: goto(P)
Precondition: in_roomi{robot, Q)
connected(Q,P)
Delete : in_room(robot, Q)
Effect : in_roomi{robot , P)

Figure 2.1: A STRIPS Example: Moving a Robot to the Storage Room

build plans
identify landmarks

Sensor : :
b —[> monitor changes —E Actions

move to a location

avoid obstacles

Figure 2.2: Layers of Task-Achieving Behaviors in a Subsumption Architec-
ture
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A lot of work has been done in this area to argue that a combination of
deliberative and reactive approaches can compensate for the limitations of
each of them, but how they should be integrated to give the most efficient
control is still not known. Work in this area also looks at how continuous

low-level control should interface with discrete high-level control.

One simple approach for combining the two components is to build a
planner that generates plans and a separate executor which selects the most
appropriate plan to follow for achieving the goal or reacting to changes in the
environment. An example of this is the Reactive Action Packages (RAP)
framework proposed by Firby [18], which is designed for reactive execution
of symbolic plans. The RAP architecture consists of three components: a
controller, a planner, and a RAP executor. The controller contains low-
level control and sensing modules to control the effectors and sensors of the
robot. Decision making is handled by the planner, where a world model is
maintained for reasoning. A plan generated by the planner consists of tasks
and the RAP executor tries to carry out each task in turn using different
methods. Each method can enable or disable a set of control and sensing
modules in the controller for the robot to achieve a particular task. In each
cycle, a task is first selected to be executed by the executor. If the task is only
a primitive action and it can be performed in the current situation, then the
executor executes the action directly. Otherwise, the executor checks whether
the task is already satisfied in the current situation. To accomplish the task,
a method from the RAP library is chosen such that it can be used to complete
the task. The task is then suspensed and the executor tries to complete the

sub-tasks of the method. When all sub-tasks have been executed, the task
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is reactivated and the executor checks again if it has been satisfied in the
current situation again. If this is true then the executor can proceed to the
next task. Otherwise, another method is chosen to try to accomplish the

task.

Another well-known framework in this category is the ATLANTIS ar-
chitecture [22] proposed by Gat. It has a reactive control system and a
traditional planning system which run in parallel. It is designed for robots
that are operating in dynamic environment without complete information.
Basically, it consists of three components. The controller is a reactive control
system which is composed of behavior producing modules called primitive ac-
tivities. Each primitive activities can enable or disable a set of effectors and
sensors of the robot. The sequencer is the operating system which controls
the initiation and termination of primitive activities in the controller. The
deliberator performs the deliberative time-intensive planning and world mod-
eling. The plan generated by it is used only as advice by the sequencer and
the sequencer may drop a plan or switch to another plan depending on state
of the environment which can be changed by unpredictable events. It also
contains a time-out mechanism to prevent the controller from spending too
much time on accomplishing a task. Since the deliberative component and
the reactive component are executed asynchronously, the system is able to
distribute its time and resources on planning and reacting to changes in the

environment.

Another example that is based on similar approach is the Intelligent

Resource-Bounded Machine Architecture (IRMA) [4] developed by Bratman
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et al. It focuses on modelling the beliefs, desires, and intentions of the agent
and how much it should commit to particular intentions/plans. These men-
tal attitudes are modeled by four kinds of symbolic data structures. There is
a plan library that provides predefined solutions for handling different sim-
ple tasks, a reasoner which can be used to reason about the world, a plan
analyzer that contains methods for comparing the available plans and find
out which is the best for achieving the robot’s intentions, and a filter process
that determines which possible plans are consistent with the robot’s existing

intentions.

For the case where one must control more than one robot, Jennings also
proposed the GRATE [33] framework which is based on not only on beliefs,
desires, and intentions, but also joint intentions. These kinds of attitudes
are represented in standard if-then format. Each agent has two components:
a domain level layer that tries to solve problems for the individual agents,
and a cooperation and control layer to ensure that each agent’s domain level

activities are coordinated with those of others in the community.

The Theo [40] architecture proposed by Mitchell integrates planning, re-
acting, and knowledge compilation. Each agent in Theo has a set of stimulus
response rules which allows it to respond to sensory data rapidly in a dy-
namic environment. It stores its knowledge in a frame representation. A
frame which has a slot and a value is said to be a belief. An impass occurs
when there is a slot without a value, and it triggers the system to attempt
to infer the slot’s value. Since the system works only when an impass occurs

in which some answer is required, it focuses on only one behavior at a time.
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Based on the prioritization of the rules it has, it can handle multiple goals
simultaneously by suspending a goal and selecting to work on another one
which has the highest priority. However, it is not clear whether the priori-
ties of the rules can be changed at execution time to support interleaving of

multiple plans for several goals.

Another common approach to combine deliberative and reactive compo-
nents is to modify the planner to generate plans which contain branches
for different possible situations that may appear during execution. The
Procedural Reasoning System (PRS) [25] proposed by Georgeff integrates
reactive reasoning and planning at this level. It is quite similar to RAP with
hierarchical plan expansion at run-time, but has a more systematic approach
to plan reconsideration. It has a set of facts as its beliefs, a set of goals,
and also a library of alternative plans for the agent to accomplish different
goals. A plan can be both partial and hierarchical. It is represented as a
rule with a condition and a body. The body is a sequence of sub-goals to be
pursued to bring the robot to the goal, while the condition is the situation
in which the body should be triggered. In the course of chosing a plan, new
beliefs may be derived. This may result in a situation where another plan
is more appropriate than the current one, and the system then selects the
new one for execution. As a result, the plan that is being executed is always
relevant to the current situation. In addition, it can reconsider the current
plan, suspend the current plan and/or adopt new plans during execution if
more than one task must be handled at the same time or an unexpected
change in the environment occurs. With these features, the robot controller

can reason about its world as well as react to run-time problems.

18



Generally, there are two kinds of architectures among the hybrid ap-
proaches. The first is to build the whole system as a single control loop and
implement the reasoning component as a part inside the loop. In each cycle,
the task of the robot can be broken down into sub-tasks to support reactivity
or deliberative planning according to the perceptual data and the state of
the robot. Architectures such as RAP, PRS and Theo are built in this way.
The other alternative is to have a deliberative component and a separate
reactive component operating asynchronously. In this way the deliberative
component can reason about the world and find the best way to achieve the
robot’s goal while the reactive component can control the robot to avoid
running into problems at the same time. Examples of this are ATLANTIS
and InteRRAP [41, 42]. However, synchronizing the components can be a

problem in this approach.

In our work, we use a hybrid layered architecture similar to these. It
includes a low-level reactive layer which controls the robot to perform fast
reaction to avoid critical problems such as crashing into a wall or hitting an
human, and also a high-level deliberative and reactive layer which runs in
parallel with the low-level component. The high-level layer has a model of the
robot’s world in order to perform planning and reasoning and also reactive
capabilities to change the robot’s behavior when there is a change in the
environment which affects the robot’s intentions or the details of the robot’s
tasks. In other frameworks, the high-level reasoner and the low-level reactor
are built and integrated by focusing on specific task. However, adapting these
controllers to more complex tasks or other applications may require much

effort. We built our high-level layer by using a high-level agent programming
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framework, which makes modification of the robot controller much easier.
The next section describes some of the existing agent programming languages
for implementing robot control programs and in Chapter 3, we describe our

programming framework and how robot control can be specified in it.

2.4 Agent Programming Languages

There are many agent programming languages that have been proposed for
designing agents or robots which operate in dynamic environments. They
uses different approaches to represent the mental states of an agent and
state of the world, and specify the agent’s behavior. One example of this is
the Agent-0 language [56, 57] proposed by Shoham which uses the notions
of beliefs, commitments, and capabilities. An agent is specified as a set of
logical rules for entering into commitments and executing capabilities, in
terms of a set of beliefs. In addition, the language supports some simple
communicative actions for exchanging messages between agents. Messages
that can be sent are either inform, request, unrequest, or refrain messages.
Inform messages are used to communicate the beliefs of the agent, while the
other three kinds of messages are provided for changing commitments. The
Agent-K extension [8] allows many commitments to match a single message.
This was not allowed in Agent-0, and that interpreter simply selected the
first rule that matched a message. However, the limitation of this approach
is that commitments can be made only to execute primitive actions. The
agent has no mechanism to specify complex actions for achieving goals. The

Planning Communicating Agents (PLACA) extension proposed by Thomas
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[62] attempts to solve this problem by allowing the programs to include
operators for planning to achieve goals. However, the relationship between

the logic and interpreted programming language is still loosely defined.

Another example of an agent programming language is METATEM (3],
which was proposed by Barringer and Fisher. It models the world and the
behavior of the agent using temporal logic. A logical model of each compo-
nent is constructed incrementally in execution, and so the dynamic attributes
of it can be concisely represented. Its extension, Concurrent METATEM
[20, 19], allows several agents to run concurrently and uses a broadcast mes-
sage passing mechanism to allow them to communicate with each other for

distributed applications.

The need for reasoning and the possibility of direct execution of agent
specifications specified in logic have led to a number of attempts to build
executable logic-based agent programming languages. The AgentSpeak(L)
language proposed by Rao [49] is a formally specified language based on the
Procedural Reasoning System architecture discussed in the previous section.
To compare and evaluate different languages, Hindriks and his colleagues
developed the 8APL programming language [29], which has been formally
specified by providing a Plotkin style structured operational semantics and
a formal specification in the Z language. Several papers [29, 28, 30] showed

that these languages are closely related.

A limitation in many of these agent programming languages is that the
programs are expressed in terms of some sort of if-then rules. By following

these rules, one may be able to realize that the agent will eventually achieve
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its goal, but not when or by what means. It is not easy for one to analyze and
reason about the behavior of the agent in detailed way. Also, most of them
do not support true planning, only the dynamic selection of prewritten plans
from a library. IndiGolog [10] is also an agent programming language for
modelling agent behavior declaratively. It is the latest version in the Golog
family [37, 13, 12], which is based on the situation calculus [39], a logic
formalism for reasoning about actions. In [61], ConGolog, an extension of
Golog, was used for implementing robust robot control modules. IndiGolog
supports ConGolog’s features such as concurrency, priorities, interrupts, and
exogenous actions handling, and also provides additional facilities on per-
forming on-line planning, sensing, and incremental execution. We believe
that these are essential for building robot control program for complex tasks.

We will use this language in this thesis and present it in detail in Chapter 3.
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Chapter 3

IndiGolog — Agent
Programming in the Situation

Calculus

In this chapter, we present the IndiGolog agent programming framework
that we will use in this thesis. We first describe the logical foundation of
IndiGolog, which is the situation calculus. Then, we present the agent pro-

gramming languages Golog, ConGolog, and IndiGolog.

3.1 The Situation Calculus

The situation calculus [39] is a first-order language (with some second-order
axioms) that can be used to represent dynamic worlds. It models the world
in the way that all changes to the world are caused by the execution of some

actions. At any moment, the world is in some state that is represented by a
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situation term. A situation is viewed as the sequence of actions that has led
to it. There is a special situation, the initial situation Sy, which represents
the situation when no action has yet occurred. In addition, there is a binary
function do(a, s) that denotes the successor situation of the situation s after
executing the action a. There are two kinds of fluents for describing what is
true in a situation. A predicate fluent f(Z,s) denotes that fluent f with the
parameters Z is true in situation s. A functional fluent f(Z, s) = ¢ indicates
that the value of fluent f with the parameters Z in situation s is ¢. For

example,
newOrder (n, do(orderShipment(n), Sy))

means that there is a new order for shipment n in situation

do(orderShipment(n), Sp), and
robot Pos(do(goto(storage), Sy)) = storage

states that the position of the robot is in the storage room in the situation

do(goto(storage), Sp).

The Golog framework that we will use in this thesis is based on Reiter’s
version of the situation calculus [50]. In it, there is also a special predicate
Poss(a, s) that means it is possible to perform action @ in situation s. A
dynamic world is specified by a logical theory that includes the foundational
axioms for the situation calculus given in [50], action precondition axioms,
successor state axioms, initial state axioms, and unique names axioms. Brief

descriptions of these are given in the following sub-sections.
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3.1.1 Action Precondition Axioms

Action precondition axioms describe all the important preconditions or re-
quirements that must be satisfied for it to be possible to execute an action.
Each action has its own precondition axiom. Action precondition axioms

have the following format:
Poss(A(Z), s) = ma(Z, s)

where A(Z) is an action with the parameters 7, s is a situation and 74 (Z, s) is
a first-order formula that is uniform in s [50] (i.e. it only talks about what is
true in situation s), and this specifies the necessary and sufficient conditions

that must be satisfied in order to perform the action.

For example, a robot for shipment delivery can pick up a shipment if it
is where the shipment is being sent from, and it can drop off a shipment if
the shipment is on board. These can be represented by the following action

precondition axioms:

Poss(pickUp(n), s) = shipmentPos(n, s) = robotPos(s)
Poss(dropOf f(n),s) = shipmentPos(n, s) = onBoard

where n is a shipment number, and pickUp(n) and dropOf f(n) are the

primitive actions for the robot to pick up and drop off shipment n.

3.1.2 Successor State Axioms

Successor state axioms are used to specify how the world can change. There

is one successor state axiom for each fluent that specifies how the value of
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the fluent changes when some action is performed. For a predicate fluent F,

we have a successor state axiom of the form:
F(F,dola, s)) = 7* (,a,5) V F(7,5) A~y (0, 5)

where Z are the parameters of F', a is an action, and s is a situation. v is a
first-order formula that is uniform in s and represents all the conditions for
which when «a is performed, F' will become true. On the other hand, v~ is
a first-order formula that is uniform in s and specifies all the conditions for
which when a is performed, F' will become false. Essentially, this axiom says
that fluent F' is true in the situation do(a, s), provided that either doing a
in s makes F' become true, or F' was already true in situation s and doing
a in s does not make F' become false. For a functional fluent f, we have a

successor state axiom of the form:
f(&, do(a,s)) = c=~"(Z,a,5)V f(Z,5) = c ANy~ (,q,s)

For example, we might say that a robot can move to a place p by perform-
ing the goTo(p) action. How the position of the robot, robot Pos, changes is
specified by the following successor state axiom:

robotPos(do(a,s)) = p =

a = goTo(p) VvV ((Vp') a+# goTo(p') A robotPos(s) = p)
This says that the robot is at position p in situation do(a, s) if the robot has
just performed the action goTo(p), or the action it performed in situation s
was not goT'o and it was at p in situation s. Here is another example:

newOrder(n, do(a, s)) =
a = orderShipment(n) V (a # acknowledge(n) A newOrder(n, s))
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This says that there is a new shipment order for shipment n in situation
do(a, s) if and only if someone has just made a new shipment order for ship-
ment n in situation s, or the robot did not acknowledge shipment n and there

was a new shipment order for n in situation s.

Successor state axioms provide a solution to the frame problem [50]. To
axiomatize dynamic worlds, one must specify all effects and invariants of
each action. The frame axioms specify the fluents that would not be affected
by performing an action. However, since most actions have no effect on a
particular fluent, there is a huge number of these axioms in a given domain.
Reasoning in the presence of so many axioms may be very inefficient and
resource-consuming. Successor state axioms solve this problem by quanti-
fying over actions, all actions that are not explicity mentioned are taken to

leave the fluent unchanged.

3.1.3 Initial State Axioms

Initial state axioms specify the values of the fluents in the initial situation
So, that is, the initial state of the world before any action is executed. They

can be any formulas that are uniform in Sj.

For example, we can say the robot is at the home position in the initial

situation with the following initial state axiom:

robotPos(Sy) = home
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3.2 Golog

Golog is an agent-oriented programming language [37] based on the situation
calculus. It uses action precondition axioms and successor state axioms to
model the preconditions and effects of primitive actions on the world, and
also allows the user to define complex behaviors for the agent by providing a
full range of programming constructs, which are all defined in the situation

calculus.

A Golog program consists of one or more of the following constructs:

a primitive action
c? testing of a condition
(01;62) sequence of actions
(01]62) nondeterministic choice between actions
(rx) 0 nondeterministic choice of arguments
o* nondeterministic iteration
if cthen 61 else 62 conditional statement
while ¢ do 6 while loop
proc p(Z) 6 end procedure definition
p(t) procedure call

3.2.1 Classical Planning and Golog Programming

To understand the idea behind Golog, let us compare it with classical plan-
ning. Given a set of axioms which describes the agent’s domain and a goal
Goal(s) with the free variable s, the task of classical planning is to find a
sequence of actions o such that it is executable, and leads to the goal be-
ing achieved when executed. It can be specified in the situation calculus as

follows:
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Azioms = Legal(o, Sy) A Goal(do(o, Sp))
where do(o, Sp) is an abbreviation for
do(ay, do(a, 1, ..., do(ay, Sp))-..)
and Legal(o, Sy) stands for
Poss(ay, So) A Poss(ag, So) A ... A Poss(an,do(an—_1,...,do(a,Sp))...)

However, doing planning to find a sequence of actions that achieves a
goal can be very time-consuming when there are more than a few actions
and the domain is complicated. Also, it might not be possible to find a plan
if complete information about the domain is not available and the plan found
may not work if the environment changes as a result of actions performed by
other agents. Golog tries to handle the efficiency problem by requiring the
programmer to provide an extra piece of information, a high-level program,
which describes the desired behavior for the agent. Instead of searching for
a sequence of actions that leads to a given goal, the Golog interpreter takes
the given program and tries to find a legal sequence of actions that leads to
some final state of the program, one where the program can legally terminate.

This can be formalized as:
Azioms = Do(6, Sy, do(o, Sp))

where § is a high-level program and Do(d, s, s') states that d can start to run
at s and may legally terminate in situation do(o, Sp). The supplied program
may be nondeterministic, and the Golog interpreter must search to find a

successful execution. As argued in [37], this is similar to classical planning
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in that the interpreter “needs to use what it knows about the prerequisites

and effects of the actions to find an execution”.

Golog allows programs to be nondeterministic by permitting them to have
several terminating situations and nondeterministic choices between actions.
For example, a nondeterministic choice on executing either one of the two

programs, 01 and 62, can be written as follows:
01 | 62

This means that the interpreter is free to execute either 61 or 62. Golog
programs can also have nondeterministic choices of arguments. For example,
the procedure serveAllClients finds a schedule to serve all clients that have

shipments to be picked up or delivered by the robot:

proc serveAllClients
while (3zx)clientToServe(x)

] (mx)[ ?(clientToServe(x)) ; serve(zx) |

(rx)[ ?(clientToServe(x)); serve(z) | nondeterministically chooses value for
a client x, that allows the program to be successfully executed. Finally, Golog
programs can also include nondeterministic iteration ¢* (i.e. perform ¢ 0 or

more times).

The Golog interpreter has to search for a branch of the nondeterministic
program that leads to successfully termination. A logic programming imple-
mentation of Golog has been developed, which does search and backtracking

to find successful program executions.
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3.3 ConGolog

The programming language ConGolog [13, 12] is an extension of Golog that
supports concurrency. It provides extra facilities for concurrent program
execution, priorities, interrupts, and exogenous actions during the program
execution. It has been shown that these are useful to specify reactive behav-
iors for robots in dynamic environments, that is, environmental changes may
occur at any time and the robots need to adjust their decisions on actions

and react to the changes quickly.

The syntax of the ConGolog language is the same as that of Golog with

the following additional program constructs:

(01 || 62) concurrent execution
(01 > 02) concurrency with different priorities
sl concurrent iteration
<c—0> interrupt

3.3.1 Concurrency

Concurrency means that two or more processes or program threads can be
executing at the same time. ConGolog models the concurrent execution of
programs as interleavings of the primitive actions and tests of these programs.
The execution order of the primitive actions of the programs is chosen by
the interpreter. Suppose a process is being executed and it reaches a point
where it is about to perform a primitive action a or a test c¢?, where c is
a condition. Also, suppose that it is impossible to do the action, that is,
Poss(a, s) is false, or ¢ does not hold. In Golog, the interpreter would have

to backtrack and try a different nondeterministic branch of the program,
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and it would fail if there is none. However, in ConGolog, the execution could
proceed by having the process blocked and executing another process that is
running concurrently. The suspended process will be unblocked and will get
a chance to be executed again when all the preconditions of a or condition ¢

become true.
For example, consider the following program:
(al;c?;a2) || (a3)

Suppose the condition c is false at the beginning and only performing the
action a3 can make ¢ hold. Suppose the interpreter first picks the concurrent
process (al;c?; a2) and the first action al is then executed. It cannot continue
with the same process since the next step in it is the test of condition ¢ and
this does not hold in the current situation. So the first process is blocked and
the interpreter picks the other process, which is (a3), and runs it. Once a3
has been performed, ¢ becomes true and the first process is unblocked. The
interpreter can then continue the execution of the first process, by doing the

test on ¢ and then executing the last action a2.
For the program:
01> 42

It also means that the programs 61 and 2 are executed concurrently, with
the restriction that the interpreter can execute the actions or tests of 42 only
when 01 is either done or blocked, that is, d1 is executed with higher priority
than §2.
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3.3.2 Interrupts

An interrupt in ConGolog has the form < ¢ — § >. It contains a condition ¢
and a body program J. It will be triggered and execute § when the condition
¢ become true and no other process with higher priority is able to run. Once
it has completed the execution of §, the interrupt can be triggered again.
When there are several interrupts with diferent priorities running, the one
with highest priority that has triggered and is not blocked will get executed
first.

3.3.3 Exogenous Actions

Exogenous actions are primitive actions that may occur without being part
of the user’s program; they are performed by agents in the environment.
The user can specify actions as exogenous by using the predicate Ezo(a).
Exogenous actions can be generated manually by the user, randomly, or by

a real environment when the ConGolog agent is interfaced to one.

3.3.4 Limitations of ConGolog

Although ConGolog has a rich account of concurrency, it is still not a perfect
language for designing and implementing complex programs for agents work-
ing in dynamic environments. In Golog/ConGolog, an off-line search model
is used and the interpreter must search all the way from the beginning to a fi-
nal state of the program before it can execute a single action. Unfortunately,
this execution model is often not suitable for running control programs for

complex applications. Some of the limitations are as follows:
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e It is impractical for the interpreter to spend large amounts of time on
searching for a complete sequence of actions before performing any real
actions when the environment may change and exogenous actions may

occurs.

e It is impossible to find a plan if part of the program depends on some
data that can only be obtained by doing sensing in the real world at

run-time.

e The interpreter may not be able to find a complete plan for the appli-

cations which are designed for long run-times.

One way to handle these problems is to break the robot’s task into smaller
sub-tasks, and have several programs running at the same time, where each
program works on one sub-task. However, how the main task should be
broken up and how the programs can cooperate with each other become
problems. Another possible solution is to separate planning and plan ex-
ecution into two different modules as in [27]. The planning module which
uses Golog to keep constructing plans; while the plan execution module is
responsible for selecting a plan from those generated by the planning module
and control the robot. The plans that are computed by the Golog interpreter
are only treated as suggestions and it is the responsibility of the execution

module to decide what actions will be executed.

Golog has been interfaced to software developed for the ARK robotics
project [32, 52]. The ARK software was tested on the robots Nomad-200,
ARK-1, and ARK-2 for monitoring tasks in industrial environments. In

[61], it was used to design high-level robot controller for a mail delivery
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application. An extended version in ConGolog that can handle new mail
requests and navigation failures was presented in [35]. Another version of
Golog, called sequential, temporal Golog, which has the ability to represent
temporal behavior and time explicity was proposed in [51]. In [11], it was
used for planning and execution monitoring and implemented on a RWI-B21
robot to perform coffee delivery in an office environment. cc-Golog [26], an
extended version of ConGolog which supports continuous change and event-
driven behavior, was also used to build robot controllers for scheduling mail
delivery tasks. A team at the University of Bonn also combined Golog with

a plan executor to control a successful museum guide robot [7].

3.4 IndiGolog

The programming language IndiGolog [10] is the next generation of Con-
Golog. It has all ConGolog’s features, such as nondeterministism and con-
currency. With the additional facilities of on-line planning, sensing, and
incremental execution, we believe it can be used to develop robust high-level

control programs that involve planning and reactive capabilities.

3.4.1 Incremental Execution

The main difference between IndiGolog and the earlier members in the Golog
family is its incremental approach to program execution. As we have ex-
plained, it is impractical to spend large amounts of time to search for a
complete plan before execution when the program is large and complex and

the environment may change. In cases where exogenous actions happen fre-
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quently and the amount of time for planning is limited, the system may not
be fast enough to construct plans. Even if it can come up with a plan, the
occurence of an exogenous acton may force it to throw the plan away and
find a new one. Also, finding a complete plan may be problematic when the
program depends on perceptual data that can only be obtained at execution
time. For example, a robot that has to deliver a box n from a sender to
a recipient may have to first go to the sender, pick up the box, and find
out who the recipient is, before it can plan the delivery actions. The control

program for this robot may look like:

[ goTo(sender) ;
pickUp(n) ;
(m recipient) [ read(recipient) ; goTo(recipient) | ;

dropOf f(n) |

ConGolog will fail to find a sequence of actions for this program because it

cannot determine who the recipient is without executing the first 3 actions.

IndiGolog addresses these problems by switching to an incremental execu-
tion model, that is, it normally executes the next action immediately instead
of trying to find a complete sequence of actions in advance. For our example,
it does not need to know who the recipient is before it chooses and executes
the action goTo(sender). Next it picks up the box from the sender by doing
the second action pickUp. After that, a sensing action finds out who the
recipient of the box is by reading it from the box. Finally, it delivers the box
to the recipient. At each point, it executes an action allowed by the program
whose preconditions are satisfied, without doing lookahead. Note that once

an action has been chosen and performed in the real world, it is impossible
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to backtrack to the previous state as could be done in Golog/ConGolog.

3.4.2 On-line Planning

Although incremental execution has its advantages, planning is still necessary
in some cases, for example to optimize the sequence of actions that will be
performed by the robot. The search block construct search(d) in IndiGolog
takes a program d and searches for a sequence of program transitions that
leads to some final situation for the program in the block before it is executed.

For a simple example, consider the following program:
(al; False?) | (a2; True?)

Suppose that both actions al and a2 are executable. An executor that does
no lookahead might first pick the left branch of the program (al; False?)
and execute al. Once al is performed, it comes to a dead end and cannot

backtrack or complete the execution. If this program had been rewritten as:
search( (al; False?) | (a2; True?) )

then the interpreter would have first checked the left branch and found that it
could not be successfully executed to the end; then it would choose to execute
the right branch (a2; True?) which is the only one that is executable. Once
the interpreter has found a sequence of transitions for the given program,
it keeps following those transitions and makes sure that the program will
terminate at a legal final situation. If an exogenous action occurs, it may
have to redo the search to ensure that the execution of the search block

program can be completed successfully.
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3.4.3 Sensing

The robot may not have complete knowledge of the environment at the be-
ginning and other agents may perform actions that change the environment
during the program’s execution. Information about the environment can be
obtained by the robot through its sensors. The robot may keep checking
for a particular event using its sensors during its operation and notify the
IndiGolog control program about the occurence of the event by having an
exogenous action occur. Exogenous actions arise from a form of sensing. But
IndiGolog also allows explicit calls on sensing actions in the control program
for the robot to obtain information it needs. In [10], the effects of performing

a binary sensing action are modeled using sensed fluent axioms of the form:
SF(a,s) = ¢a(s)

Such an axiom means that the value returned by the sensing action a in
situation s is 1 if and only if ¢, is true in the same situation. For example,
performing the sensing action detect_obstacle tells the robot whether it is

blocked by an obstacle which is in front of it:
SF(detect_obstacle, s) = blocked|s)

Note that in general, the interpreter may not be able to find a complete
execution of a program if the given program requires knowledge that it does
not have. Because of this, IndiGolog assumes that the interpreter must have
all the necessary information when it needs to decide whether an action

should be performed or whether a condition is true. In other words, the
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value of a sensed fluent should be known when the interpreter needs it to

make a decision.

3.4.4 Histories

One of the differences between the semantics of IndiGolog and ConGolog is
that the semantics of IndiGolog uses the notion of history [10] to deal with
sensing actions. A history is a list of pairs of an action and the associated
sensing value, which can be either 0 or 1. For non-sensing actions in the list,
the corresponding sensing value is always 1 and can be ignored. For example,

the following history:

[(enter, 1), (senseDoorOpen, 1), (goToDoor, 1)]
represents the following situation:

do(enter, do(senseDoorOpen, do(goToDoor, Sp)))

where the sensing action senseDoorOpen produced the sensor value 1 (i.e.
the door was open). By using histories, IndiGolog can evaluate sensed fluents

correctly.

3.4.5 Formal Semantics of IndiGolog

The semantics of ConGolog and IndiGolog is specified using a form of tran-
sition system [47], which is formulated within the situation calculus. It uses
two special predicates: Final and Trans. The execution of an program is
treated as a sequence of program transitions. A transition is a single step of

computation of a program, which can be either performing a primitive action
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or testing whether a condition holds in a situation. Trans(9, s, d’, s') means
that for a program ¢ and situation s, one can take a single step transition
from § and s by going to the situation s’ with the program § remaining to
be executed. Final(d, s) means that the program § can legally terminate in
situation s. We often refer to a pair (4, s) of a program § and a situation s

as a configuration. We can think of T'rans as a relation on configurations.

The T'rans and Final predicates are specified by axioms for the various
program constructs. For example, the transition axioms for primitive actions

and sequences are written as follows:

Trans(a,s,d,s') = Poss(a,s) Nd = nil A s' = do(a[s], s)
Trans(dy;ds, s,d,s") =
(Final(dy, s) A Trans(ds, s,d', "))V
(3d" . Trans(dy, s,d",s") Ad' = (d";dy))
The first axiom states that one can take a transition from a primitive action
a in situation s if @ can be legally performed in s. There is no remaining
program (d = nil) and the situation becomes do(a[s], s) after the transition is
performed (a[s] evaluates the fluents in ¢ in situation s). The second axiom
says that one can take a transition from the program (d;;ds) at situation s
if either d; is Fiinal (already terminated) and there is a transition from d

at s to d’ and &', or there is a transition from d; at s to d” and s’ and d’ is

(d"; dy).

The semantic of the search operator is also expressed in terms of Final

and Trans:
Final(search(d), s) = Final(d, s)
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Trans(search(d), s, search(d'), s') =

Trans(d,s,d',s" )\

3d", 8" Trans*(d', s',d", s") A Final(d", s")
The first axiom says that search(d) at situation s can be terminated legally
if program d at situation s is Final. The second axiom states that one can
take a transition from search(d) and situation s to search(d’) and s’ if and
only if there is a legal transition from d and s to d’ and s’, and also there is a
sequence of legal transitions that turns d’ and s’ into some d” and s”, where

d" with s" is Final.

A detailed presentation of ConGolog’s transition semantics can be found
in [12]. [10] provides the semantics of the IndiGolog extensions, in particu-
lar the treatments of search blocks already mentioned, and sensing actions.
The latter are modeled in terms of histories. At each step in a program’s

execution, what transitions are possible is determined by the history.

3.4.6 Limitations of IndiGolog

Although IndiGolog provides many features and has many advantages, it
still has limitations. First of all, incremental execution allows actions to be
executed as early as possible. However, in its interpreter, once a program
branch has been chosen and some actions have been executed, the program is
now committed to what it has done and there is no way to undo those actions
or take another branch of the original program. The program execution may
come to an dead end if it picked the wrong branch of the program. Also,
although it provides the search construct for doing on-line planning, it may

not always provide the best mechanism for combining execution to on-line

41



planning. For example, one might want to find multiple plans from a program
at first and then executes only the one that is the best. Also, as we will see
in the next chapter, the replanning mechanism does not always work when

the environment has changed.

3.4.7 Example: A Simple Robot Control Program in
IndiGolog

Before describing the enhancements that we have made to the IndiGolog
interpreter, let us present an example IndiGolog robot control program for
doing shipment delivery. The complete program can be found in Appendix A.
The task of the robot is to pick up all ordered shipments and deliver them to
the recipients using the shortest possible route. In this program, the position
of the robot is maintained by the primitive fluent robot Pos. The robot can
move to place ¢ by doing the primitive action goTo(c). At the location of a
client, the robot can pick up a shipment n by doing pickUp(n), and drop off
a shipment n by performing dropO f f(n). Each shipment has a sender and a
recipient, and an unique number is assigned to it. The state of a shipment n is
modelled by the primitive fluent shipmentPos(n). Its value can be a client’s
name or the value onBoard. A client’s name indicates that the shipment is at
the location of a client, while the value onBoard means the robot is carrying
the shipment. There are two other primitive fluents, shipmentSender(n)
and shipmentRecipient(n), that denote the sender’s name and recipient’s

name.

The robot determines whether it has to go to the location of a client ¢
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and pick up or drop off some shipments by checking the value of the complex

fluent clientToServe(c), which is defined as follows:

proc clientToServe(c)

(In)shipmentPos(n) = ¢ A shipmentTo(n) # c)

V

(In)shipmentPos(n) = onBoard A shipmentTo(n) = c)
end

There are two complex actions for the robot to pick up and drop off shipments
at a location. The robot can execute the action pickAll(c) to pick up all the
shipments that have to be picked up from the client ¢. The action dropAli(c)
makes the robot drop off every shipment for client ¢ that it has on board.

These are written as follows:

proc pick All(c)
while ((In)shipmentPos(n) = ¢ A client(c)A\
shipmentRecipient(n) # c)
(mn) [ ?(shipmentPos(n) = c A client(c)A
shipmentRecipient(n) # c);
pickUp(n2) |
end

proc dropAll(c)
while ((In)shipmentPos(n) = onBoardAshipmentRecipient(n) = c)
(mn) [ ?(shipmentPos(n) = onBoardAshipmentRecipient(n) = c);
dropOf f(n) ]

end

Our control program uses planning/search to optimize the robot’s route.

The main robot control procedure is as follows:
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proc control
search( minimizeM otion(0) )
end

Before any action is executed, the IndiGolog interpreter first finds the short-
est route to serve all shipment orders by doing search(minimizeM otion(0)).
Once it is found, the robot can follow the steps of the plan and deliver the
shipments. The procedure minimizeMotion that finds the shortest route
to handle all shipments by searching for a solution iteratively is written as

follows:

proc minimizeM otion(max)
handleRequests(max)
|
minimize M otion(max + 1)
end

The procedure handle Requests(maz) makes the robot serve all shipments in

at most maz distance:

proc handle Requests(max)
?(—=((3e) clientToServe(c)))
|
(we, p,m)] ?(clientToServe(c) A robotPos = pA
m = mazx — distance(p,c) Am > 0);
goT'o(c);
pickAll(c);
dropAll(c);
handleRequests(m) |
end
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The minimize Motion procedure performs iterative deepening search to find
the minimal total distance the robot has to travel in order to deliver all
shipments. It first assumes that minimal total distance to do this is 0
(minimizeMotion(0)). If it is impossible to serve everything in 0 units of
distance, then it increments the limit on the distance from 0 to 1 (mini-
mizeMotion(1)) and checks if it is possible. If it is still impossible, it keeps
incrementing the limit on the distance until it finds a limit that allows it to
deliver the shipments. We can observe that the solution is actually the opti-
mal solution, which is the one that requires the robot to travel the shortest

distance to deliver all shipments.
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Chapter 4

Integrating Planning into

Reactive Indigolog Programs

This chapter describes how IndiGolog can be used to design and implement
robot, control programs that do planning, sensing, and react to changes in
the environment together at the same time. In order to support all of these
features, we have made several enhancements to the original IndiGolog plan-
ning and execution mechanisms. The following sections describe how they

allow effective robot control programs to be written in this language.
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4.1 An Enhanced Replanning Mechanism for
IndiGolog

4.1.1 Limitations of the Original IndiGolog Replan-

ning Mechanism

As mentioned in the previous chapter, IndiGolog has a search block construct
search(d) for doing search/planning in a program. In executing search(d),
the original IndiGolog interpreter first searches for a sequence of transitions
from the given program d to some configuration where it can legally termi-
nate. For efficiency, it saves the sequence it has found and keeps following
it until its execution is completed or an exogenous action occurs. When the
latter happens (i.e. the environment has changed), it rechecks whether the
transitions in the sequence still work and if not, it performs a new search if
necessary. The new search starts with the program that is currently left to
be executed in the search block. This means that the interpreter has com-
mitted to the transitions that have been done so far, and backtracking to the
original program d and taking another branch of it is not allowed. However,
there is no reason to commit to the performed transitions; all that the agent

is really committed to are the actions it has already performed.

There are many cases where it is impossible to find a sequence of tran-
sitions from the program that is currently left in the search block when the
environment has changed during program execution. But if one were to start
searching from the initial program and situation, then one would be able

to find another sequence which involves the same sequence of actions that
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has already been performed, and leads to a terminating configuration. One
example of this involves the shipment delivery program described in previous

chapter:

proc control
search( minimizeM otion(0) )
end

proc minimizeMotion(Mazx)
handleRequests(Max)

minimizeMotion(Max + 1)
end

proc handleRequests(Max)
?(=((3e) clientToServe(c)))

(me,p,m) | ?(clientT oServe(c) A robotPos = p A
m = Maz — distance(p,c) Am > 0);
goT'o(c);
pick All(c);
dropAll(c);
handle Requests(m) ]
end

By executing search(minimizeMotion(0)) at the beginning, this pro-
gram does an iterative deepening search to find a sequence of transitions for
the robot to serve all the clients that minimizes the distance it has to travel.
Suppose that the robot has 3 clients to serve initially and has to travel at
least 6 units of distance to serve all of their shipments. The interpreter has
to find a sequence of transitions for the search block to serve the clients. At

first, it can perform either handle Requests(0) or minimize Motion(1). Since
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it is impossible to complete its mission in 0 distance (i.e. handle Requests(0)
fails), minimizeMotion(1) is chosen. Then, the interpreter has to choose
between handleRequests(1l) and minimizeMotion(2). The distance bound
keeps incrementing until it reaches 6, where handleRequests(6) succeeds.
The original IndiGolog interpreter then commits to the the program branch
handle Requests(6) and starts executing the sequence of transitions it has
found. Now suppose an exogeonous event occurs in which a client makes a
new new shipment order, and serving it requires the robot to travel 2 more
units of distance. Since the program left in the search block is what remains
of the execution of handleRequests(6), the interpreter cannot increase the
distance bound and is thus unable to complete its execution. However if it
could reconsider the whole sequence of transitions from the original program
search(minimizeDistance(0)) and choose the branch handle Requests(8) in-
stead of handleRequests(6), it would find that this branch is an alternative
solution which can be used to serve all clients including the new one. We
conclude that the interpreter should not commit to a particular branch of
the program and should replan from the original program and situation when

necessary.

4.1.2 Replanning from the Initial Program and Situa-
tion

To allow replanning from the original program and situation, both of them

must be memorized and kept within the search block as transitions are per-

formed. We define an auxiliary construct search’(d, di, si), where di and si

are the initial program and situation (i.e. the program and situation when
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the search is first performed; we call this pair the initial configuration). The

revised semantics of the search block is written in terms of search’ as follows:

Trans(search(d), s,d', s") = Trans(search'(d,d, s), s, d', s')
Final(search(d), s) = Final(search'(d,d, s), s)

The transition and termination axioms for search’ are defined as follows:

Trans(search'(d, di, si), s, d',s") =
(Fd",d") d' = search(d",di, si)A
Trans*(di|lexo, si, d"||exo, s) A Trans(d"”,s,d", s")A
(Hd/"l SI/II) T/ra,ns*(dll S, dl/l/ S””) /\ Fina,l(d”” S/I/I)

Final(search'(d,di, si), s) =
(3d") Trans*(di|lexo, si,d"||exo, s) A Final(d", s)

where the program ezo is defined as (ma)[exog_action(a)?;al.

The first axiom states that one can take a single transition from search’(d,di,si)
in situation s to search’(d",di,si) and s” if and only if there is a sequence
of transitions from the initial configuration that ends with some program d"
at the current situation s. This must involve the same sequence of primitive
actions have been performed by the program since si with possibly some ex-
ogenous actions occurring. Also, there is a single transition from d” in s to
some program d” and situation s’, and a sequence of transitions that starts at
d" in s’ to some final configuration s” and d"”. The second axiom says that
the program search'(d, di, si) is Final in situation s if there is a sequence of
transitions that takes the initial program and situation to a program d” and
the current situation s allowing some exogenous actions to occur, and d” and

s is a final configuration.
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With this modification, the interpreter is able to switch to another pro-
gram branch in cases such as the example described in the previous section.
In that example, a client makes a new shipment order while the robot is
serving some existing orders. The sequence of transitions found before the
new order was made, which starts from handle Requests(6) is not valid any
more. The distance bound on the sequence of transitions for the robot to
serve all orders including the new one must be at least 8. An interpreter
that uses our enhanced search mechanism will be able to construct a new
sequence of transitions for serving all orders. Starting from the original
program minimizeMotion(0), it will keep incrementing the distance bound
until minimize M otion(8) is reached, where there is a sequence of transitions
which starts from handleRequests(8) in the initial situation to the current
situation, and can be extended to a final situation where the robot has served

all orders in 8 units of distance in total.

Our enhancement allows the interpreter to consider other branches of
the given program in a search block and find a sequence of transitions that
involves the same sequence of actions that has been performed since the
beginning. When a new search is required during the execution of the search

block, it is not restricted to the program that is left inside the block.

4.1.3 Efficiency Consideration

Searching for a sequence of legal transitions can be very time consuming.
It is inefficient to perform a search every time the interpreter needs to take

a transition of a search block as stated in the semantics. Our interpreter
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addresses this by storing the sequence it finds in its initial search and simply
following it until all transitions in the sequence have been executed or an

exogenous action occurs; it only redoes the search in the latter case.

The efficiency of the replanning mechanism can be further improved by
checking whether the exogenous action that has occurred makes the saved
sequence of transitions no longer valid. Replanning should be performed only
when following the current sequence no longer leads to a legal termination.
For example, if a person turns on the light in the robot’s work area by
performing the exogenous action turnOnLight, this does not affect the route
of the robot to serve the clients and deliver the shipments. Thus, the sequence
of transitions saved in the search block is still executable if this action occurs.
If the interpreter replans, it will find the same sequence that was found in
the initial search. Redoing the search would cause unnecessary delay. By
checking the saved sequence before redoing the search, which is relatively

fast, this inefficiency can be avoided.

4.2 Planning Using a Simulated Environment

A robot may not have complete information about its environment initially
and may need to get additional data at run-time to decide which action
should be performed in order to complete its task. For example, it may need
to get sensor data to find out whether it is facing an obstacle. It is impossible
to know what data sensing will produce until its actual execution. Planning
is often useful to optimize the performance of the robot, but it can be hard

to do if some of the necessary information depend on exogenous events or
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environmental data that can be known only at run-time. One solution is
to interleave planning and sensing. The robot constructs a partial plan up
to the point where making the next decision requires data that has to be
obtained at run-time. Then it executes the partial plan, and obtains the
data from the environment or wait for some exogenous event to occur, then
searches for the next partial plan, and so on and so forth. The major problem
with this approach is that if the program needs frequent feedback from the
environment, then the planner can only do a limited amount of lookahead and
construct a short partial plan each time. As a result, planning may provide
only limited benefit. This might not be an appropriate approach if global
optimization of actions is needed, requiring planning from the beginning to

the end of the program.

One instance of this is when the robot must rely on the occurrence of
exogenous actions at some point in its plan. These could be signals from
other components in the robot’s architecture, such as the completion of a
robot motion, or actions by other agents, such as an indication of a shipment
having been placed in the robot’s bin for transport. The original IndiGolog
interpreter cannot construct a sequence of transitions for a search block where
the program relies on the occurrence of exogenous actions. Usually, there
is one normal outcome exogenous action that would typically happen, and
planning could proceed if we are willing to be optimistic and allow it to
simulate the expected exogenous action. So, the approach we develop here
is to add simulated actions into an environment process that is executed

concurrently with the robot control process.
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Let us illustrate this with an example. Suppose that we want to use
a more general model of navigation that allows for failure and permits the
robot to do other things while navigation proceeds. The robot will perform
an action startGoTo(Location) to initiate the navigation and then wait for
an exogenous event indicating that it has reached the client’s location before
serving the client. The handleRequest procedure is rewritten as follows for

this purpose:

proc handle Requests(Max)
?(=((Fe)clientToServe(c)))

(m ¢,p,m) [ ?(clientToServe(c) A robotPos =p A
m = Max — distance(p,c) Am > 0);
startGoTo(c);
?(robotState # moving);
if (robotState = reached) then
[ pickAll(c);
dropAll(c) |;
handle Requests(m) |
end

Suppose that there are some clients for the robot to serve initially. The
program first picks a client ¢ and performs the action startGoTo(c) to start
moving to the client’s location. It is then blocked at the test ?(robotState #
moving) until the exogenous action reachDest occurs, signaling that the
robot has actually reached the client’s location (on the other hand, if the
navigation fails and the exogenous action getStuck occurs, the robot will
keep trying to handle all requests). Afterward, the robot can finish serving
the client by picking up and dropping off its shipments, and then proceed to
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serve other clients. However, the exogenous action reachDest is not part of
the program and only happens during the program execution. To allow the
interpreter to construct a sequence of transitions with incomplete information
in this case, we add an environment simulator program that generates a
simulated version of the reachDest action. The environment simulator that
inserts this piece of information into the search during planning is written as

follows:

proc envSimulator
< robotState = moving — sim(reachDest) >
end

This procedure is executed concurrently with the robot motion control pro-

gram:

proc control
search(minimizeMotion(0) || envSimulator)
end

Whenever the search reaches a situation where the robot is moving to
its destination (robotState = moving), the simulator generates a simulated
action sim(reachDest) to indicate that the robot has reached the location

successfully. Therefore, the search can proceed as usual.

This simulated version of an action is treated same as the real action

during planning. We specify:
Poss(sim(a), s) = Poss(a, s)
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F(Z,do(sim(a), s)) = F(#,do(a,s))  for any fluent F’

Here we assume the simulated exogenous action sim(a) has the same pre-
conditions and effects as the real one. However, simulated actions are never
actually executed. When the interpreter executes the sequence of transitions
that is saved in the search block and encounters a simulated action such as
sim(reachDest), this action is simply skipped and the interpreter assumes
that some exogenous action must happen at this moment. It keeps waiting
until some real exogenous action occurs. If the real exogenous action is the
one that it expected in the search (reachDest in our example), the inter-
preter can replace the simulated one with the real one and continue with
the execution. If the exogenous action that occurs is something else, such as
getStuck to signal that the robot is blocked by an obstacle on its way to its

destination, replanning may be performed.

4.3 Combining Reactive Behaviors and Planned
Behaviors

A robot that works in a dynamic environment is not only required to per-
form its main task. It must also watch for changes in the environment and
react to them immediately to avoid running into problems. So, the robot
program usually has a deliberative element for planning and controlling the
robot to accomplish its main task, and some reactive elements for reacting to
environmental changes quickly. In this kind of structure, the program should

contain a thread for suggesting what actions the robot should perform for
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its main task, which often involves search or planning, and also other higher
priority threads to monitor for important environmental changes and per-
form the corresponding reaction. The main thread will be blocked when an
exogenous event occurs and a reactive thread will be executed to solve the
problem immediately. Cooperation between the these threads is very impor-
tant, since the decision of what action to perform in the main thread may

have to depend on what has been done by the reactive threads.

Consider the following example. We insert a high priority interrupt in our
shipment delivery robot control program to detect when a client has made a
new shipment order and send back an acknowledgement to the client. This

additional thread looks like the following:
< (In)newOrder(n) — acknowledge(n) >

Here the fluent newOrder(n) becomes true when a client sends in a new
shipment order n and then the robot acknowledges it to the client by doing
the primitive action acknowledge(n). Since sending the acknowledgement
does not affect the current motion of the robot, this is essentially independent
from the main control of the robot. We want to write the whole control
program as follows, with the reactive thread running at higher priority than

the motion control thread:

proc control
< (In)newOrder(n) — acknowledge(n) >
>
search(minimizeMotion(0))

end
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Unfortunately, the original IndiGolog interpreter will fail to find a se-
quence of transitions for this program after an acknowledgement has been
performed. The search block can find a sequence for the search block to
control the robot to serve the shipments, but it does not have the required
information to deal with the actions that have been performed by the re-
active thread, for instance, the acknowledge action. When the interpreter
replans, it can only use the program provided inside the search block and is
not able to reason about the acknowledge actions which were performed by

other threads. Therefore, replanning will fail at this point.

One way to solve this problem is to put all the threads inside the search
block and ask the interpreter to find a sequence of transitions that contains
the actions required to accomplish the main task as well as react to all kinds

of exogenous events:

proc control
search( < (In)newOrder(n) — acknowledge(n) >
>
minimizeMotion(0) )
end

However, searching for a larger program is more complicated and time con-
suming. If the search involves not only finding a sequence for accomplishing
the main task but also handling all exogenous events reactively, the inter-
preter may spend much more time on planning instead of executing actions.
Moreover, the interpreter has to replan before it can perform the reaction to

the exogenous event.
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We can handle programs that involve both search threads and reactive
threads like the one in the example on the previous page if we make search
blocks remember what actions they have performed and ignore other ac-
tions that are exogenous or performed by other threads in replanning. The

semantics of the search block with this enhancement are as follows:

Trans(search(d), s,d', s") = Trans(search'(d, d, s,0), s, d', s")
Final(search(d),s) = Final(search'(d,d, s, (), s)

Trans(search'(d,di, si, I),s,d',s') =
(3d",d") d' = search'(d", di, si, ')\
Trans*(di||d, (1), si,d"||do(I), s) A Trans(d",s,d", s")A
§s=s—=>I'=IA(3a).(s =do(a,s) > I'=TUs")A
(Hdllll’ S””) T,,,.a/ns* (dll’ S’, dlll/’ S””) /\ F’i’l’LCLl(d"", 8””)

Final(search!(d, di, si, I), s) =
(3d") Trans*(di||d,(I), si,d"||do(I), s) A Final(d", s)

where d,(I) = ((7wa) if (do(a,now) & I) then a else False?)*

Here [ is a set of situations do(a, s) where the last action a of each situation
in the set comes from inside the search block, and d,(I) is a program that
can generate actions that are exogenous or from threads outside the search
block (i.e. do not belong to the set I). The third axiom says that one can
take a transition from search’ if and only if there is a sequence of legal tran-
sitions from the initial program di and situation si that involves the actions
performed since the initial configuration, and leads to some final configura-
tion. If performing the next transiton to search'(d",di, si, I') in situation s’
involves an action a from inside the search block, then the situation after the

action is performed is added into the set I.

99



4.4 Implementation

In this section, we present the implementation of the enhancements to the
IndiGolog interpreter that have been described in the previous sections. The
interpreter is written mainly in terms of the Prolog clauses final and trans,
which are the implementation of the Final and Trans predicates in the
semantics. Like that in [10], our implementation uses histories instead of
situations to represent states of the world with sensing information. As
described in Chapter 3, a history is a list of primitive actions sensor values
with the associated for sensing actions. In the implementation, sensor values
are included in the history as sensor reports of the form e(fluent,value)

following the sensing action. For example, the history
[ (enter, 1), (senseDoorOpen, 1), (gotoDoor, 1) |
corresponding to the situation
do(enter, do(senseDoorOpen, do(gotoDoor, Sp)))

where the sensing action senseDoorOpen produced the sensor value 1 is

represented in the implementation by the list

[ enter, e(doorOpen, 1), senseDoorOpen, gotoDoor |

4.4.1 The Enhanced Search Mechanism

As mentioned earlier, for efficiency, our interpreter saves the sequence of
transitions it finds in the search for a search block so that no more search is

needed unless the sequence becomes invalid because of the occurrence of some
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exogenous action. The sequence is saved as a path, which is a list of program-
and-history pairs: [EO,HO,E1,H1,...,En,Hn], where E’s are programs and
H’s are histories. Each pair (Ek,Hk,Ek+1,Hk+1), with 0 < k < n, of the
path represents a transition from the configuration (Ek,Hk) to (Ek+1,Hk+1).
Also, (En,Hn) is a final configuration. In order to replan from the original
configuration when the path becomes invalid, the interpreter also stores the
initial program, initial history, and a list of snapshots, in addition to the
path. The list of snapshots corresponds to the set I of actions from inside the
search block in the semantics. A snapshot is a history [An,An-1,...,A1]
and it is added to the list of snapshots only when the program inside the
search block performs a primitive action. In other words, the last action
An of each snapshot in the list comes from inside the search block. This is
used to handle programs that contain both search and reactive threads. The
snapshots appear in the list in reverse order; we will give an example later

in this section.

Let us now go over the details of the trans clauses for handling the search
construct. The following clauses are used by the interpreter to perform the
initial search and store the execution path found when it encounters a search
block in the program:

trans(search(E) ,H,E1,H1) :-

findpath([],E,H,P), trans(followpath(P,[],E,H),H,E1,H1).
findpath([],E,H,[E,H]) :- final(E,H).

findpath([],E,H,[E,H|L]) :- trans(E,H,E1,H1), findpath([],E1,H1,L).
The interpreter handles a search block search(E) by first calling findpath

to find a path for the program inside the block and then transforming ev-
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erything into a followpath(P, [1,E,H) contruct, where P is the path found
by findpath, E is the initial program, H is the initial history, and [] is the
list of snapshots, which is empty at the beginning. The followpath term
is analogous to search’ in the semantics. findpath(_,E,H,P) will succeed
if it can find a path from the initial program E and initial history H to a

terminating configuration; the path is bounded to P.

Once a path is found, the interpreter keeps following it as long as no
exogenous action and no action from another thread occurs, that is, as long

as the current history H remains the same as the one saved in the path:

trans (followpath([E,H,E1,H|L],LS,EQ0,HO0) ,H,
followpath([E1,H|L],LS,E0,HO) ,H) :- !.

trans(followpath([E,H,E1, [A|H]|L],LS,EQ,HO),H,
followpath([E1,[A|H]|L],[[A|H]|LS],EO,HO),[A|H]) :- !.

If the current history does not match the one that is saved in the path
because of the occurence of an action from outside the search block, the
interpreter checks to see if the path can still be followed to get to a termi-
nating configuration. That is, if the remaining path is [E0,HO, ... ,En,Hn]
and the current history is CH, it checks whether Trans*(E0,CH, En, H') A
Final(En, H') holds. Actually, if the path can still be followed to a termi-
nating configuration, we want to fix the histories in it to include the outside
action that made the current history different from the one expected. This
is done by canfixpath(P,CH,P1), where the fixed path is returned as P1.

The trans clause for this case is as follows:

trans(followpath([E,H,E1,H1|L],LS,EQ,H0) ,CH,E2,H2) :-
canfixpath([E,H,E1,H1|L],CH,L1),
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trans (followpath(L1,LS,E0,H0) ,CH,E2,H2), !.

canfixpath([E,H],CH, [E,CH]) :- final(E,CH).
canfixpath([E,H,E1,H1|P],CH, [E,CH,E1,CH1|P1]) :-
trans(E,CH,E1,CH1), canfixpath([E1,H1|P],CH1,[E1,CH1|P1]).

In the case where the current path is not valid anymore, the interpreter
finds a new path that starts from the initial configuration and involves the
actions that have already been performed by the program inside the search

block. This can be seen in the last trans clause of the search mechanism:

trans(followpath([E,H,E1,H1|L],LS,E0,HO) ,CH,E2,H2) :-
append (LS,H0,LS1), extactout([CH|LS1],[],AL),
findpath(AL,E0,H0,P), trans(followpath(P,LS,E0,H0),CH,E2,H2).

As shown in the body of the clause, the interpreter first calls extactout (and
extactin) to construct a list of the actions performed by the search block
from the saved sequence of snapshots and current history. Each primitive
action A that was performed by the program inside the search block in this

list is labelled as inside(A):

extactin([HO],AL,AL).
extactin([[A|H1],H|L],AL,R) :- extactout([H1,H|L],[inside(A)|AL],R).

extactout ([H,H|L],AL,R) :- extactin([H|L],AL,R).
extactout ([[A|H1],H|L],AL,R) :- extactout([H1,H|L],[A|AL],R).

For example, consider the following list of snapshots LS:

[startGoTo(p2) ,reachDest,pickUp(1) ,acknowledge(2,p2,p3),startGoTo(pl)],
[pickUp(1) ,acknowledge(2,p2,p3),startGoTo(p1)],
[startGoTo (p1)]
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After adding the initial history [1 to the end of the list, we can get the

following list of performed actions AL from extactout (LS, [],AL):

[inside(startGoTo(pl)), acknowledge(2,p2,p3), inside(pickUp(1)),
reachDest, inside(startGoTo(p2))]

Once the list of performed actions is found, the interpreter uses findpath
to construct a new path. The following three additional findpath clauses
are used to handle the case where we need to find a path that includes some

already performed actions:

findpath([A|AL],E,H,L) :-

trans(E,H,E1,H), findpath([A|AL],E1,H,L).
findpath([inside(A) |AL],E,H,L) :-

prim action(A), trans(E,H,E1,[A[H]), findpath(AL,E1, [A|H],L).
findpath([A|AL],E,H,L) :-

A \= inside()), findpath(AL,E,[A[|H],L).

The first clause holds if there is a transition from program E to E1 that does
not involve performing an action. Otherwise, if the next action A in the
list is labeled as inside(A), it attempts to find a transition that takes the
program E to E1 which involves that action. If the action A is not labeled (i.e.
either an exogenous action, a sensing value or some action that was done by
a thread outside the search block), the interpreter simply adds it into the
history. By combining these with the original two findpath clauses, a new
path P can be found by executing findpath(AL,E0,H0,P), where EO is the
initial program, HO is the initial history, and AL is the actions that have been

performed since HO.
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The final clauses of the search block construct that specify the termi-
nating configurations are written in the similar way as those for trans. They

are as follows:

final(search(E) ,H) :- final(E,H).

final (followpath([E,H],LS,E0,H0) ,H) :- !.
final (followpath([E,H|P],LS,E0,H0),CH) :- final(E,CH), !.
final(followpath(P,LS,E0,H0),CH) :-
addtail(LS,H0,LS1), extactout([CH|LS1],[],AL), !,
findpath (AL,EO,HO, [E1,H1]) .

4.4.2 The Simulated Environment Mechanism

Our approach to planning in applications where the agent needs feedback
from the environment involves the use of an environment simulator program
to produce simulated exogenous actions so that the search mechanism can
find an execution path. Simulated actions generated by the environment
simulator are labeled sim(a), where « is a real exogenous action. As we have
seen, a simulated action is treated in the same way as the corresponding real
action during the planning/search phase. The implementation supports this

as follows:

primaction(sim(A)) :- exog.action(A)
has_val(F,V,[sim(A) |H]) :- has_val(F,V,[A|H])

poss(sim(A),P) :- poss(A,P)

The first clause says that sim(A) is a simulated primitive action if and only
if A is an exogenous action. The second clause states that they have the same

effect on the value of fluents. The third clause says that the preconditions for
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performing sim(A) are the same as those for the exogenous action A; so the
simulator is allowed to generate a simulated action sim(A) if the exogenous

action A could occur in the same history.

During execution on the other hand, we never want to perform the sim-
ulated actions; we treat them as indications that we should wait for a real
exogenous action to occur (hopefully the expected one). When this hap-
pens, the simulated action can be discarded. Let us look at the execution
mechanism in more detail. The interpreter takes a program and executes
it transition by transition until it can legally terminate. Before performing
each transition of the program, the interpreter checks to see if any new ex-
ogenous actions have occured, or whether the program can terminate. When
an exogenous action happens, the interpreter inserts the exogenous action
into the current history, and if the next transition involves the corresponding
simulated action, the transition is also performed to advance the program
(i.e. the real exogenous action is substituted for the simulated action). This
is done in the following clauses:

indigolog(E) :- indigo(E,[1).

indigo(E,H) :- exog occurs(A), exog.action(A), !, subsim(E,A,H).
indigo(E,H) :- final(E,H).

indigo(E,H) :- trans(E,H,E1,H1), !, checksim(E,H,E1,H1).

An IndiGolog program E can be executed by invoking indigolog(E). When
an exogenous action occurs (both exog_occurs(A) and exog_action(A) hold),
the interpreter calls subsim(E,A,H) to see if the action A can be substituted
for a simulated action in the program. If this is the case (i.e. taking the

next transition involves a simulated action which corresponds to A), then the
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exogenous action is substituted into the current history and next transition
is taken. If the next transition involves a simulated action that does not cor-
respond to the exogenous action that has just occurred, then the exogenous
action is inserted into the current history as usual and the interpreter does

not advance the program. This is done as follows:

subsim(E,A,H) :- trans(E,H,E1,H1), subsim2(E,A,H,E1,H1).
subsim2(E,A,H,E1, [sim(A) |H]) :- !, indigo(E1,[A[H]).
subsim2(E,A,H,E1,H1) :- !, indigo(E,[A|H]).

Since simulated actions are just simulated and the interpreter expects
some exogenous action to occur when it encounters such an action during
execution, the interpreter does nothing when it reaches a transition involving
a simulated action and waits for the occurrence of an exogenous action. This
is done by calling checksim(E,H,E1,H1) whenever the interpreter considers

taking a transition:

checksim(E,H,E1, [sim()) |H]) :- !, indigo(E,H).
checksim(E,H,E1,H1) :- indixeq(H,H1,H2), !, indigo(E1,H2).

indixeq(H,H,H).
indixeq(H,[A|H],[e(F,Sr),A|H]) :- senses(A,F), !, execute(A,Sr).
indixeq(H, [A|H],[A|H]) :- execute(4,.).

Before the interpreter takes a transition from the program E in history H to
program E1 and history H1, it checks to see whether doing it involves a simu-
lated action. If this is true (i.e. checksim(E,H,E1, [sim(_) |[H]) holds) then
it waits by calling indigo (E,H) until an exogenous action occurs. Otherwise,
the program can be advanced as usual and indixeq is called to perform the

real action.
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4.5 A Complete Example Using the Enhanced
Interpreter

In this section we present a complete robot control program for shipment
delivey which involves both planned and reactive behaviors, and uses the
enhancements we have made to the interpreter. We provide execution traces
of the program for some example scenarios. Here we do not hook up the
controller to a real robot. We will show how this is done in chapter 7. The

task of the robot is to serve all clients while minimizing the distance it travels.

4.5.1 Domain Specification

The domain specification is as follows:

Ordinary primitive actions:

startGoT o( Place) robot starts moving to Place
pickUp(SNo) robot picks up shipment #SNo
dropOff(SNo) robot drops off shipment #SNo
abortGoTo robot stops moving to its destination

acknowledge(SNo, Client) acknowledges shipment order #SNo to Client

Exogenous primitive actions:

reachDest robot has reached its destination
getStuck robot unable to reach destination
orderShipment(SNo, Sndr, Repnt) client Sndr wants to send

shipment #SNo to Repnt

Primitive fluents:
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robot Pos position of the robot

robotState state of the robot
robotDest destination of the robot
shipmentPos(SNo) position of shipment #SNo
shipmentSender(SNo) sender of shipment #SNo
shipment Recipient(SNo) recipient of shipment #SNo

Precondition axioms:

Poss(startGoTo( Place), s) =

robotState(s) = idle V robotState(s) = reached
Poss(reachDest, s) = robotState(s) = moving
Poss(getStuck, s) = robotState(s) = moving
Poss(abortGoTo, s) = robotState(s) = moving
Poss(pickUp(SNo), s) = shipmentPos(SNo, s) = robotPos(s)
Poss(dropOf f(SNo), s) = shipmentPos(SNo, s) = onBoard
Poss(orderShipment(SNo, Sender, Recipient), s) = true
Poss(acknowledge(SNo, Client), s) =

shipmentPos(SNo, s) = nonExistentA

shipmentSender(N, s) = Client

Successor state axioms:

robotPos(do(a,s)) =p =

a = startGoTo(p) A p = unknownV

a = reachDest A p = robot DestV

(V p')a # startGoTo(p') A a # reachDest A robotPos(s) = p
robotState(do(a, s)) =z =

(3 p)a = startGoTo(p) A x = movingV

a = reachDest \ x = reachedV

a = getStuck N x = idleV

a = abortGoTo N\ x = idleV

(V p')a # startGoTo(p') A a # reachDest A a # getStuckA

a # abortGoT o A robotState(s) = x

robotDest(do(a,s)) = p =

a = startGoTo(p)V

(V p')a # startGoTo(p') A robotDest(s) = p
shipmentSender(n,do(a, s)) = ¢ =

(3 r)a = orderShipment(n, c, )V
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(V r')a # order Shipment(n,c,r') A shipmentSender(n,s) = ¢
shipmentRecipient(n,do(a, s)) = ¢ =

(3 z)a = orderShipment(n, z, c)V

(V z")a # orderShipment(n,x’, c) A shipment Recipient(n, s) = ¢
shipmentPos(n,do(a,s)) =p =

a = acknowledge(n,p)V

a = pickUp(n) A p = onBoardV

a = dropOf f(n) A p = robotPos(s)V

(V p')a # acknowledge(n,p’) A a # pickUp(n)A

a # dropOf f(n) A shipmentPos(n, s) = p

As already discussed, the robot control program consists of the complex
procedures handleRequests and minimizeM otion which use iterative deep-
ening search to find the shortest route the robot has to travel in order to
deliver all shipments. The minimizeMotion procedure is executed concur-

rently with the environment simulator. The program is as follows:

proc control
search(minimizeMotion(0) || envSimulator)
end

proc minimizeMotion(Max)
handle Requests(Max)
|
minimizeMotion(Max + 1)
end

proc handle Requests(Max)
?(=((3c)clientToServe(c)))
|
(7 ¢, p,m) [ ?(clientToServe(c) A robotPos = p A
m = Max — distance(p,c) Am > 0);
startGoTo(c);
?(robotState # moving);
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if (robotState = reached) then
[ pickAll(c);
dropAll(c) |;
handle Requests(m) |
end

proc envSimulator
< robotState = moving — sim(reachDest) >
end

We define the fluent clientToServe(c) to hold if the robot has to go to
the location of a client C to pick up some shipments or has shipments on

board that must be delivered to that client:

proc clientToServe(c)

(Inl)shipmentPos(nl) = ¢ A shipment Recipient(nl) # c)

V

(In2)shipmentPos(n2) = onBoard A shipment Recipient(n2) = c)
end

4.5.2 Example 1: Planning with Simulated Environ-

ment

Our first example shows that our interpreter performs planning to minimize
the distance travelled by the robot and that this can be done even when the
robot must rely on feedback from the environment, by using an environment
simulator program. We suppose that there are 3 clients: yves, hector and
mike, and 2 shipments for the robot to deliver: shipment 1 from yves to
hector and shipment 2 from hector to mike. The robot is at the home

position at the beginning. The initial axioms for this are as follows:
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robotPos(s0) = home robotState(s0) = idle
robotDest(s0) = home

distance(yves, hector, 1) distance(yves, mike, 1)
distance(hector, mike, 2) distance(home, yves, 1)
distance(home, hector, 1) distance(home, mike, 1)
shipmentPos(1) = yves shipmentSender(1) = yves

shipment Recipient(1) = hector shipmentPos(2) = hector
shipmentSender(2) = hector shipmentRecipient(2) = mike

Note that we set up the initial situation such that there are shipment orders

at the beginning. Here is the trace produced by the program:

| 7- indigolog itr(control).

Exogenous input:nil.

start_interrupts

Exogenous input:nil.

Exogenous input:nil.

Exogenous input:nil.

path : [startGoTo(yves), sim(reachDest), pickUp(1), startGoTo(hector),
sim(reachDest), pickUp(2), drop0ff(1), startGoTo(mike), sim(reachDest),
drop0ff(2)] in [start_interrupts]

At this step the interpreter found the shortest route, home->yves->hector—->
mike with a total distance of 4. Another possible route is home->hector->mike
->yves->hector, but its total distance is 5. We can also see that the envi-
ronment simulator inserted the simulated action sim(reachDest) right after
each occurrence of startGoTo in the path successfully. Then, the path is
executed:

Exogenous input:nil.
Exogenous input:nil.
Exogenous input:nil.
Exogenous input:nil.
startGoTo(yves)

Exogenous input:nil.
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Exogenous input:reachDest.
Exogenous input:nil.
Exogenous input:nil.
Exogenous input:nil.
pickUp(1)

Exogenous input:nil.
Exogenous input:nil.
startGoTo (hector)
Exogenous input:nil.
Exogenous input:nil.
Exogenous input:nil.
Exogenous input:reachDest.
Exogenous input:nil.
Exogenous input:nil.
Exogenous input:nil.
pickUp(2)

Exogenous input:nil.
drop0ff (1)

Exogenous input:nil.
Exogenous input:nil.
Exogenous input:nil.
Exogenous input:nil.
startGoTo (mike)

Exogenous input:reachDest.
Exogenous input:nil.
Exogenous input:nil.
drop0ff(2)

Exogenous input:nil.
Exogenous input:nil.
stop_interrupts

Exogenous input:nil.

yes
Once the robot had performed startGoTo, it kept waiting until the real
exogenous action reachDest occurs. The exogenous action was then sub-

stituted into the history and no replanning was needed. Afterwards, it per-
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formed the pickUp and dropOff actions and continued following the path
obtained before. This shows that the program works in the case where the
exogenous action that really occurs corresponds to the simulated one in the
path. With our enhancements, the interpreter can find a path even though
the robot relies on environmental feedback and never needs to replan because

the environment behaves as expected.

4.5.3 Example 2: Replanning

Our second example demonstrates what our interpreter can perform replan-
ning when the current path is no longer valid after the occurence of an ex-
ogenous action. We temporarily prevent the robot from moving from hector
to mike, for example, by putting a box on the robot’s route. The trace

produced is as follows:

| ?- indigolog_itr(control).

Exogenous input:nil.

start_interrupts

Exogenous input:nil.

Exogenous input:nil.

Exogenous input:nil.

path : [startGoTo(yves), sim(reachDest), pickUp(1), startGoTo(hector),
sim(reachDest), pickUp(2), drop0ff(1), startGoTo(mike), sim(reachDest),
drop0ff(2)] in [start_interrupts] Exogenous input:nil.

Exogenous input:nil.

Exogenous input:nil.

Exogenous input:nil.

startGoTo(yves)

Exogenous input:nil.

Exogenous input:nil.

Exogenous input:nil.

Exogenous input:reachDest.
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Exogenous input:nil.
Exogenous input:nil.
Exogenous input:nil.
pickUp(1)

Exogenous input:nil.
Exogenous input:nil.
startGoTo (hector)
Exogenous input:reachDest.
Exogenous input:nil.
Exogenous input:nil.
Exogenous input:nil.
pickUp(2)

Exogenous input:nil.
drop0ff (1)

Exogenous input:nil.
Exogenous input:nil.
Exogenous input:nil.
Exogenous input:nil.
startGoTo (mike)

Exogenous input:nil.
Exogenous input:nil.
Exogenous input:nil.
Exogenous input:getStuck.
Exogenous input:nil.

path : [startGoTo(mike), sim(reachDest), drop0ff(2)] in [getStuck,
startGoTo(mike), drop0ff(1), ...] Exogenous input:nil.
Exogenous input:nil.
Exogenous input:nil.
Exogenous input:nil.
startGoTo (mike)

Exogenous input:nil.
Exogenous input:nil.
Exogenous input:reachDest.
Exogenous input:nil.
Exogenous input:nil.
Exogenous input:nil.
drop0ff (2)

Exogenous input:nil.
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Exogenous input:nil.

stop_interrupts

Exogenous input:nil.

yes

This is a case where the actual exogenous action that occurs at run-time
is not the one expected during planning. We expect the robot to reach its
destination successfully and so the environment simulator always generates
the simulated action reachDest. However, the robot was blocked by the box
on its way to mike and so it received the getStuck signal. Therefore, the
interpreter replanned to make a second attempt to deliver shipment 2 to mike
again. Afterwards, we moved the box away so that the robot could reach
mike (exogenous action reachDest occured) and drop off the shipment. Note
that we could easily handle failures in a more sophisticated way, for example,

by suspending the client temporarily or giving up after a number of tries.

4.5.4 Example 3: Combining Planned and Reactive

Behaviors

To demonstrate how a robot control program can combine planned and re-
active behaviors, we added a reactive thread into the shipment delivery ex-
ample. This new reactive thread simply performs the action acknowledge
to acknowledge the sender when he/she makes a new shipment order. The

main control program is now rewritten as follows:

proc control
< (In)newOrder(n) — handleNewOrder(n) >
>
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search(minimize M otion(0))
end

The robot acknowledges new shipment orders by calling the procedure han-

dleNewOrder:

proc handleNewOrder(N)
(me)[ ?(shipmentSender(N) = c);
acknowledge(N, c)

]

end

The fluent newOrder(n) holds when a client has just made a new ship-
ment order n and it is cancelled when the robot acknowledges the shipment:

newOrder(n,do(a, s)) =
(3 ¢,r) a = orderShipment(n,c,r)V
(V ) a # acknowledge(n, ') A newOrder(n, s)

The robot is first asked to serve 2 shipments: shipment 1 from yves to
hector and shipment 2 from hector to mike initially. During the execution,
yves makes another shipment order. As the result, the robot must also serve

shipment 3 from yves to mike. Here is the trace of the execution:

| 7- indigolog itr(control).

Exogenous input:nil.

start_interrupts

Exogenous input:orderShipment(1,yves,hector).
Exogenous input:orderShipment(2,hector,mike).
Exogenous input:nil.

Exogenous input:nil.

acknowledge(1,yves)

Exogenous input:nil.
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Exogenous input:nil.

acknowledge (2,hector)

Exogenous input:nil.

path : [startGoTo(yves), sim(reachDest), pickUp(1l), startGoTo(hector),
sim(reachDest), pickUp(2), drop0ff(1), startGoTo(mike), sim(reachDest),
drop0ff(2)] in [acknowledge(2,hector), acknowledge(l,yves),
orderShipment (2,hector,mike), ...]
Exogenous input:nil.

Exogenous input:nil.

Exogenous input:nil.

Exogenous input:nil.

startGoTo(yves)

Exogenous input:nil.

Exogenous input:reachDest.

Exogenous input:nil.

Exogenous input:nil.

Exogenous input:nil.

pickUp(1)

Exogenous input:nil.

Exogenous input:nil.

startGoTo (hector)

Exogenous input:nil.

Exogenous input:nil.

Exogenous input:nil.

Exogenous input:nil.

Exogenous input:nil.

Exogenous input:nil.

Exogenous input:reachDest.

Exogenous input:nil.

Exogenous input:nil.

Exogenous input:nil.

pickUp(2)

Exogenous input:nil.

Exogenous input:orderShipment(3,yves,mike).
Exogenous input:nil.

Exogenous input:nil.

acknowledge(3,yves)

Exogenous input:nil.
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path : [dropOff (1), startGoTo(yves), sim(reachDest), pickUp(3),
startGoTo(mike) , sim(reachDest), drop0ff(2), drop0ff(3)] in
[acknowledge(3,yves), orderShipment(3,yves,mike), pickUp(2), ...]

At this point we can see that the reactive thread was able to detect the
arrival of the new shipment order orderShipment(3,yves,mike) and then
acknowledge it to the sender. Since there was a new shipment, the main
thread of the control program replanned and found a new path that can be
used to serve all the shipments. This shows that the thread for detecting new
orders can be executed together with the main control thread that involves

planning/search. The following is the rest of the trace:

Exogenous input:nil.
drop0ff (1)

Exogenous input:nil.
Exogenous input:nil.
startGoTo(yves)
Exogenous input:nil.
Exogenous input:nil.
Exogenous input:nil.
Exogenous input:reachDest.
Exogenous input:nil.
Exogenous input:nil.
Exogenous input:nil.
pickUp(3)

Exogenous input:nil.
Exogenous input:nil.
startGoTo (mike)
Exogenous input:nil.
Exogenous input:nil.
Exogenous input:nil.
Exogenous input:nil.
Exogenous input:nil.

Exogenous input:reachDest.
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Exogenous input
Exogenous input
Exogenous input
drop0ff (2)

Exogenous input
Exogenous input
drop0ff (3)

Exogenous input
Exogenous input
stop_interrupts

Exogenous input

:nil.
:nil.

:nil.

:nil.

:nil.

:nil.

:nil.

:nil.
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Chapter 5

Meta-Level Plan Finding and

Execution

Searching for a way to accomplish a complex task can be very time consum-
ing. Depending on the complexity of the problem domain, a robot may need
to follow a plan which consists of hundreds of actions in order to finish its
job. However, the amount of time that can be spent on planning is often
limited and the robot may have to make a decision quickly in order to be
responsive in a dynamic environment. It may be necessary to abort planning

and react in the best available way.

In other cases, we may want the robot to build a plan, but not execute
it at all. The plan may be used only for determining whether the robot
is suitable for accomplishing a specific task. Also, the robot may want to
generate several plans and select the best one among all the possible plans
it has to execute. As well, during execution, the robot may need to change

its behavior and drop its current plan. For example, a robot which relies on

81



its battery may notice that it does not have enough power to finish all the
remaining actions in its plan. It has to abort the execution of its current
plan at some point and go back to recharge its battery, and then complete

its task.

To support these, a robot controller needs to have control over when and

how plans are constructed and executed; it needs to be able to:

e abort the search for a plan then the total search time has exceeded a

given limit or some other restriction has been violated;

e retrieve the content of a plan once it has been found, and evaluate and

compare it to other plans;

e stop the execution of a particular plan, because of the occurence of an

exogenous action or because a better plan has become available.

As we have seen in the previous chapter, IndiGolog does planning by look-
ing ahead for a sequence of transitions that starts from the given program
and leads to a final situation. This sequence is stored within the search block
internally and the user has no access to it. The interpreter keeps following
it and does replanning automatically when an unexpected exogenous action
occurs. To improve the flexibility and efficiency of planning and plan execu-
tion in the language, we develop meta-level routines for planning and plan
execution that can be used in control programs. As the result, the sequences
of transitions found by the interpreter are now accessible at the user level
and the user can decide which sequence to execute and when to do so. An

extended example which uses these facitities is presented in Chapter 6. The
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meta-level facilities developed in this chapter are a prototype. More work
is required to fully address the problems of interruptable and flexible plan

generation and execution.

5.1 A Meta-Level Plan Finding Routine

Unlike the object-level search block construct, our meta-level planning pred-
icate, findpath, generates a plan for executing a given program in a given
starting history and returns it without executing it. Moreover, the search
will be aborted if a given condition becomes true, which can be exceeding a
time limit. By a plan, we mean a sequence of transitions that starts from the
given program and history and leads to some final configuration. The predi-
cate is a generalization of the findpath predicate seen in section 4.4. It can
be used for finding an initial plan or for replanning when the environment

has changed.
For simple path planning, the predicate is called as:

findpath([], E0, HO, Abort Cond, Path)

where

E0 is the IndiGolog program for which one wants to get an execution
path

HOQ is the initial history

Abort_Cond is a condition for aborting the search

Path, which will be bound to a sequence of transitions (a path) that is
an execution of F0 in HO, or [| when the search is aborted.

For replanning, it is called as:
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findpath(Actions, E0, HO, Abort_Cond, Path)

where

Actions is a list of actions that have already occured since F0 began
executing in HO (labelled by ezactout and ezxactin)

E0 is the initial program

HO is the intital history

Abort_Cond is a condition for aborting the search

Path, which will be bound to a sequence of transitions (a path) that is
an execution of F0 in HO that includes the actions that have
already occured, or [] when the search is aborted.

This predicate searches for a sequence of transitions in the same way that the
object-level search mechanism does, except that it aborts the search when
the condition Abort_Cond becomes true. In this case, it returns an empty

list [| as Path to indicate the failure.

For example, suppose that we have two robots that must deliver some
shipments. Perhaps a new job should be assigned to the robot which would
need to extend its route by the shortest distance to deliver the existing ship-
ments and the new shipment. We can do this by having the robots bid for
the new shipment, based on the extra distance they would have to travel. In
such a case, each robot has to plan a path to determine the (minimal) extra
distance it would need to travel. The one who needs to travel the shortest
distance can be granted the contract and can execute its path. The other
robots can simply continue with their existing paths. The following program
fragment shows how this can be done using findpath; it finds the total dis-
tance that a robot must travel to serve the existing shipments and the new

shipment within a 30-second time bound:
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(7 p,t,d)
[ 7(systemTime = t) ;
?(findpath([], minimize M otion(0), now, timeOut(t, 30),p) ;

if (p#]]) then / * a path is found x /
[ 7(d = pathLength(p, robotPos)) ;

bid(d)
]

In this, p is the path found by findpath and d is the total distance the
robot has to travel to follow the path; the function pathLength computes
this distance. The functional fluent systemTvme returns the current time
in seconds. By setting the abort condition to timeOut(t,30), the search
must be done within 30 seconds after the starting time ¢; otherwise findpath
returns an empty list [| through the argument p after this amount of time.

The predicate timeQut is defined as follows:

proc timeOQut(start, limit)
systemTime — start > limit
end

The implementation of findpath is as follows:

/* the list of performed actions is empty */
findpath _cond([],E,H,AbortCond, [E,H]) :- final(E,H).
findpath cond (AL,E,H,AbortCond, [1) :- holds(AbortCond,now), !.
findpath_cond([],E,H,AbortCond,P) :-
trans(E,H,E1,H1), findpath cond([],E1,H1,AbortCond,L),
(L=10, p=11); P=[EHILD.

/* some actions in the list of performed actions */

findpath_cond ([A|AL],E,H,AbortCond, [1) :- holds(AbortCond,now), !.
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findpath_cond([inside(A) |AL],E,H,AbortCond,L) :-
prim_action(A), trans(E,H,E1,[A[H]),
findpath cond (AL,E1, [A|H],AbortCond,L).
findpath cond ([A|AL],E,H,AbortCond,L) :-
A \= inside(.), findpath cond(AL,E, [A|H],AbortCond,L).
findpath_cond ([A|AL],E,H,AbortCond,L) :-
trans(E,H,E1,H), findpath cond([A|AL],E1,H,AbortCond,L).

The code is essentially the same as the one for findpath presented in
section 4.4, except that the abort condition is checked each time a transition
is added to the path. This provides some degree of interruptability. However,
note that finding a transition may require a large amount of time, so there is
no guarantee that the predicate will return very soon after the abort condition

becomes true.

5.2 A Meta-Level Path-Following Procedure

To execute a path that has been found by findpath, we provide a procedure
executepath that takes a path and keeps following it until it is done or an
exogenous action occurs that makes it invalid. The procedure is called as

follows:
executepath(Path, E0, HO, I, AbortCond, SimCond, Remainder)

where

Path is a sequence of transitions (a path)

E0 is the initial program for which Path is an execution in H0
HO is the initial history

I is the list of snapshots

AbortCond is a condition for aborting the path execution

86



SimCond is a condition to wait for when it encounters a simulated action
Remainder is output of this routine, which can be remain(E0, HO, I'),
rpath(Path', E0, HO, I") or [].

It takes the Path, the initial program E0O, the initial history H0, and the list
of snapshots I (described in section 4.4) which tells what actions have been
done by EO0 since HO and then follows the given path Path transition by
transition until the path is completed or the condition AbortCond becomes
true. Whenever it encounters a simulated action during the path execution,

it blocks until the condition SimCond holds.

This procedure returns the status of its execution through the argu-
ment Remainder at the time it stops. Remainder can be either a re-
main(E0,H0,I’) structure, a rpath(Path’, EQ, HO, I') structure, or an empty
list []. The remain structure is returned if the given path becomes invalid.
It contains information to perform replanning. The rpath structure contains
the remaining path Path’' that has not been executed and is returned when
AbortCond becomes true and the path execution is aborted before it can
complete the whole path. If the path has been completed successfully, the

routine returns an empty list [].

For example, suppose the robot must pick up all the shipments from the
central office and has only 5 minutes to deliver them, and it must go back to
the central office to pick up the new shipment when a new order arrives. The

following program fragment show how this can be done using executepath:
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while ((Je)clientToServe(c))
(7p, h,t0,t1,7)
[ ?(systemTime = t0 A h = nowA
findpath([], minimizeMotion(0), h, timeOut(t0, 300), p) ;
if (p#]]) then / * a path is found x /
[ 7(systemTime = t1) ;
executepath(p, minimize M otion(0), (], h,
timeOut(t1,300 — (t1 — t0)), true,r) ;

goto(central_of fice)

]

In this program, p is the path found by findpath, h is the history when
findpath starts trying to search for a path (it is bound to the current history
now), and t0 and ¢1 are the time when findpath and executepath are called.
When there are some clients to be served and a path is found (p # []), this
program calls executepath to execute the path p that is found by findpath.
Since finding a path requires time, the amount of time left for the robot to
follow the path and deliver the shipments is 300— (¢1—t0) seconds. When the
robot has finished the delivery, or a new shipment order arrives which makes
the robot unable to follow the path, or the time limit has been reached, the
execution of executepath stops and then the robot goes back to the central

office by performing the goto(central_of fice) action.

The implementation of this path execution routine follows the approach
used in implementing the object-level search block construct. It checks to
see if the path is still valid before it takes the next transition of the path.
For efficiency, executepath executes a segment of a path which contains one
action of the path instead of a single transition at each iteration. To do this,

the path is divided into segments and the routine executes all transitions in
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one segment at each step. A path segment is defined as a sub-sequence of the
transitions of the given path where no action is involved in all but the last
transition (i.e. following the transitions does not change the situation), and
either the last transition is the last one of the given path and does not involve
any action, or it involves a single action. The predicate finalpathseg(P) is
used for identifying the first case. It holds on a path P if no action is involved
in any transition of P.

finalpathseg([E,H]).

finalpathseg([E,H,E1,H|L]) :- finalpathseg([E1,H|L]).
We also define the predicate transpathseg(P,PS,A), which takes a path
P and returns the remaining path PS obtained by removing the first path
segment from P, and the action A involved in the last transition of the removed
segment. It is defined as follows:

transpathseg([E,H,E1,H|L],PS,A) :- transpathseg([E1,H|L],PS,A).

transpathseg([E,H,E1, [A[H]|L], [E1,[A|H]|L],A).
We also define the predicate posspath(P,CH), which takes a path P and a
history CH and finds out whether it is possible to execute P in CH (i.e. whether
the path’s execution in CH would terminate at some legal final configuration).
It is implemented as follows:

posspath([E,H],CH) :- final(E,CH).

posspath([E,H,E1,H|L],CH) :- trans(E,CH,E1,CH), posspath([E1,H|L],CH).

posspath([E,H,E1, [A|H]|L],CH) :-

trans(E,CH,E1,[A|CH]), posspath([E1,[A|H]|L],[A|CH]).
The procedure executepath takes a path and keeps following it segment

by segment; it is implemented as follows:
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proc executepath(Path, E0, HO, I, AbortCond, SimCond, Remainder)

/ * check if the path has been completed * /
if (finalpathseg(Path)) then
if (posspath(Path,now)) then
?(Remainder = [])
else
?(Remainder = remain(F0, HO, I)

else if (AbortCond) then
?(Remainder = rpath(Path, EO, HO,I)

/ *try to take the next segment x /
else
(7 p,a)
[ ?(transpathseg(Path, p, a));

if (a = sim(.) A posspath(Path,now)) then
[ 7(SimCond); // sim action handled by executor
ezecutepath(p, E0, HO, I, AbortCond, SimCond,

Remainder)
]
else
if (posspath(Path,now)) then
(x I')
[ // per form a and update LS
if (I'=1Udo(a,now)) then a;
executepath(p, E0, HO, I', AbortCond,
SimCond, Remainder)
]
else

?(Remainder = remain(FE0, HO,T)

end

The procedure first checks to see whether the given path is actually a final
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path segment. In this case, if it is possible to perform all the transitions of this
final path segment in the current histoy, then executepath returns [| which
indicates the path execution has been completed successfully; otherwise, it

returns a remain structure to indicate the failure.

If on the other hand, the given path consists of more than one segment,
then executepath first finds the action that must be done in order to do all
transitions in the first path segment. If this action is simulated, then it can
continue to follow the path when the condition to handle simulated actions is
satisfied. If it is a primitive action and it is possible to follow the path, then
it performs the action, updates the list of snapshots and continues following
the remaining path. In the case where it is impossible to follow the path, it

returns a remain structure.

Note that checking whether a path is executable or finding a transition
may require a large amount of time. So, as with findpath, there is no
guarantee that the predicate will return very soon after the abort condition

becomes true.

5.3 Meta-Level Path Planning and Path Ex-
ecution

Using the meta-level planning and path execution routines, we have defined
a procedure msearch which does path planning and then path execution
more or less as the interpreter does for a search block, and also provides

more control over planning and execution. In particular, msearch takes not
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only an input program but also an abort condition to stop its execution and
a condition to wait for when it encounters a simulated action during path

execution.

Given a program, the procedure is called as follows:
msearch(E, AbortCond, SimCond, Remainder)

where

E is the initial program

AbortCond is a condition for aborting the execution of £

StmCond is a condition to wait for when it encounters a simulated action

Remainder is output of this procedure, which can be remain(E0, HO, I),
rpath(Path, E0, HO,I) or []. E0 and HO are the initial program
and initial history for which the procedure is called; I is the
list of snapshots; Path is the path that remains of the execution
of EO.

Like executepath, msearch returns a Remainder at the end to indi-
cate the final status of its execution. The value of this can be either a
remain(E0, HO, I') structure if no path can be found for the given program
and history, rpath(Path’, E0, HO, I') if it is aborted, or an empty list [] if the

given program has been executed successfully to the end.

To allow the execution of msearch to be resumed after it is aborted
(previous call to msearch returned a remain or rpath structure), we define
two other versions of msearch that take either a remain or rpath structure

instead of an initial program. They are called as follows:

msearch(rpath(Path, E0, HO, I), AbortCond, SimCond, Remainder)
msearch(remain(E0, HO, I), AbortCond, StmCond, Remainder)
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where

Path is a sequence of transitions left in rpath

E0 is the initial program

HO is the initial history

I is the list of snapshots

AbortCond is a condition for aborting the execution of F

SimCond is a condition to wait for when it encounters a simulated action

Remainder is output of this procedure, which can be remain(FE0, HO, I'),
rpath(Path', E0, HO,I') or [|. F0 and HO are the initial program
and initial history for which the procedure is called; I’ is the list
of snapshots; Path’ is path that remains of the execution of EO0.

The msearch procedure is defined as follows:

proc msearch(E, AbortCond, SimCond, Remainder)
msearch(E, now, [|, AbortCond, SimCond, Remainder)
end

proc msearch(remain(E0, HO, I), AbortCond, SimCond, Remainder)
msearch(E0, HO, I, AbortCond, SimCond, Remainder)

end

proc msearch(E0Q, HO, I, AbortCond, SimCond, Remainder)
(m mypath)
[ 7(findpath(E0, HO, I, AbortCond, mypath),
if (mypath =[]) then /] search failed
?(Remainder = remain(E0, HO, I))
else
if (AbortCond) then
?(Remainder = rpath(mypath, E0, HO, I))
else
(m status, I")
[ executepath(mypath, E0, HO, I, AbortCond,
SimCond, status)
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if (status = remain(E0, HO,I')) then
/] execution failed
msearch(E0, HO, I', AbortCond, SimCond,
Remainder) /] replan
else
?(Remainder = status)

end

Given the initial configuration F0 and HO, the procedure first calls findpath
to find a path for the given program. If the search fails and an empty list
is returned by the planner (mypath = []), it returns a remain structure. If
a path is found but the condition for aborting is satisfied, then it returns a
rpath structure with the remaining path in it. Otherwise, it calls executepath
which takes the path and keeps following it segment by segment, until a
remain structure is returned when replanning is needed, or an empty list ||
is returned in the case where the whole path has been successfully executed.
msearch keeps trying to execute the program, replanning as necessary, as

long as the execution is not completed and the abort condition remains false.

For the case where rpath is one of the inputs, the procedure does not
search for a path at the beginning but first attempts to execute the path
stored in rpath by calling executepath. It is defined as follows:

proc msearch(rpath(Path, E0, HO, I), AbortCond, SimCond, Remainder)
(7 status, I")
[ executepath(Path, E0, HO, I, AbortCond, SimCond, status) ;
if (status = remain(E0, HO,I')) then
// execution failed, replan
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msearch(E0, HO, I', AbortCond, SimCond, Remainder)
else
?(Remainder = status)

end
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Chapter 6

A Distributed Mail Delivery
Control System

Many robotics applications involve using multiple robots working on a task.
One can build a centralized control system which collects information from
all the robots and then generates a complete plan to control all of them.
However, this centralized strategy can require a tremendous amount of com-
putational resources and unneccessary communication. It may not be able
to generate a plan and send commands back to the robots within the desired
amount of time, when the robots have to act quickly to avoid problems and
accomplish tasks in a dynamic environment. Also, planning may fail because

of slow or unreliable communcation channels to the robots.

Another approach is to give control to the robots and have them construct
plans for themselves as individuals. The main advantage of this distributed
strategy is that each robot does not need to consider a lot of information

and can rebuild its plan much more quickly when the environment changes.
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However, the robots must coordinate their actions to ensure that each task
will be handled by some robot, that two robots will not try to do a task that
can be handled by only one robot, and that the robots can perform their

actions without any conflict.

Since there is a large number of non-deterministic choices in the robot
control program that is described in Chapter 4, the amount of time needed
for path-planning grows exponentially as the total number of shipments and
robots increase. In order to improve the performance of the system and
test the meta-level facilities described in Chapter 5, we modified the original
control system into a distributed system to control multiple robots in which
each robot is governed by an independent control program. The robots com-
municate with each other through external links. The rest of this chapter
first explores issues in building multi-robot control systems, and then shows
how the meta-level facilities can be used to construct an effective distributed

control system.

6.1 Overview of the System

The main issue that needs to be considered in building a distributed robot
control system is how the actions of the robots can be coordinated so that
they work together effectively. The simplest approach is having an identical
control system on each robot with no communication between them. This
means they have identical capabilities and decision procedures, but can only
obtain limited information about each other through sensing. This strategy

was used in [58, 2] but it was not very successful. The main problem is that
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the robots may try to move to the same position or compete for doing the
same task, and block each other as a result. The second approach is having a
master decision maker which collects all the information from the robots and
decides what action each robot must perform to achieve the goal. An exam-
ple of this is the “centralized strategy” described in [58]. However, collecting
information and sending commands requires a large amount of communica-
tion. Another approach is one where each robot generates a portion of the
plan and then they try to form a centralized plan by sharing data or doing
communication. This has been used in applications such as mission planning
for unmanned vehicles [14] and logistics planning [64]. A more distributed
method is having multiple robots generate plans for themselves only, and
then communicate to ensure that their plans have no conflicts and the task
can be accomplished. Reachability analysis [24], plan combination search
based on global constraints [16], and distributed hierarchical planning such

as described in [15], fall under this catergory.

The method that we use in our distributed system is based on the contract
net mechanism [60, 9] where an agent decomposes the task into sub-tasks,
and then an auction is run between the robots to decide which robot will
take responsibility for which sub-task. In a contract net, there are two kinds

of agents:

e A manager agent who decomposes the task into sub-tasks and runs
the contract granting process with the other agents submitting bids to
determine who will be responsible for handling each sub-task; it also

monitors the execution of each sub-task.
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e Contractor agents who bid for sub-tasks and execute the sub-tasks

assigned to them by the manager.

The coordination protocol used by the manager and contractors can be
viewed as a kind of auction. When the manager receives a new task, it decom-
poses the task into sub-tasks and the following four steps will be performed

in order to determine who is going to take responsibility of each sub-task:

1. The manager announces a sub-task.

2. Each contractor evaluates the given sub-task with respect to its own

abilities and the resource requirements to accomplish it.
3. Each contractor makes a bid on the sub-task if it can handle it.

4. The manager assigns the sub-task to one of the contractors based on

the bids it has received.

The manager and contractors work independently. A task can still be ac-
complished the system even if the communication link between one of the

contractors and the manager is not working properly.

In our distributed shipment delivery robot control system, the role of the
manager is taken by the shipment manager running on a separate machine.
Each robot is a contractor and it has its own control program. There are
four kinds of messages (communication actions) that can be sent across the

contract net. They are:
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e callForBid(Manager, Robot, SNo, Sender, Recipient)

— The shipment manager sends this message to Robot when a new
shipment order arrives. Robot is asked to bid for a shipment to

be taken from Sender to Recipient, which is assigned the number

SNo.
e bid(Robot, Manager, SNo, V alue)

— The robot Robot makes a bid on the shipment SNo by sending
this message to the shipment manager. Value is an estimation of
the amount of work that the robot needs to do in order to serve

the shipment.
e award(Manager, Robot, SNo, Sender, Recipient)

— The shipment manager sends this message to Robot if it chooses

Robot to serve the shipment SNo.
e report(Robot, Manager, SNo, Message)

— Robot reports to the shipment manager that the shipment SNo

has been delivered to the recipient.

When the shipment manager receives a new shipment order, it announces
the new shipment by sending the message callF'or Bid to each robot. Then,
each robot estimates the amount of work required to serve the shipment
and sends back bids to the manager. Since computing the exact amount of
work needed can be time-consuming, each robot is allowed to make several

bids for a new shipment. The bid can be a conservative one which can be
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made quickly, or a more competitive one, which requires more computation
to generate. The manager collects the bids from the robots and picks the
one which has the smallest bidding value to serve the shipment. It sends a
message awarding the task to the robot who has been chosen to serve the
shipment, and then waits until the robot reports that the shipment has been
delivered. Detailed descriptions of the shipment manager and the individual

robot control program are presented in Sections 6.2 and 6.3.

Researchers have explored the use of contract net for a variety of prob-
lems, such as the coordination of distributed sensor networks [9], load balanc-
ing on operating system [55], and robot shipment delivery with case-based
reasoning [46]. Note that our system does not use a feature of the original
contract net mechanism, which is that an agent can be both a manager and a
contractor simultaneously. It could be a manager for one task and a contrac-
tor for another task. Since delivering a shipment from one place to another
place is the only task in our application, there is no benefit to having several
shipment managers or combining a manager with each individual robot con-
trol program. This could be useful if there were many robots and each robot

could communicate with a small group of robots only.

6.2 The Shipment Manager

The shipment manager is responsible for receiving new shipment orders from
the clients and determining which robot is the best to serve each shipment
by analyzing the bids returned by the robots. The status of a shipment is

maintained in the primitive fluent shipmentState(SNo), and its value can
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be one of the following:

e nonEwistent - the shipment does not exist yet; this is the initial value.

e justIn - the order for the shipment has been received by the shipment

manager, but the manager has not announced it to the robots yet.

e askedAllRobots - the shipment has been announced to all robots, but

the shipment manager has not decided who should serve it.

e assigned - the shipment has been assigned to a robot, but it has not

yet been delivered.

e rejected - the shipment has been rejected by the shipment manager

since no robot is available to serve it.

e delivered - the shipment has been delivered by a robot.

There are three new primitive actions and two new exogenous actions that

can affect the status of a shipment:
Primitive actions:

e callForBid(Manager, Robot, SNo, Sender, Recipient) - the shipment
manager asks Robot to make a bid on shipment SNo, where Sender

and Recipient are the sender and recipient of the shipment.

e award(Manager, Robot, SNo, Sender, Recipient) - the shipment man-
ager asks Robot to serve shipment SNo, where Sender and Recipient

are the sender and recipient of the shipment.
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e rejectShipment(Manager, Sender, SNo) - the shipment manager re-

jects shipment order SNo from the client Sender.
Exogenous actions:

e shipmentRequest(Sender, Recipient) - the client Sender makes a ship-

ment order for which the recipient is Recipient.

e report(Robot, Manager, SNo, Message) - Robot reports the status of
shipment SNo.

To decide who should be awarded a contract, the shipment manager uses
a primitive fluent hasBid(Robot, SNo) which records the latest bid value
made by a particular robot on a shipment. There is also a primitive fluent
called totalJobsServing(Robot) that stores the total number of shipments to
be served by a robot. The manager receives a bid made by a robot through

the occurrence of the exogenous action bid(Robot, SNo, Value).

A timing scheme is used to ensure that the shipment manager selects a
robot to serve a shipment within a reasonable amount of time. The fluent
counter acts a system clock and performing the primitive action ¢ick increases
the counter’s value by 1. This action is done periodically during the program
execution. The primitive fluent call AtTime(Robot, SNo) records the time

when shipment SNo is announced to a robot.

A complete list of the action precondition axioms and successor state
axioms for the shipment manager is provided in Appendix B. As an example,

the precondition axiom of action award is as follows:
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Poss(award(Manager, Robot, SNo, Sender, Recipient), s) =
shipmentState(SNo, s) = askedAllRobots N
hasBid(Robot, SNo,s) > —1 A
shipmentSender(SNo, s) = Sender A
shipmentRecipient(SNo, s) = Recipient

This says that Manager can ask Robot to handle shipment SNo at situation
s if this shipment has been announced to all robots, Robot has already made
a bid for it, and Sender and Recipient are the sender and recipent of the

shipment.

As another example, the successor state axiom of the fluent shipmentState

is as follows:

shipmentState(SNo,do(a,s)) =z =
((3el, ¢2)a = shipmentRequest(cl, ¢2) A counter = SNoA
x = justIn) V
((3r, c1, e2)a = call For Bid(manager,r, SNo, c1, c2)A
shipmentState(SNo, s) = justInA
=((3r")r" # r A call AtTime(r', SNo) # currentTime)A
x = askedAllRobots) V
((3r, cl, e2)a = award(manager,r, SNo, c1,¢2) A x = assigned)V
((Fel)a = rejectShipment(manager, SNo, c1) A z = rejected)V
((3r)a = report(r, manager, SNo, completed) A z = delivered)V
((Vr,cl,c2)a # shipmentRequest(cl, c2)A
a # callForBid(manager,r, SNo,cl, c2)A
a # award(manager,r, SNo, c1, c2)A
a # rejectShipment(manager, SNo, c1)A
a # report(r, manager, SNo, completed) A
x = shipmentState(SNo, s))

The first case in this axiom says that when someone makes a shipment re-
quest, an unique number (the value of counter) is assigned to the shipment

as its shipment number and its state becomes justIn. The second case states
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that the state of the shipment becomes askedAll Robots if it was just in and
the manager has just announced it to the last robot that did not know of
the existence of the shipment yet. If the manager assigns the shipment to
a robot (by doing award), then the third case says that the state of the
shipment becomes assigned. The fourth and the fifth cases change the state
of the shipment to rejected or delivered when it is rejected by the manager
or delivered to the recipient. The last case says that a shipment’s state is

unaffected by other actions.

We also have the following successor state axiom for fluent totalJobsServing:

total JobsServing(Robot, do(a, s)) = n =

((Fo, c1, ¢2)a = award(manager, Robot, o, c1, c2)A
n = total JobsServing(Robot, s) + 1)) V

((Jo)a = report(Robot, manager, o, completed) A
n = total JobsServing(Robot, s) — 1) V

((Vo, c1, c2)a # award(manager, Robot, o, c1, c2)A
a # report(Robot, manager, o, completed)
n = total JobsServing(Robot, s)

This axiom say that the total number of shipments that are being served
by Robot increases when the manager assigns a new shipment to it, and

decreases when the robot reports that it has delivered a shipment.

For simplicity, we introduce two additional fluents which are defined in
terms of the primitive fluents. The fluent allHaveBidded(N) holds if all
robots have already bidded on shipment N:
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proc allHaveBidded(N)
—((3r)hasBid(r, N) = —1) // initial value of hasBid is —1
end

The fluent timeOut(N) holds if shipment N was announced to the robots at

least 3 units of time ago:

proc timeOut(N)
(Ir)call AtTime(r, N) # —1 A
currentTime — call AtTime(r, N) > 3
end

Basically, the shipment manager has two jobs to do. It has to broadcast
messages to the robots when a client makes a shipment order (the state of
some shipment is justIn), and it needs to determine which robot should serve
a shipment after the bids are collected (all HaveBidded holds) or a predefined
amount of time has passed (timeQOut holds). Each of these is implemented
as a separate thread in the shipment manager control program. There is also
a third thread in the control program with the lowest priority which keeps
incrementing the system time by performing the tick action periodically.
Combining all the threads together, the program of the shipment manager is

implemented as follows:

proc manager
< (Inl)shipmentState(nl) = justin —
handleNew Request(nl) >
>
< (In2)(shipmentState(n2) = askedAll Robots N
allHaveBidded(n2)) vV
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(shipmentState(n2) = askedAllRobots A timeOut(n2)) —
decideContractor(n2) >
>
< True — tick >
end

The first thread with the highest priority checks to see if there is a new ship-
ment order from the -clients. Whenever there is a new shipment
(shipmentState(nl) =  justIn), it calls the complex procedure
handle NewRequest(nl) to handle it. The procedure sends the message
callForBid to all robots:

proc handleNew Request(N)
if ((3r)connectedToManager(r) = yes) then
while(shipmentState(N) # asked All Robots)

(r r) [ // no call ForBid sent yet
?(call AtTime(r, N) # —1);
callFor Bid(r, N, shipmentSender(N),

shipment Recipient(N))
]

/ xreject if no robot is available * /
rejectShipment(N, shipmentSender(N))

else

end

The second thread in the manager control procedure calls the procedure
decideContractor to assign the new shipment N to the robot which can

deliver it by doing the least amount of additional work:
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proc decideContractor(N)
if ((3r,v)(v = hasBid(r,N) ANv > —1) then

/ *if someone has bidded, find contractor x |
(m r)
[ ?(bestRobot(r, N)) ;
award(manager, r, N, shipmentSender(N),
shipment Recipient(N))

else
/ * if no one has bidded, reject shipment * /
rejectShipment(manager, shipmentSender(N), N)
end

proc best Robot(R, N)
(3 w1, 1)
(vl = hasBid(R, N) Avl # —1A
j1 = total JobsServing(R)A
=((3r2,v2, j2)v2 = hasBid(r2, N) ANv2 # —1A
j2 = total JobsServing(r2)A
(v2 <vlV (v2=v1Aj2 < jl1)))
end

The best robot to serve the new shipment N is the one that has made the
smallest bid on the shipment among all bids made by the other robots. In
case of a tie, the one that is serving the fewest number of shipments gets
the job. If no robot has made a bid on the shipment, the shipment manager

rejects it.
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6.3 The Individual Robot Controller

The structure of the individual robot control program is similar to the one
used for the single robot shipment delivery application, except that it also
contains a section for making bids on new shipments. When the shipment
manager announces a new shipment, the robot’s bid generator has to evaluate
its ability to handle the shipment and make a bid if possible. The whole
program is divided into three main parts: a quick bidder that can make a
rather high or conservative bid on a new shipment quickly, a slow bidder that
requires a long period of time to find a lower bidding value that reflects the
true cost of serving the new shipment, and also a motion control thread that
drives the robot to deliver the shipments using the shortest route according

to the service commitments that the robot has already made.

When a robot is serving some clients and a new shipment order arrives,
the robot may need to adjust its route and travel a longer distance to deliver
all shipments including the new one if it is awarded to it. The bidding value
for a shipment is set to be the extra distance that the robot must travel
in order to deliver it. The first bid generator slowBid finds the minimal
extra distance that the robot must travel in order to serve the new shipment.
Finding the minimal value requires finding the shortest route to serve the
new and the existing shipments. However, this can be very time consuming.
This bid generator may not be able to send back a value to the shipment
manager within the requried amount of time. Because of this, the robot
control program has another bid generator called quickBid, which makes a

rough guess of the bidding value for a new shipment without finding the
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shortest route. It generates a bidding value quickly but this value may be

unnecessarily high and not reflect the real cost of serving the new shipment.

6.3.1 The Quick Bidder

The procedure quickBid estimates the distance that the robot must travel
to deliver a new shipment by assuming that the robot will serve this shipment
when it has finished all its current jobs. We introduce a fluent final RobotPos,
whose value is the final position of the robot when it finishes delivering all
the shipments it is already committed to serve. Once the robot motion con-
trol thread has found a path for serving all the allocated shipments, it scans
the path and records the final position of the robot by performing the action
setF'inal Position so that it can be used by quickBid. The successor state

axiom for final RobotPos is:

finalRobot Pos(do(A, s)) = Place =
A = setFinal Position(Place)V
(Vp) A # setFinal Position(p) A Place = final RobotPos(s)

The quick bidder makes a bid for a new shipment N with the bidding value
being the sum of the distance from the final position of the robot to the
sender of the new shipment and the distance from the sender to the recipient

of the shipment:

proc quickBid(R, N)
(7 pl,c2,c3,d3)
[ ?(finalRobotPos = pl1A
shipmentSender(N) = ¢2 A shipmentRecipient(N) = ¢3A
d3 = distance(pl, c2) + distance(c2, ¢3));
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bid(R, N, d3)
]

end

6.3.2 The Slow Bidder

The slow bidder slowBid calculates a more accurate bidding value for a new
shipment by comparing the shortest path for the robot to deliver all existing
shipments with the shortest path that can be used to deliver all existing
shipments plus the new one. The difference between the distances of these
two paths is the minimal extra distance that the robot has to travel to serve
the new shipment, and this will be the bid value. This bid generator is

written as the following procedure:

proc slowBid(R, N)
(7 ch, pos,t,dl,d2)
[ ?(ch = now A pos = robotPos A current_time(t));

/ * total no. of steps to serve the existing shipments * /

(np1) ?(findpath(),
[ abortGoTo(R);

minimizeMotion(R, 0)||envSimulator(R) |,
ch,
bid_is_invalid V timeOut(t)),
pL)A
pathLength(pl, pos,dl))

/ * total no. of steps to serve the existing + new shipments x /
(np2) ?(findpath(),
[ pi(cl, c2)
[ ?(shipmentSender(N) = c1A
shipmentRecipient(N) = ¢2);
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sim(award(R, N, c1,¢c2)) |;
ackShipment(R, N);
abortGoTo(R);
manimizeMotion(R, d1)||envSimulator(R) |,
ch,
bid_is_invalid V timeOut(t),
P2)A
pathLength(p2, pos, d2))

/ * calculate the bid value * /

if (bid_is_invalid V timeOut(t) Vdl = -1V d2 = —1)
stopBidding(R, N)

else

bid(R, N,d2 — d1)
end

The first call on findpath tries to find the shortest distance that must
be travelled to serve all existing shipments. This is done by first aborting
the current path and then generating a new path. Note that this does not
really abort the robot’s motion because the new path is never executed. The
search on the path is stopped if the condition (bid_is_invalid V timeOut(t))
becomes true. The condition bid_is_invalid becomes true when an exogenous
action such as getStuck occurs during the search. In this situation the bidder
must restart the search in order to consider the new exogenous action. The
condition timeOut(T) becomes true when the current time reaches 7" plus 60
seconds; thus, the search is aborted when the planner cannot find an answer

within 60 seconds.

The second call on findpath first hypothesizes that the new shipment is
assigned to the robot and then tries to find the shortest distance that it has

to travel to deliver all existing shipments plus the new one. Here too, the
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time limit is set to 60 seconds, and no exogenous action can occur during the
search. If both paths are found, then bidder makes a bid on the new shipment
using the difference of distances between these two paths; otherwise, it does

not make a bid.

6.3.3 Robot Motion Control

The main control program consists of four threads and is written as follows:

proc control(R)
< (3Inl)shipmentState(nl) = justAwarded —
handleNewOrder(R,nl) >
>
< (In2)shipmentState(n2) = requested —
quickBid(R,n2) >
>
< (Fe)clientToReach(c) — motionControl(R) >
>
< (3n3)shipmentState(n3) = replied(1)A
(robotState = moving V —((3e3)clientToReach(c3))) —
slowBid(R,n3) >
>
< True — no_op > //keep running
end

The first thread stops the robot motion and sends back an acknowledgement
when a shipment is awarded to the robot. When the shipment manager
announces a new shipment, the second thread calls the quick bidder to make
a bid on the shipment immediately. The third thread is the robot motion
control which controls the robot to deliver all shipments using the shortest

path. When the shipment manager has annnounced a new shipment and
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the robot is moving and has nothing else to do, then the fourth thread with
lower priority calls the slow bidder to compute the minimal extra travelling
distance as the best bidding value for the new shipment. The last thread
prevents the controller from terminating when there is absolutely nothing to

do.

The thread which controls the robot’s motion also uses the minimize M otion
procedure described in Chapter 4 to find the shortest path to deliver all
shipments that are assigned to the robot. The following procedure is the

implementation of the robot motion control:

proc motionControl(R)

(7 path)
[ msearch(minimizeMotion(R, 0)||envSimulator(R),
pathFound(mypath),
unblockSimCond,
path),

/ * save the final position of the robot x /
(7 fpos,p,d, h,i)
[ ?(rpath(p, d, h,1) = pathA
findFinal Position(p, robot Pos, fpos),
set Final Position( fpos)

]

/ * execute the path x /
followRoute(path)

]

end

This procedure first calls msearch to find a path for delivering the shipments

assigned to the robot R. Since the slow bidder needs to know the final
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position of the robot when it completes following the path, the procedure uses
the condition pathFound(mypath) to stop the execution of msearch when
it has found a path but has not tried to execute it. The term mypath is a
reserved keyword for the program to refer to the path found by the msearch
in the abort condition. The procedure then looks for the final position fpos
from the path by performing findFinal Position(p,robotPos, fpos). Once
the final position is saved in the fluent finalRobotPos, the path is then
passed to procedure followRoute for execution. The procedure follow Route

is almost the same as motionControl and it is implemented as follows:

proc followRoute(Path)
(m rm)
[ msearch(Path, pathFound(mypath), unblockSimCond, rm),
if (rm = |,
no_op, [ * succeeded * /
else,
[ / % save the final position of the robot * /
(m fpos,p,d, h,i)
[ ?(rpath(p,d, h,i) = rmA
findFinal Position(p, robot Pos, fpos)),
setFinal Position(fpos)

]

/ * execute the new path * /
followRoute(rm)

]

end

This procedure first attempts to execute the given path by calling msearch

with it. During the path execution, the path may stop being executable
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(posspath(path, now) in msearch becomes false) if an exogenous action such
as getStuck or award occurs. In this case msearch replans and finds a new
path. Since changing the path may also change the final position of the
robot, msearch is stopped and the final position is saved before the new
path is executed. After this, the procedure passes the new path to another

call of followRoute for execution.

6.4 Experiments

6.4.1 A Sample Test

Here is the trace of a sample test run on the system with two robots b1 and

rb2:

| ?7- tracer.

rbl : connectToManager(rbl)
rb2 : connectToManager(rb2)
man : shipmentRequest(yves,hector)
man : shipmentRequest (mike,hector)
man : callForBid(rbl,1,yves,hector)

man : callForBid(rb2,1,yves,hector)
man : callForBid(rbl,2,mike,hector)
man : callForBid(rb2,2,mike,hector)
rbl : bid(rbi1,1,2)
rb2 : bid(rb2,1,2)
rbl : bid(rb1,2,2)
rb2 : bid(rb2,2,2)
rbl : bid(rb1,1,2)
rbl : bid(rb1,2,2)
rb2 : bid(rb2,1,2)
rb2 : bid(rb2,2,2)
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There were 2 shipment orders at the beginning (1:yves-hector, 2:mike-hector).

From the output we can see that the manager first sent the information to

the robots and then both of them were able to bid on the shipments. Note

that in this test, we assume that the distance between any two clients/places

is 1.

man :
rbl :
man :
rbl :
rb2 :
rbl :
rb2 :
rb2 :

award(rb1l,1,yves,hector)
ackShipment (rb1,1)
award(rb2,2,mike,hector)
setFinalPosition(hector)
ackShipment (rb2,2)
startGoTo(rbl,yves)
setFinalPosition(hector)
startGoTo (rb2,mike)

At this stage, shipment 1 was assigned to rb1l while rb2 got shipment 2. Each

robot controller was able to set the final position before the robot started

moving to its first destination. This illustrates how the controller can perform

actions after a path is found and before the path is executed.

man :
man :
man :
rbl :
rbl :
rb2 :
man :
rbl :
rbl :
rb2 :

shipmentRequest (mike,kong)
callForBid(rb1,3,mike,kong)
callForBid(rb2,3,mike,kong)
bid(rb1,3,2)

bid(rb1,3,2)

bid(rb2,3,2)
award(rbl,3,mike, kong)
abortGoTo (rbl)

ackShipment (rb1,3)
stopBidding(rb2,3)

Then, another shipment order (3:mike-kong) arrived. The quick bidder of

rb2 was able to bid on it while the slow bidder did not have enough time

117



to find a possible path. As the result, shipment 3 was assigned to rbl even
through it would have been better to give the order to rb2. It also shows that
rbl first aborted its current path and then generated a new one to handle

the new shipment after it received the message from the manager.

rbl : setFinalPosition(kong)

rb2 : reachDest(rb2)

rb2 : pickUp(rb2,2)

rb2 : startGoTo(rb2,hector)

rbl : startGoTo(rbl,yves)

man : shipmentRequest (hector,kong)
man : callForBid(rbl,4,hector,kong)
man : callForBid(rb2,4,hector,kong)
rb2 : bid(rb2,4,1)

rbl : bid(rbl,4,2)

rb2 : bid(rb2,4,1)

rbl : bid(rb1,4,0)

man : award(rbl,4,hector,kong)

Then, there is a fourth shipment order (4:hector-kong). The distance esti-
mated by the quick bidder of rbl for handling shipment 4 (hector-kong) was
2. However, rbl did not need to travel any more distance to serve this new
shipment because it had to reach hector and then kong in order to deliver
shipments 1 and 3. So its slow bidder bided on the shipment with the value
0. Therefore, shipment 4 was also assigned to rb1l. The following is the rest

of the trace:

rbl : abortGoTo(rbl)

rbl : ackShipment(rbl,4)

rb2 : getStuck(rb2)

rb2 : setFinalPosition(hector)
rb2 : startGoTo(rb2,hector)
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rbl :
rbl :
rbl :
rb2 :
rbl :
rb2 :
rbl :
rb2 :
rbl :
rbl :
rbl :
rbl :
rbl :
rbl :
rbl :
rbl :
rbl :
rbl :
rbl :
rbl :
rbl :
rbl :
rb2 :

setFinalPosition(kong)
startGoTo(rbl,yves)
reachDest (rbl)
reachDest (rb2)
pickUp(rbi,1)

drop0ff (rb2,2)
startGoTo(rbl,hector)
report (rb2,2,completed)
reachDest (rbl)
pickUp(rb1,4)
drop0ff(rb1,1)
report(rbl,1,completed)
startGoTo(rbl,mike)
reachDest (rbl)
pickUp(rb1,3)
startGoTo(rbl,kong)
reachDest (rbl)
drop0ff(rb1,3)
report(rbl,3,completed)
drop0ff (rbl,4)
report(rbl,4,completed)
disconnectFromManager (rb1)

disconnectFromManager (rb2)

When the robot rbl got the shipment order for shipment 4, it first acknowl-

edged the shipment and then recomputed a new path which could be used to

handle all existing shipments and the new one. Then, it first went to yves to

pick up shipment 1 and then moved to hector to pick up shipment 4 and drop

off shipment 1. Afterward, it went to mike to pick up shipment 3. Finally it

moved to kong to drop off both shipments 3 and 4. On the other side, rb2

was stuck on its way to hector to drop off shipment 2. So it replanned and

tried to move to hector again. It reached hector successfully on its second

attempt and then dropped off shipment 2 at the end.
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6.4.2 Comparative Experiments

For comparsion, we have done experiments on three different systems: a
single robot control system, a centralized control system with two and three
robots, and the distributed control system described in this chapter with two
and three robots. We measure the performance of the systems by finding the
time used to construct a complete path for handling a given set of shipment
orders. The single robot control system is the one presented in Chapter 4.
Given a set of shipment orders, the system searches for the shortest route to
serve them. We measure the total time used by the interpreter to construct

an execution path only (the time spent on running the routine findpath).

Our centralized control system for use with different numbers of robots
can be found in Appendix D. It is a modified version of the single robot
controller that tries to find a path which minimizes the distance travelled
by each robot to deliver the shipments. Its main control procedure with 3

robots is as follows:

proc control
search( minimize M otion(0) )
end

proc minimizeM otion(Mazx)

( handleRequests(robotl, Maz) ||
handle Requests(robot2, Maz) ||
handle Requests(robot3, Maz) )

|

minimizeMotion(Max + 1)

end
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Thus, it first tries to find a path where every robot travels 0 units of distance

to serve all orders, then 1 unit, then 2 units, and so on.

To test the distributed system with different numbers of robots, each
shipment order is sent to the shipment manager only when it has awarded
the previous shipment order to some robot. We define the total time taken
by the system to contruct a complete path for handling all shipments as the
time from when the shipment manager first asks the robots to bid on the first
shipment to when the robot who got the last shipment finishes to construct
a path to handle all the shipments which have been awarded to it. Notice
that the robots do not execute any action in the paths they found during the

experiment.

Figure 6.1 shows the amount of time used by the different types of robot
control systems to generate the minimal path on various numbers of ship-
ments. 10 different tests were performed on each system with a specific
total number of shipments and the average amount of time among them was
then calculated. The single robot control program and the centralized sys-
tems were run on a Sun Ultra-10 machine with a 300MHz CPU. For the
distributed system, the shipment manager and each individual robot con-
trol program was run on a separate machine with the same specification. In
each test, the sender and the recipient of each shipment order were randomly

generated, and the distance between every two places was set to 1.

From the results, we notice that the amount of time used by the single
robot control program grows exponentially as the total number of shipments

increases. This is because the total number of possible interleavings of the
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program’s actions that can be obtained during the search increases when
there are more shipments to handle. Whenever the search has to increase
the distance bound in the minimize M otion procedure by 1 to try to handle
more shipments, the amount of time that must be spent on searching within
the new distance bound is much larger than the time for the search on the
previous smaller distance bound. This also applies to the cases with the
centralized control system since total number of shipments and also the total
number of robots affect the numbers of possible interleavings of the program
actions. However, the distributed control system tends to distribute the
shipments to the robots, and so each robot usually has fewer shipments to
handle and it does not have to consider the actions that can be done by other
robots. Therefore, as shown in the figure, the distributed system was able to
handle 5 shipments in less than a minute on average, while the single robot

control program and centralized system take hours to generate the paths.
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Total number | single centralized distributed centralized distributed
of shipments | robot (2 robots) (2 robots) (3 robots) (3 robots)
1 <0.1 0.3 1.8 5.2 1.9
2 0.4 6.1 4.2 68.4 4.2
3 2.0 3233.8 9.5 26229.1 6.7
4 19.4 - 14.8 - 10.7
5 423.7 - 38.1 - 23.1

Figure 6.1: Average Amount of Time Required to Generate a Path (in sec-
onds)
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Chapter 7

A Shipment Delivery
Application with a Real Robot

Our shipment delivery robot has to perform many tasks. It has to construct
the shortest route to serve the clients, follow the paths generated, and avoid
unexpected obstacles during the execution. The architecture of our robot
system is composed of three modules: a low-level reactive control module, a
navigator module for detailed route planning, and a high-level robot control
module which is written in IndiGolog. Each of these is used to deal with
different levels of robot operation and they are all run in parallel. This
chapter describes these modules and the testing that we have done on the

real robot.
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7.1 A 3-Layer Robot Architecture

7.1.1 The Low-Level Reactive Robot Control Module

The low-level reactive control module makes the robot move towards the
destination specified by the navigation module that is described in the next
section, while detecting landmarks for pose estimation and avoiding obstacles
along the way. The robot we used is a Nomad Super Scout II [45]. It
utilizes a two-wheel synchronous drive mechanical system in which both of
its drive wheels remain parallel to each other at all times. It has 16 bumpers
to detect contact with objects, 16 sonar sensors to determine the distance
to objects, and also a video camera to obtain visual information from its
environment. The perceptual data obtained by these sensors is used by the
robot to acquire knowledge about the environment and avoid hitting objects
in the surroundings. In addition, external devices such as keyboard and
joystick, and output devices such as a speaker and monitor, can be connected

to it to provide interaction with the outside world.

The motion of the robot and the sensors are controlled by the low-level
reactive controller. Given a destination, this module is responsible for moving
the robot to the given location. When it encounters an obstacle which blocks
it from reaching its destination, its obstacle avoidance mechanism ensures
that it will not hit the obstacle. This module is run on the robot’s on-board
computer to minimize the cost of communication between the module and
the robot’s hardware. This is essential since avoiding obstacle is time-critical
and must be performed without delay, otherwise the robot may be damaged

or it may harm the people nearby.
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7.1.2 The Robot Navigation Module

In the middle layer of our robot architecture, we have the navigation module
that is responsible for constructing a path between two points based on an
internal map of the environment and making sure that the robot follows
the path correctly. This module is based on the robot navigation program
“Navigator3.2” developed for the ARK project [43] (see Figure 7.1). Its
internal world model is constructed as an occupancy grid in which each 0.1 x
0.1 meter cell of the grid is either empty or occupied. Planning a path from
one location to another location is done by calculating the potential field for
each empty cell in the grid, and the path between the two given locations
with the minimal sum of the potential fields of its cells is considered the
most effective route. Once a path has been found, the navigator breaks it
into segments and then advises the low-level robot controller to follow it
segment by segment. It also keeps monitoring the execution of the low-level
robot controller and sends information on the current status of the robot to

the high-level control.

The path planning and navigation module has an interface for commu-
nication with the low-level and high-level control modules. The high-level
module sends commands such as “go to a location” and “pick up a ship-
ment” to this module. In the case where navigation to a new destination is
requested, it first constructs a path between the robot’s current position and
the destination according to the information stored in the world model, and
then sends the segements of the path to the low-level robot control module

for execution. When an unexpected situation such as the robot being un-
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Figure 7.1: Graphical User Interface of the “Navigator”, with a Map of the
Robot’s Work Area in the Building
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able to reach the destination arises, this module receives messages from the
low-level module describing the situation and sends the information to the
high-level control module for an appropriate reaction. In this way, the high-
level control module needs only deal with high-level tasks without paying
much attention to lower-level details such as how to find a path from a place

to another and how to drive the robot along the path.

7.1.3 The High-level IndiGolog Robot Control Module

The high-level robot control module consists of a knowledge base, a high-level
control program and an interpreter for executing the program. It is responsi-
ble for deliberation, maintaining the knowledge base about the robot and the
environment, and monitoring the high-level plan execution. As described in
Chapter 3, the knowledge base and high-level robot control program are im-
plemented in the IndiGolog language. Basically, the knowledge base contains
a set of facts, such as the distance between two places and what the existing
shipments are, that are known by the robot. Facts are represented as fluents
and non-fluents. In addition, it contains a specification of the preconditions
for each available primitive action, and also a set of rules that specify how
the facts will be changed after performing a primitive action. This knowledge
base is updated automatically whenever an action is performed. The high-
level control program specifies the behavior of the robot. As we mentioned
in Chapter 4, it has a main thread that instructs the robot how to handle
the shipments. The IndiGolog interpreter takes the program and constructs
a plan for the robot to serve the shipments using the shortest route. It re-

plans when an unexpected event occurs during the execution which makes it
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impossible to follow its plan. Moreover, it keeps monitoring for exogenous

actions and inserts them in the history when they occur.

The IndiGolog interpreter we used for running the robot control program
is written in Quintus Prolog [48]. We also developed a simple interface that
provides facilities for communication between the users and the interpreter.
It passes the shipment orders that are made by the users from their graphical
user interfaces to the interpreter and sends back the status of the shipments

to the appropriate user.

7.1.4 The Individual Client Interface

In our system, the user can make shipment orders and view the status of
the shipments through a simple graphical user interface, which is shown in
Figure 7.2. This interface is written in Java [31], and can be run on different
platforms by multiple users at the same time. Each interface displays infor-
mation about the shipments that have been ordered by its user. The user
can make a shipment order by clicking the button that corresponds to the

recipient of the shipment.

7.2 Test Runs with the Real Robot

The test runs presented in this section are aimed at testing whether the
robot control system is able to exhibit the expected behaviors. There are 5
clients/locations in our robot’s working environment; they are grad, graphics,
inout (input/output), reference, and storage. Their true layout in the robot’s

work area is shown in Figure 7.1. For planning routes in IndiGolog, we
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assume that the distances between each of these places is as listed in Figure

7.3.

7.2.1 Serving Shipments Using the Shortest Route

The purpose of this test run was to show that the robot can choose the
shortest route to deliver the shipments. In this experiment, there were two
shipment orders: shipment 1 from graphics to reference, and shipment 2 from
inout to storage. The robot was at the home position at the beginning. The
robot first constructed the shortest route for the delivery, which is home -
graphics - inout - reference - storage, and then followed it. So the robot
moved from home to graphics and picked up shipment 1 at there. Next,
instead of going to the recipient of shipment 1, it moved to inout and picked
up shipment 2. Then, it carried both shipments and moved to reference to
drop off shipment 1. Finally, it moved from reference to storage and dropped

off shipment 2. This is illustrated in Figures 7.4 to 7.7.

7.2.2 Replanning When a New Shipment Order Ar-

rives

This experiment demonstrates that the robot can replan and serve the
shipments using a different route when a new shipment arrives during the
execution of a path. Initially, the robot was at home and there was only
one shipment order: shipment 1 from inout to graphics. A shortest route to
serve this shipment is home - inout - graphics. So the robot first moved to

inout and picked up shipment 1, and then started to move to graphics. On
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grad’s control panel

Shipment # |  Sender Recipient | Status
1 \grad |reference |serving by rb1
2 \grad |araphics requested
grad graph inout ref store exit

Figure 7.2: Graphical User Interface of the Client “grad”

home | grad | graphics | inout | reference | storage
home 1 1 1 2 2
grad 1 2 1 2 2
graphics 1 2 2 3 3
inout 1 1 2 2 2
reference 2 2 3 2 1
storage 2 2 3 2 1

Figure 7.3: Distances between Different Locations
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d. Route taken by the robot from input/output lab to storage room
through reference room.

Figure 7.5: Test Run 1 (c,d)
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e. Robot at home position.

f. Robot starting to move to graphics lab to pick up shipment 1.

Figure 7.6: Test Run 1 (e,f)
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g. Robot moving to reference room to drop off shipment 1.

h. Robot stopping in front of the storage room.

Figure 7.7: Test Run 1 (g,h)
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b. Route taken by the robot from input/output lab to graphics lab; the
robot stops because of the arrival of a new shipment order.

Figure 7.8: Test Run 2 (a,b)
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c. Robot has stopped and is planning for the new shortest route.

d. Route taken by the robot to grad lab to pick up shipment 2, and then to
graphics lab to drop off the shipments.

Figure 7.9: Test Run 2 (c,d)
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its way to graphics, grad made a new shipment order, shipment 2 from grad
to graphics. In this case, although the robot could first drop off shipment
1 at graphics and then come back to grad to pick up shipment 2, this was
not the best way; the shortest way was to pick up shipment 2 at grad first
and then delivering both shipment to graphics. When the new order was
made, the robot stopped, replanned, figured out the new shortest route, and
then followed it. It moved to grad to pick up shipment 2, and carried both
shipments to graphics and dropped them off. This is illustrated in Figures
7.8 and 7.9.

7.2.3 Replanning When Blocked by an Obstacle

The objective of this experiment is to show that the robot can still com-
plete its task in the presence of a failure exogenous event. In this experiment,
there were two shipment orders: shipment 1 from grad to inout, and ship-
ment 2 from inout to storage. The robot was at the home position initially.
We temporaily prevented the robot from moving from inout to storage by
putting a box on the way to storage. The shortest route for serving the
shipments in this experiment is home - grad - inout - storage. The robot
constructed this path first and moved to grad to pick up shipment 1. Next,
it moved to inout, picked up shipment 2 and dropped off shipment 1. Then,
on its way to storage, it was blocked by a box for 30 seconds. Because of this,
the IndiGolog controller received the “getStuck” signal and so it generated
a new plan to make another attempt to go to storage. Then the box was
moved away and the robot was able to move to storage and drop off shipment

2. This is illustrated in Figures 7.10 and 7.11.
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Figure 7.10: Test Run 3 (a,b)
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c. Robot is blocked by a box on its way to the storage room.
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d. Route taken by the robot to the storage room to drop off shipment 2.

Figure 7.11: Test Run 4 (c,d)
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Chapter 8

Conclusion

In this thesis, we have presented an approach to implementing robot con-
trollers for autonomous robots that are working in dynamic environments.
The approach is mainly based on the IndiGolog framework. It combines
planning and reactivity, so that the controller can reason about the actions
that should be performed, generate plans, and react to changes in the envi-
ronment quickly. We have also demonstrated that the approach can also be
applied to cases where each robot has its own controller and they cooperate

to perform a common task.

8.1 Contributions

We have made several enhancements to IndiGolog for building high-level

robot control programs in this thesis. The main ones are as follows:

e In replanning, our IndiGolog interpreter starts searching for a new plan

from the initial program and situation intead of the program and sit-
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uation that are left in the search block. So, new plans can now be
found in the cases such as our route optimizing delivery robot control

program, where the original interpreter would fail.

The interpreter now supports planning for programs which rely on feed-

back from the environment, which is simulated by a program thread.

The interpreter now keeps the information about which actions have
been performed by the thread that involves search/planning; this al-
lows the control program to have a search/planning thread which finds
an optimal way to accomplish the robot’s task, and separate reactive

threads for handling critical problems quickly.

We have developed meta-level planning and execution routines to pro-
vide access to the plan found by the interpreter and give the program-
mer control over the execution of the plan. Planning and execution of
a plan can now be interrupted when necessary and programs are now
able to decide when they should search for a plan and when a plan

should be executed.

We have shown that our approach can be applied to controlling multiple

cooperating robots. For this, we used a simple bidding mechanism so that

the given task can be distributed effectively to multiple robots. Instead of

having a centralized control system that instructs all robots, each robot can

have its own controller and they can cooperate by communicating with each

other. Each robot can work on its own task without considering the actions

that must be performed by other robots, and this reduces the amount of time

and resources needed for planning. Also, the task can be accomplished even
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in situations where one of the robots is malfunctioning or the communication

to a robot is lost.

The individual robot controller was interfaced to a real robot and architec-

ture, and tested on real scenarios.

8.2 Future Work

There are many areas where our work can be extended. In terms of plan-
ning, our interpreter generates a sequence of program transitions for the
given program and situation. In the case where replanning is required, the
interpreter has to throw away the original plan and looks for a new plan
from the initial program. In some cases, modifying the existing plan may be
a better approach for handling the new unexpected event. Also, the system’s
performance might be better if it supported conditional planning, that is,
generating plans with conditional branches. It could construct plans that
handle many possible exogenous events in various branches of the plan, so
that no replanning would be needed when one of the expected exogenous

events happenned.

Our meta-level path planning routines provide more control over planning
and execution, but we would also like to see if the basic object-level search
meachanism can be extended to provide hooks or settable parameters so that

the program can have full control on the path planning and path execution.

Although our meta-level path planning and path execution routines pro-

vide parameters for the program to specify when the execution should abort,
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the execution may not stop immediate when the abort condition becomes
true. This is because our meta-level routines check the abort condition only
between calls to Final and Trans. Finding a transition or checking whether
a configuration is final may require a large amount of time. One possible
solution to this problem is to incorporate checking of the abort condition
in the transition and termination checking mechanism and in the formula

evaluation mechanism.

Each robot control program we have developed contains only a single
thread which involves search/planning to control the motion of the robot. It
might be useful to have more than one such thread in the program, if the
robot has to accomplish several goals and each of its tasks is handled by a
single thread. However, this may require a better mechanism for detecting
when plans are compatible and avoiding unnecessary replanning. In addition,
it would be interesting to try to have the robot build different plans for a
task using the meta-level planning routine and then execute the best one to

achieve its goal.

The measure we used to characterize the quality of a route returned by
the planner was the total distance that the robot had to travel in following
the route. In reality, the quality of a route relates to many other factors
such as the amount of time required to complete the route and the difficulty
of reaching a location. The control program should include these factors to

provide a more realistic model of the real environment.

Our work on the multiple robots distributed control system is quite pre-

liminary. The robots do not consider the actions that will be performed by
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the other robots at all. Two robots may try to get into the same room at
the same time and they may block each other as a result. We would like the
robots to communicate and adjust their plans so that this kind of problem

can be avoided.
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Appendix A

Simple Robot Control Program
for Shipment Delivery

The example presented in here is a robot control program for doing shipment
delivery. It is adapted from the work done by Lesperance, Tam and Jenkin
[61]. The task of the robot is to pick up all ordered shipments and deliver

them to the clients.

Ordinary primitive actions:

goTo(Place) the robot moves to Place
pickUp(SNo) robot picks up shipment SNo
dropOff(SNo) robot drops off shipment SNo

Exogenous primitive actions:

reachDest robot has reached its destination
getStuck robot is unable to reach destination

Primitive fluents:

156



robot Pos position of the robot

shipmentPos(SNo) position of shipment SNo
shipmentSender(SNo) sender of shipment SNo
shipment Recipient(SNo) recipient of shipment SNo

Precondition axioms:

Poss(goTo(Place), s) = True
Poss(pickUp(n), s) = shipmentPos(n, s) = robotPos(s)
Poss(dropOf f(n),s) = shipmentPos(n, s) = onBoard

Successor state axioms:

robotPos(do(a,s)) = p =

a = goTo(p)V (VY p')a # goTo(p") ArobotPos(s) = p
shipmentPos(n,do(a,s)) =p =

a = pickup(n) A p = onBoardV

a = dropOf f(n) A p = robotPos(s)V

a # pickUp(n) A a # dropOf f(n) A shipmentPos(n, s) = p
shipmentSender(n, do(a, s)) = ¢ = shipmentSender(n,s) = ¢
shipmentRecipient(n, do(a, s)) = ¢ = shipmentRecipient(n, s) = ¢

Defined fluents:

proc clientToServe(c)
(Inl)shipmentPos(nl) = ¢ A shipmentTo(nl) # c)
V

(In2)shipmentPos(n2) = onBoard A shipmentTo(n2) = c)
end

Defined procedures:

proc pick All(c)
while ((Inl)shipmentPos(nl) = ¢ A client(c)A
shipmentRecipient(nl) # c)
(mn2) [ ?(shipmentPos(n2) = c A client(c)A
shipment Recipient(n2) # c) ;
pickUp(n2)

]

end
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proc dropAll(c)
while ((Inl)shipmentPos(nl) = onBoardA
shipment Recipient(nl) = c)
(7n2) [ ?(shipmentPos(n2) = onBoardA
shipment Recipient(n2) = c) ;
dropOf f(n2)
]

end

proc handleRequests(Max)
?(—=((3e) clientToServe(c)))
|
(me,p,m)| ?(clientToServe(c) A robotPos = pA
m = Maz — distance(p,c) Am > 0) ;
goTo(c) ;
pickAll(c) ;
dropAll(c) ;
handle Requests(m) |
end

proc minimizeM otion(Mazx)
handle Requests(M azx)
|
manimizeMotion(Max + 1)
end

proc control
search( minimizeMotion(0) )
end
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Appendix B

Complete Program of the
Shipment Manager for
Distributed Shipment Delivery

Ordinary primitive actions:

callFor Bid(Manager, Robot, SNo, Sender, Recipient)
award(Manager, Robot, SNo, Sender, Recipient)
rejectShipment(Manager, Sender, SNo)

tick

Exogenous primitive actions:

shipment Request(Sender, Recipient)
bid(Robot, SNo,V alue)
report(Robot, M anager, SNo, Message)

Primitive fluents:
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shipmentState(SNo)
shipmentSender(SNo)
shipment Recipient(SNo)
total JobsServing(Robot)
call AtTime(Robot, SNo)
hasBid(Robot, SNo)
counter

Precondition axioms:

Poss(call For Bid(manager,r,n, cl, ¢2),s) =
shipmentSender(n, s) = c1A
shipment Recipient(n, s) = ¢2
Poss(award(manager,r,n,cl, c2),s) =
shipmentState(n, s) = asked All RobotsA
hasBid(r,n,s) # —1A
shipmentSender(n, s) = c1A
shipmentRecipient(n, s) = 2
Poss(rejectShipment(manager, c,n), s) =
shipmentSender(n, s) = cA
shipmentState(n, s) # nonExistent
Poss(tick, s) = True

Successor state axioms:

shipmentState(n,do(a, s)) =z =
((3el, e2)a = shipmentRequest(cl, c2) A counter = nA
x = justin) V
((3r, 1, e2)a = call For Bid(manager, r,n, cl, c2)A
shipmentState(n, s) = justInA
=((3r")r" # r A call AtTime(r', n) # currentTime)A
x = askedAllRobots) V
Ir, c1, c2)a = award(manager, r,n, cl,c2) A x = assigned)V
del)a = rejectShipment(manager,n, cl) A x = rejected)V
3r)a = report(r, manager, n, completed) A x = delivered)V
Vr, cl,c2)a # shipmentRequest(cl, c2)A\
a # callForBid(manager,r,n, cl, c2)A
a # award(manager,r,n,cl, c2)A

((
((
((
((
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a # rejectShipment(manager,n,cl)A
a # report(r, manager,n, completed) A x = shipmentState(n, s))
shipmentSender(n, do(a, s)) = ¢ = shipmentSender(n,s) = ¢
shipment Recipient(n,do(a, s)) = ¢ = shipmentRecipient(n, s) = ¢
total JobsServing(r,do(a, s)) =t =
((3n, c1, c2)a = award(r,n, cl, c2)A
t = total JobsServing(r,s) + 1)V
((3In)a = report(r,n, completed) A
t = total JobsServing(r,s) — 1)V
((Vn,cl, e2)a # award(r,n, cl, c2)A
a = report(r,n, completed) A total JobsServing(r,s) = t)
call AtTime(r,n,do(a, s)) =t =
((Fel, 2)a = callFor Bid(r,n,cl,c2) ANt = currentTime)V
((Vel, 2)a # callFor Bid(r,n, cl, ¢2)A
call AtTime(r,n, s) = t)
hasBid(r,n,do(a,s)) = v =
a = bid(r,n,v)V
((Vv")a # bid(r,n,v") A hasBid(r,n,s) = v)
counter(do(a,s)) =v =
((3el, ¢2)a = shipmentRequest(cl, c2) A v = counter(s) + 1)V
((Vel, e2)a # shipmentRequest(cl, ¢2) A counter(s) = v)
totalJobsServing(r, do(a,s)) =t =
((3n, c1, 2)a = award(manager, r,n, cl, c2)A
t = total JobsServing(r,s) + 1)) Vv
((In)a = report(r, manager, n, completed) A\
t = totalJobsServing(r,s) — 1) V
((Vn, cl, c2)a # award(manager,r,n, cl, c2)A
a # report(r, manager,n, completed) A
t = total JobsServing(Robot, s)

Defined fluents:

proc allHaveBidded(N)
—((3r)hasBid(r, N) = —1) // nobid = —1
end
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proc timeOut(N)
(Ir)call AtTime(r, N) # —1 A
currentTime — call AtTime(r, N) > 3
end

Defined procedures:

proc handleNew Request(N)
if ((3r)connectedlToManager(r) = yes) then
while(shipmentState(N) # asked All Robots)
(m r) [ 2(call AtTime(r, N) # —1);
callFor Bid(r, N, shipmentSender(N),
shipmentRecipient(N))
)
else

/ * reject if no robot is available x /
rejectShipment(N, shipmentSender(N))
end

proc decideContractor(N)
if ((3r,v)(v = hasBid(r,N) Av > —1) then

/ *if someone has bidded, find contractor x /
(mr)
[ ?(bestRobot(r,N)) ;
award(manager, r, N, shipmentSender(N),
shipment Recipient(N))

else
/ *if no one has bidded, reject shipment x /
rejectShipment(manager, shipmentSender(N), N)
end

proc best Robot(R, N)
(Fvl, 41)
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(vl = hasBid(R, N) Avl # —1A
j1 = totalJobsServing(R)A
—((3r2,v2, j2)v2 = hasBid(r2, N) ANv2 # —1A
j2 = total JobsServing(r2)A
(v2 <vlV (v2=v1Aj2< j1)))
end

proc manager
< (Inl)shipmentState(nl) = justIn —
handleNew Request(nl) >
>
< (In2)(shipmentState(n2) = asked All Robots A
allHaveBidded(n2)) vV
(shipmentState(n2) = askedAllRobots A timeOut(n2)) —
decideContractor(n2) >
>
< True — tick > /] keep running forever
end
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Appendix C

Complete Control Program of
Individual Robot for
Distributed Shipment Delivery

Ordinary primitive actions:

startGoTo(Robot, Place)
pickUp(Robot, SN o)
dropO f f(Robot, SNo)

abortGoT o(Robot)
acknowledge(Robot, SNo)
bid(Robot, SNo,V alue)
stopBidding(Robot, SNo)
report(Robot, SNo, Message)
set Final Position(Robot, Place)

Exogenous primitive actions:

reachDest(Robot)

getStuck(Robot)

callFor Bid(Robot, SNo, Sender, Recipient)
award(Robot, SNo, Sender, Recipient)
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Primitive fluents:

robot Pos(Robot)
robotState( Robot)
robot Dest(Robot)
shipmentState(SNo)
shipmentSender(SNo)

shipment Recipient(SNo)
final Robot Pos(Robot)

Precondition axioms:

Poss(startGoTo(r, p), s) =

robotState(r, s) = idle V robotState(r, s) = reached
Poss(reachDest(r), s) = robotState(r, s) = moving
Poss(getStuck(r), s) = robotState(r, s) = moving
Poss(abortGoTo(r), s) = robotState(r, s) = moving
Poss(pickUp(r,n), s) = shipmentState(n, s) = robot Pos(r, s)
Poss(dropOf f(r,SNo), s) = shipmentState(n, s) = onBoard
Poss(bid(r,n,v),s) =

shipmentState(n, s) = requestedV

(3t)shipmentState(n) = replied(t)
Poss(stopBidding(r,n), s) =

shipmentState(n) = requested V (3t)shipmentState(n) = replied(t)
Poss(report(r,n,m), s) = True
Poss(setFinal Position(r, p), s) = True
Poss(callForBid(r,n,cl,c2),s) = True
Poss(award(r,n,cl, c2),s) =

shipmentState(n, s)) = requestedV

(3t)shipmentState(n, s) = replied(t)
Poss(acknowledge(r,n), s) = shipmentState(n, s) = just Awarded

Successor state axioms:

robotPos(r,do(a,s)) = p =

a = startGoTo(r,p) A p = unknownV

a = reachDest(r) A p = robot Dest(r)V

(V p')a # startGoTo(r,p') A a # reachDest(r) A robotPos(r,s) = p
robotState(r,do(a, s)) = x =

(3 p)a = startGoTo(r, p) A x = movingV
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a = reachDest(r) A z = reachedV
a = getStuck(r) A z = idlev
a = abortGoTo(r) A x = idleV
(V p')a # startGoTo(r,p’) A a # reachDest(r) A a # getStuck(r)A
a # abortGoTo(r) A robotState(r,s) = x
robotDest(r,do(a, s)) = p =
a = startGoTo(r,p)V
(V p')a # startGoTo(r,p') A robotDest(r,s) = p
shipmentSender(n,do(a, s)) = c =
(3 )a = call For Bid(robot, n, ¢, c' )V
(V )a # call For Bid(robot, n, c, ') A shipmentSender(n, s) = c
shipmentRecipient(n, do(a, s)) = ¢ =
(3 ¢')a = callFor Bid(robot,n, d, c)V
(V ¢')a # callFor Bid(robot, n, ¢, ¢) A shipmentRecipient(n, s) = c
shipmentState(n, do(a, s)) =p =
((3cl, e2)a = call For Bid(robot, n, cl, c2) A p = requested)V
((Fv)a = bid(robot, n,v)A
(shipmentState(n, s) = requested A\ p = replied(1))V
((3t)shipmentState(n, s) = replied(t) A p = replied(t + 1)))V
(a = stopBidding(robot,n) A p = replied(2))V
(a = acknowledge(robot,n) A p = justAwarded)V
(a = pickUp(robot,n) A p = onBoard)V
(a = dropOf f(robot,n) A p = delivered)V
((Vel, e2,v)a # call For Bid(robot, n, cl, c2) A a # bid(robot, n,v)A
a # stopBidding(robot,n) A a # acknowledge(robot, n)A\
a # pickUp(robot,n) A a # dropO f f(robot, n)A
shipmentState(n, s) = p)
finalRobot Pos(r,do(a, s)) = p =
a = setFinal Position(r, p)V
(Vp')a # setFinal Position(r,p’) A final RobotPos(r,s) = p

Defined fluents:

proc clientToServe(c)
(In)shipmentState(n) = ¢ A client(c) A shipmentRecipient(n) # c)
V
(3In)shipmentState(n) = onBoard A shipmentRecipient(n) = c)
end
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Defined procedures:

proc handleRequests(R, Max)
?(=((Je)clientToServe(c)))
|
(m ¢,p,m) [ ?(clientToServe(c) A robotPos(R) =p A
m = Maz — distance(p,c) Am > 0);
startGoTo(R, c);
?(robotState(R) # moving);
if (robotState(R) = reached) then
[ pickAll(R, c);
dropAll(R,c) ];
handleRequests(R, m) |
end

proc envSimulator(R)
< robotState(R) = moving — sim(reachDest(R)) >
end

proc minimizeMotion(R, Max)
handleRequests(R, Max)

minimize Motion(R, Max + 1)
end

proc handleNewOrder(R, N)
[ if (robotState = moving,
abortGoTo(R),
else,
no_op
);

acknowledge(R, N)
]

end

proc quickBid(R, N)
(m pl,c2,c3,d3)
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[ ?(finalRobotPos = plA
shipmentSender(N) = ¢2 A shipmentRecipient(N) = c3A
d3 = distance(pl, c2) + distance(c2, c3));
bid(R, N, d3)
]

end

proc slowBid(R, N)
(7 ch,pos,t,dl,d2)
[ ?(ch = now A pos = robotPos A current_time(t));

/ * total number of steps to serve the existing shipments * /
pi(pl) ?(findpath(]],
[ abortGoTo(R);
minimizeMotion(R, 0)||envSimulator(R) |,
ch,
bid_is_invalid V timeOut(t)),
pl)A
pathLength(pl, pos,dl))

/ * total number of steps to serve the existing + new shipments  /
pi(p2) ?(findpath([],
[ pi(cl, c2)
[ ?(shipmentSender(N) = cl1A
shipment Recipient(N) = c2);
sim(award(R, N, c1,¢c2)) |;
ackShipment(R, N);
abortGoTo(R);
minimizeMotion(R, d1)||envSimulator(R) |,
ch,
bid_is_invalid V timeOut(t),
P2)A
pathLength(p2, pos, d2))

/ * calculate the bid value x /

if (bid_is_invalid V timeOut(t) Vdl = -1V d2 = —1)
stopBidding(R, N)

else

168



bid(R, N,d2 — d1)
end

proc followRoute(path)

(m rml)
[ msearch(path, pathFound(mypath), unblockSimCond, rm1),
if (rm1 = |
no_op, |/ succeeded
else,

[ / % save the final position of the robot x /
(m fpos,p,d, h,i)
[ ?(rpath(p,d, h,i) = rml1A
findFinal Position(pl, robot Pos, fpos)),
setFinal Position(fpos)

]

/ * execute the new path * /
followRoute(rm]1)

]

end

proc motionControl(R)

(7 path)
[ msearch(minimize Motion(R, 0)||envSimulator(R),
pathFound(mypath),
unblockSimCond,
path),

/ * save the final position of the robot x /
(m fpos,p,d, h,i)
[ ?(rpath(p,d, h,i) = pathA
findFinal Position(pl, robot Pos, fpos),
set Final Position(fpos)

]

/ * execute the path x /
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followRoute(path)

]

end

proc control(R)
< (3Inl)shipmentState(nl) = justAwarded —
handleNewOrder(R,nl) >
>
< (In2)shipmentState(n2) = requested —
quickBid(R,n2) >
>
< (Je)clientToReach(c) — motionControl(R) >
>
< (In3)shipmentState(n3) = replied(1)A
(robotState = moving V —((3e3)clientToReach(c3))) —
slowBid(R,n3) >
>
< True — no_op > |/ keep running
end
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Appendix D

Centralized Control Program
for Multi-Robot Shipment

Delivery

This program is a modified version of the program in Appendix A and is used
to control multiple robots to do shipment delivery. Here, we show a version

for 3 robots.

Ordinary primitive actions:

startGoT o(robot, place) robot starts moving to place
pickUp(robot, SNo) robot picks up shipment SNo
dropOf f (robot, SNo) robot drops off shipment SNo
abortGoT o(robot) robot stops moving to its destination

Exogenous primitive actions:

reachDest(robot) robot has reached its destination
getStuck(robot) robot unable to reach destination
orderShipment(SNo, Sndr, Repnt) client Sndr wants to send

shipment SNo to Repnt

171



Primitive fluents:

robot Pos(robot) position of robot
robotState(robot) state of robot
robot Dest(robot) destination of robot
shipmentPos(SNo) position of shipment SNo
shipmentSender(SNo) sender of shipment SNo
shipment Recipient(SNo) recipient of shipment SNo

Precondition axioms:

Poss(startGoTo(r, place), s) =

robotState(r, s) = idle V robotState(r, s) = reached
Poss(reachDest(r), s) = robotState(r, s) = moving
Poss(getStuck(r), s) = robotState(r, s) = moving
Poss(abortGoTo(r), s) = robotState(r, s) = moving
Poss(pickUp(r,n), s) = shipmentPos(n, s) = robot Pos(s)
Poss(dropOf f(r,n),s) = shipmentPos(n,s) =r
Poss(order Shipment(n, Sender, Recipient), s) = true
Poss(acknowledge(n, c), s) =

shipmentPos(n, s) = nonExistent A shipmentSender(n, s) = ¢

TN TN AN N N N

Successor state axioms:

robotPos(r,do(a,s)) =p =

a = startGoTo(r,p) A p = unknownV

a = reachDest(r) A p = robot Dest(r)V

(V p')a # startGoTo(r,p') A a # reachDest(r) A robotPos(r,s) = p
robotState(r,do(a, s)) = x =

(3 p)a = startGoTo(r,p) A x = movingV

a = reachDest(r) A x = reachedV

a = getStuck(r) A x = idleV

a = abortGoTo(r) A x = idleV

(V p')a # startGoTo(r,p') A a # reachDest(r) A a # getStuck(r)A

a # abortGoTo(r) A robotState(r,s) = x

robotDest(r,do(a,s)) = p =

a = startGoTo(r, p)V

(V p')a # startGoTo(r,p') A robotDest(r,s) = p
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shipmentSender(n, do(a, s)) = ¢ =

(3 )a = orderShipment(n, c, c' )V

(V ¢)a # orderShipment(n, c, ) A shipmentSender(n, s) = ¢
shipmentRecipient(n,do(a, s)) = ¢ =

(3 ¢')a = orderShipment(n, ', c)V

(V )a # orderShipment(n, c, c) A shipmentRecipient(n, s) = ¢
shipmentPos(n,do(a,s)) =p =

a = acknowledge(n,p)V

(3 r)a = pickUp(r,n) Ap =1V

(3 r)a = dropOf f(r,n) A p = robotPos(r, s)V

(V p',r)a # acknowledge(n, p') A a # pickUp(r,n)A

a # dropOf f(r,n) A shipmentPos(n, s) = p

~ =

—_

Defined fluents:

proc clientToServe(r, c)
(In)shipmentPos(n) = ¢ A client(c) A shipmentRecipient(n) # c)
\%
(In')shipmentPos(n') = r A shipmentRecipient(n') = c)

end

Defined procedures:

proc pickOne(r, c)
(mn) [ ?(shipmentPos(n) = c A client(c)A
shipmentRecipient(n) # c) ;
pickUp(r,n)

|

end

proc dropAll(r, c)
while ((In)shipmentPos(n) = r A shipmentRecipient(n) = c)
(mn') [ ?(shipmentPos(n') = rA
shipmentRecipient(n') = c) ;
dropOf f(r,n’)
]

end
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proc handleRequests(r, Mazx)
?(—=((Je)clientToServe(r, c)))
|
(x ¢,p,m)
[ ?(clientToServe(r, c) A robotPos(r) =p A
m = Mazx — distance(p,c) Am > 0);
if (p#c) then
[ startGoTo(r,c) ; ?(robotState # moving) |;
if (robotState = reached) then
[ if =((3In)shipmentPos(n) = r A shipmentRecipient(n) = c) then
pickOne(r, ¢);
dropAll(r,c)
I

handle Requests(r, m)

]

end

proc minimizeMotion(Mazx)
( handle Requests(robotl, Mazx) || handle Requests(robot2, Max) ||
handle Requests(robot3, Max) )

minimizeMotion(Max + 1)
end

proc envSimulator
< (3r)robotState(r) = moving — sim(reachDest(r)) >
end

proc control
search(minimizeMotion(0) || envSimulator)
end

174



Appendix E

Extended IndiGolog Interpreter

/***************************************************************************

** IndiGolog interpreter with path manipulation *ok
*ok *ok
**x first written by Hector Levesque * %
** adapted to Quintus Prolog by Yves Lesperance, April 1999 %k
** modified by Yves Lesperance and Ho Ng *k
*ok *ok

sk o ok o sk ok ok ok ok o ok o ok o sk ok ok sk ok ok o sk ok ok o sk ok sk ok ok o sk ok ok ok sk ok sk o ok sk o ok o ok sk ok ok ok ok ok ok kok ok /

:- ensure_loaded(library(not)).

:- multifile tracingProg/0, tracingExec/0, tracingTest/0, tracingPath/0,
tracingleft/0, prim_action/1, prim_fluent/1, causes_val/4,
poss/2, proc/2.

:- dynamic tracingProg/0, tracingExec/0, tracingTest/0, tracingPath/O0,

tracingleft/0.

[ ks oo ok o ko s o s ok o ko ko sk o ok K o sk ok o ok ok sk ok o K ok sk sk K o ok ook K o o sk o sk o s ok o ok sk ok ko sk ok ok ok o sk ok o sk ook
** Main Loop : indigolog(E) ok
ok ok
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*x* The top level call is indigolog(E), where E is a program. ok
** The history H is a list of actions (prim or exog), initially []. * %k
** Sensing reports are inserted as actions of the form e(fluent,value) *k
sk ke ko ko o s ks ks ke sk ke sk ko ks ks o s ks sk s o ks s ks ks sk s sk sk sk sk sk sk sk ik ko ok sk ek ke ke ok /

indigolog(E) :- indigo(E,[]).

indigo(E,H) :- exog_occurs(A), exog_action(A), !, subsim(E,A,H).
indigo(E,H) :- trans(E,H,E1,H1), !, checksim(E,H,E1,H1).
indigo(E,H) :- final(E,H), nl, length(H,N), write(N), write(’ actiomns.’), nl.

checksim(E,H,E1, [sim(_) |H]) :- !, indigo(E,H).
checksim(E,H,E1,H1) :- indixeq(H,H1,H2), !, indigo(E1,H2).

indixeq(H,H,H). /* for test transitions */
indixeq(H, [A|H], [e(F,Sr),AlH]) :- senses(A,F), !, execute(A,Sr).
indixeq(H, [AIH],[A|H]) :- execute(A,_).

/* Hector’s original version

indixeq(H, [Act|H], [Act|H]) :- not senses(Act,_), execute(Act,_ ).
indixeq(H, [Act|H], [e(F,Sr) ,Act|H]) :- senses(Act,F), execute(Act,Sr).
*/

subsim(E,A,H) :- trans(E,H,E1,H1), subsim2(E,A,H,E1,H1).

subsim2(E,A,H,E1, [sim(A) [H]) :- !, indigo(E1,[A[H]).
subsim2(E,A,H,E1,H1) :- !, indigo(E,[AIH]).

/***************************************************************************

** indigolog_itr(E) *k
*k *ok
** This top level call is similar to indigolog(E), except it calls *ok
** start_interrupts at the beginning and stop_interrupts at the end *k
** automatically. Interrupts must be put into conc or pconc structure *%
** to indicate their priorities over other interrupts *k
** ( e.g. pconc(interrupt(cl,al),interrupt(c2,a2)) ). User can still put *x*
** interrupts into a list and use prioritized_interrupts to convert it *k
** into a pconc structure. However, it is not recommended. *k
*k *ok
** Assumption : no interrupt is inside any search block *k

***************************************************************************/
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indigolog_itr(E) :- indigo(pconc(start_interrupts,
pconc (E,
stop_interrupts)), [1).

/s s sk ke ok ks sk s s s ke ok sk sk sk e se sk sk s s s ke ok sk s e s ke ok sk s s ke ok ks s s s ke sk sk sk s ke ke sk sk sk ke sk sk sk ok ke sk s e s o ok
** exog_occurs and execute are the predicates that make contact with *ok

** the outside world. Here are two basic versions using read and write  **
s s ok ks ke ks s ke ok sk e e ok sk s ok sk s sk sk ke ke sk e ok sk sk ok sk s ke ke sk s ok sk sk ok sk ke ok sk ok ks ok ks e ok sk s ke sk sk ke ok sk ke ok ke /

ask_exog_occurs(Act) :- write(’Exogenous input:’), read(Act).
ask_execute(Act,Sr) :- write(Act), senses(Act,_) -> (write(’:’),read(Sr)); nl.

/***************************************************************************

** Trans and Final %k
ke ok e ok sk ok ok ke ok ke ok ke ok e ok sk ok ok e ok ke ok ke ok e ok ke ok e ok e ok e ok e ok e ok ek e ok e ok sk s e s ok sk ok sk ok s ok s ok ok ke sk ok sk ok ok ok ok ok sk e ok ok sk ok /

/*** ConGolog.final **x*/
final(conc(E1,E2),H) :- final(E1,H), final(E2,H).
final(pconc(E1,E2) ,H) :- final(E1l,H), final(E2,H).
final (iconc(_),_).
/*** ConGolog.trans.conc **x*/
trans(conc(E1,E2) ,H,conc(E,E2) ,H1) :- trans(E1,H,E,H1).
trans(conc(E1,E2) ,H,conc(E1,E) ,H1) :- trans(E2,H,E,H1).
/*** ConGolog.trans.pconc *x**/
/* original version with bugs
trans (pconc(E1,E2) ,H,E,H1) :-

trans(E1,H,E3,H1) -> E=pconc(E3,E2) ; (trans(E2,H,E3,H1), E=pconc(E1,E3)).

*/

/* version #2 *x/
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trans(pconc(E1,E2) ,H,pconc (E3,E2) ,H1) :- trans(E1,H,E3,H1).
trans(pconc(E1,E2) ,H,pconc(E1,E3) ,H1) :-
\+ trans(E1,H,E3,H1), trans(E2,H,E3,H1).

/* version #3 (may be a more efficient way)

trans (pconc(E1,E2) ,H,E,H1) :-
(trans(E1,H,_,_ ), !, trans(E1l,H,E3,H1), E=pconc(E3,E2)) ;
(trans(E2,H,E3,H1), E=pconc(E1,E3)).

*/

/*** ConGolog.trans.iconc **x*/

trans(iconc(E) ,H,conc(El,iconc(E)),H1) :- trans(E,H,E1,H1).

/**x Golog.final *xx*/

final([],_).
final([E|L],H) :- final(E,H), final(L,H).
final(ndet (E1,E2) ,H) :- final(E1,H) ; final(E2,H).

/* original version with bugs

final (if (P,E1,E2),H) :- holds(P,H) -> final(E1,H) ; final(E2,H).
*/

final (if(P,E1,E2),H) :- holds(P,H), final(E1,H).

final (if (P,E1,E2),H) :- \+ holds(P,H), final(E2,H).

/* new version for if(cond,progh,else,progB) */
final(if(P,E1,else,E2),H) :- holds(P,H), final(E1,H).
final (if(P,El1,else,E2),H) :- \+ holds(P,H), final(E2,H).

final(star(_),_).
final(while(P,E),H) :- \+ holds(P,H) ; final(E,H).

final (pi(V,E),H) :- subv(V,_,E,E2), final(E2,H).
final(E,H) :- proc(E,E2), final(E2,H).

/*** Golog.trans.sequence **x*/
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trans([E|L],H, [E1|L] ,H2) :- trans(E,H,E1,H2).

trans([E|L] ,H,E1,H2) :- L \== [], final(E,H), trans(L,H,E1,H2).
/* Hector had:

trans([E|L] ,H,E1,H2) :- not L=[], final(E,H), trans(L,H,E1,H2).
*/

/*** Golog.trans **x*/

trans(?(P),H,[],H) :- holds(P,H), traceTest(P,1,H).
trans(?(P),H,[1,H) :- \+ holds(P,H), traceTest(P,0,H), !, fail.

trans (ndet (E1,E2) ,H,E,H1) :- trans(E1,H,E,H1) ; trans(E2,H,E,H1).

/* original version with bugs:
trans(if(P,E1,E2) ,H,E,H1) :- holds(P,H) -> trans(E1,H,E,H1) ; trans(E2,H,E,H1).
*/

trans(if (P,E1,E2) ,H,E,H1) :- holds(P,H), traceTest(P,1,H), trans(E1,H,E,H1).
trans(if (P,E1,E2) ,H,E,H1) :- \+ holds(P,H), traceTest(P,0,H), trans(E2,H,E,H1).

/* new version for if(cond,progh,else,progB) */
trans(if (P,El1,else,E2) ,H,E,H1) :-

holds(P,H), traceTest(P,1,H), trans(E1,H,E,H1).
trans(if (P,E1,else,E2) ,H,E,H1) :-

\+ holds(P,H), traceTest(P,0,H), trans(E2,H,E,H1).

trans(star(E),H, [El,star(E)] ,H1) :- trans(E,H,E1,H1).

trans(while(P,E),H, [El,while(P,E)],H1) :-
holds(P,H), traceTest(P,1,H), trans(E,H,E1,H1).
trans(while(P,E) ,H, [El,while(P,E)],H1) :-
\+ holds(P,H), traceTest(P,0,H), !, fail.

trans(pi([VIL],E),H,E1,H1) :- subvs([V|L],E,E2), trans(E2,H,E1,H1).
trans(pi(V,E),H,E1,H1) :- subv(V,_,E,E2), trans(E2,H,E1,H1).

/* added for meta_follow */

trans(execute_update(A,LS, [[AIH]|LS]) ,H,[],[A|H]) :-
prim_action(A), poss(A,P), holds(P,H).
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trans(E,H,E1,H1) :- proc(E,E2), trans(E2,H,E1,H1).
trans(E,H,[1, [E|IH]) :- prim_action(E), poss(E,P), holds(P,H).

trans (no_op,H, [1,H).

/***************************************************************************

*x Original Search *ok
ok ok
** It ignores exogenous or other concurrent actions. ok

***************************************************************************/

final (osearch(E) ,H) :- final(E,H).
trans (osearch(E) ,H,ofollowpath(E1,L) ,H1) :-
trans(E,H,E1,H1), ofindpath(E1,H1,L), tracePath(L,H), traceLeft(El).

ofindpath(E,H,[E,H]) :- final(E,H).
ofindpath(E,H, [E,H|L]) :- trans(E,H,E1,H1), ofindpath(E1,H1,L).

final(ofollowpath(E, [E,H]) ,H) :- !.

final(ofollowpath(E,_) ,H) :- final(E,H).

trans (ofollowpath(E, [E,H,E1,H1|L]),H,ofollowpath(El, [E1,H1|L]) ,H1) :-
tracelLeft(El1), !.

trans (ofollowpath(E,_) ,H,E1,H1) :- trans(osearch(E),H,E1,H1).

/***************************************************************************

** Search (from the beginning) ok
*K *K
*x It ignores exogenous or other concurrent actions. *k

***************************************************************************/

/* extactin(+list of snapshots, +[], +list of actions) and
extractout(+list of snapshots, +[], +list of actions)
It returns the list of actions AL that has been performed from the
beginning of search by making extact(LS, [],AL) holds */

extactin([HO] ,AL,AL).
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extactin([[sim(A) |H1] ,H|L] ,AL,R) :- extactout([H1,H|L],AL,R).
extactin([[A|H1],H|L],AL,R) :- extactout([H1,H|L], [inside(A)|AL],R).

extactout ([H,H|L],AL,R) :- extactin([H|L],AL,R).
extactout ([H, [sim(A) |H] |L],AL,R) :- extactin([[sim(A) |H]|L],AL,R).
extactout ([[A|H1],H|L],AL,R) :- extactout([H1,H|L],[A|AL],R).

/* posspath(+path, +current history)
It checks to see if it is still possible to continue with the path */

posspath([E,H],CH) :- final(E,CH).
posspath([E,H,E1,H|L],CH) :- trans(E,CH,E1,CH), posspath([E1,H|L],CH).
posspath([E,H,E1,[A|H]|L],CH) :-

trans(E,CH,E1, [A|CH]), posspath([E1,[A[H]|L],[AICH]).

/* findpath(AL,E,H,L) holds if there is a legal execution of E in H that */
/* first xeqs the actions in AL, and then finishes with L, a pathlist as */
/* above to a final state */

findpath([],E,H, [E,H]) :- final(E,H).
findpath([],E,H, [E,H|L]) :- trans(E,H,E1,H1), findpath([],E1,H1,L).

findpath([inside(A) |AL],E,H,L) :-

prim_action(A), trans(E,H,E1,[A|H]), findpath(AL,E1,[A|H],L).
findpath([A|AL],E,H,L) :-

A \= inside(_), findpath(AL,E,[A|H],L).
findpath([A|AL],E,H,L) :- /* silent */

trans(E,H,E1,H), findpath([A|AL],E1,H,L).

/*%* search *xx/
final (search(E) ,H) :- final(E,H).
trans (search(E) ,H,path(P1,LS1,E,H) ,H1) :-

findpath([],E,H,P0), trans(path(PO, [H],E,H),H,path(P1,LS1,E,H), H1),
tracePath(P1,H).
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/* the structure path(L,LS,E0,H0) is used as a pseudo program where */

/* L is a list E1,H1,E2,H2...En,Hn such that */
/* trans(Ei,Hi,Ei+1,Hi+1) and final(En,Hn) both hold */
/* LS is a list of snapshots */
/* EO and HO is where the search started (in case we need to restart) */

final (path([E,H] ,LS,E0,H0) ,H) :- !.
final (path([E,H],LS,E0,H0),CH) :- final(E,CH), !.
final (path([E,H,E1,H1|L],LS,E0,HO) ,H) :- !, fail.
final (path([E,H|L],LS,E0,H0),CH) :-
extactout ([CHILS], [1,AL), !, findpath(AL,E0,HO, [E1,H1]).

trans(path([E,H,E1,H|L],LS,EO,HO) ,H,path([E1,H|L],LS,EO,HO) ,H) :-
traceLeft(El1), !.
trans(path([E,H,E1, [A|H]|L],LS,EO,HO) ,H,path([E1,[A|H]|L],[[A|H]|LS],EO,HO),[A|H]) :-
traceLeft(E1), !.
trans(path([E,H,E1,H|L],LS,E0,H0) ,CH,path([E1,H|L],LS,EOQ,HO),CH) :-
posspath([E,H,E1,H|L],CH), tracelLeft(El), !.
trans (path([E,H,E1,[A|H] IL],LS,EQ0,HO) ,CH,path([E1, [A|H] L], [[AICH] |LS],EOQ,HO),[AICH]) :-
posspath([E,H,E1,[A|H]|L],CH), tracelLeft(E1l), !.
trans(path([E,H,E1,H1|L],LS,EQ,H0),CH,path(P2,L.82,E0,H0) ,H2) :-
extactout ([CH|LS], [],AL),
findpath(AL,E0,HO,P),
trans(path(P,LS,E0,HO0) ,CH,path(P2,LS2,E0,HO) ,H2),
tracePath(P2,CH).

/***************************************************************************

**x Simulated Actions : sim(A) * %
s s ok o o o ok sk s o ok o o o sk sk s ook s ok e sk s ok o sk s ok sk o o ok sk sk ok o o ok sk sk o s ok sk sk ok o o ks sk ok s o ok ks ok s ok ok sk sk ok ok ok /

prim_action(sim(A)) :- exog_action(A).
poss(sim(4) ,P) :- poss(A,P).

/st kot sk kot skok sk kok sk ok ok ok ok ke ok ok ke ok ok ok ok sk sk sk sk sk sk sk sk sk sk s s sk s s s s s sk ok ok ke ok ok sk ok sk sk sk sk sk sk sk sk sk sk sk e s sk e s s o s o
** Interrupts * %
sk ok ok ok ok ok sk sk ok ok ok ok ok ok ok ok sk ok ok sk ok sk sk ks sk sk sk sk sk s s s o o s s s s s o ke ok ke ok ok ok ok sk ke sk sk sk sk sk sk sk sk sk s s s s sk sk s sk ok ok ke k /

prim_action(start_interrupts).
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prim_action(stop_interrupts).
prim_fluent (interrupts) .

causes_val(start_interrupts, interrupts, running, true).
causes_val(stop_interrupts, interrupts, stopped, true).

poss(start_interrupts, true).
poss(stop_interrupts, true).

proc (interrupt (V,Trigger,Body), /* version with variable */
while (interrupts=running, pi(V,if(Trigger,Body,?(neg(true)))))).

proc (interrupt (Trigger,Body), /* version without variable */
while(interrupts=running, if(Trigger,Body,?(neg(true))))).

proc(prioritized_interrupts(L), [start_interrupts,E]) :- expand_interrupts(L,E).

expand_interrupts([],stop_interrupts).
expand_interrupts ([X|L] ,pconc(X,E)) :- expand_interrupts(L,E).

/***************************************************************************
**x Hold (holds) *ok
***************************************************************************/

holds(and(P1,P2),H) := !, holds(P1,H), holds(P2,H).

holds (or (P1,P2) ,H) :— !, (holds(P1,H) ; holds(P2,H)).

holds(neg(P) ,H) := !, \+ holds(P,H). /* Negation by failure */
/* do we have to add the cut in the holds.some.[V|L]? */
holds(some([VIL],P),H) :- !, subvs([VIL],P,P1), holds(P1,H).

holds (some(V,P) ,H) :— !, subv(V,_,P,P1), holds(P1,H).

/* shouldn’t do subsitution if the condition contains a path */
holds(P,H) :- ( P = posspath(_,_) ;
P = finalpath(_) ;
transpath(_,_,_) ;
finalpathseg(_) ;
transpathseg(_,_,_) ;
assignTo(_,_) ),
1, call(P).

' J u o

holds(P,H) :- proc(P,P1), !, holds(P1,H).
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holds(P,H) :— subf(P,P1,H), call(P1).

/* Hector’s original version

holds(P,H) :- proc(P,P1), holds(P1,H).

holds(P,H) :- not proc(P,P1l), subf(P,P1,H), call(P1).
*/

/***************************************************************************

** Substitution Kk
sk s sk sk ok ok sk sk ke ok sk ok ke ok sk ok e ok sk sk sk st ke ok sk sk sk ke ok sk sk ok sk ok sk ok s sk sk sk ke sk sk stk s sk sk sk ke ok sk sk k sk ok sk ok s sk sk ok k sk ok ek sk sk sk k ok ok /

/*** subv(X1,X2,T1,T2) holds iff T2 is T1 with X1 replaced by X2 **x*/
subv(_,_,T1,T2) := (var(T1);integer(T1)), !, T2 = T1.
subv(X1,X2,T1,T2) :- T1 = X1, !, T2 = X2.

subv(X1,X2,T1,T2) :- T1 =..[F|L1], subvl(X1,X2,L1,L2), T2 =..[F|L2].

subvl(_,_,[1,[1).
subvl(X1,X2, [T1|L1], [T2]L2]) :- subv(X1,X2,T1,T2), subvl(X1,X2,L1,L2).

subvs([]1,T1,T1) =1,
subvs([V|L],T1,T2) :- subv(V,_,T1,T3), subvs(L,T3,T2).

/**x*x subf(P1,P2,H) holds iff
P2 is P1 with all fluents replaced by their values *x*x/
subf (P1,P2,_) :- (var(P1);integer(P1)), !, P2 = P1.
subf (P1,P2,H) :- prim_fluent(P1), has_val(P1,P2,H).
subf (P1,P2,H) :- \+ prim_fluent(P1), Pi=..[F|L1], subfl(L1,L2,H), P2=..[F|L2].
/* Hector’s original version
subf (P1,P2,H) :- prim_fluent(P1), has_val(P1,P2,H).
subf (P1,P2,H) :- not prim_fluent(P1), Pi=..[F|L1], subfl(L1,L2,H), P2=..[F|L2].
*/

subf1([1,[1,_).
subf1([T1|L1],[T2|L2],H) :- subf(T1,T2,H), subfl(L1,L2,H).

/* for fluent now */
has_val (now,H,H) =1,

has_val(F,V,[]1) :- initially(F,V).
has_val(F,V,[sim(A) |H]) :- !, has_val(F,V,[A|H]).
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has_val(F,V,[A|H])

sets_val(A,F,V,H)

- A

:- sets_val(A,F,V1,H) -> V = V1 ; has_val(F,V,H).

= e(F,V) ; (causes_val(A,F,V,P), holds(P,H)).

/***************************************************************************

* %k
* %
* %
* %
* %
* %
* %
k%

Program Tracing

There are five clauses which can be asserted for tracing:

tracingProg
tracingTest
tracingExec
tracingPath
tracingleft

(useless, not supported)

show each test action and its result

(covered by the clause execute(A,_), not supported)
show the path found by the planner

show the advanced program during path following

* %k
* %
* %k
* %
* %k
* %
* %
* %

***************************************************************************/

/* rePrintHist (+,+)

[history list, levell */

rePrintHist ([],_).
rePrintHist (_,0)

rePrintHist ([A|H],L)

/*

printHist (+,+)

', write(’, ...7%).

[history list, level (>0)]
It prints the first 3 actions in the history list */

printHist([1,_)
printHist ([A[H],L)
write(’[?’), write(A), L2 is L-1, rePrintHist(H,L2), write(’]’).

/*

/* reverseList (+,-)

addtail (+,+,-)

- write(’°[17).

[element, original list, list with element at the end] */
addtail(E, [1,[E]).
addtail(E, [H|L1],[HIL2]) :- addtail(E,L1,L2).

[original list, reversed list] */
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reverseList([1,[]).
reverseList ([H|L1],L2) :- reverselList(L1,L3), addtail(H,L3,L2).

/* minusTail (+,+,-)
[tail list, list with head and tail, head list] */

minusTail (H,H, []).
minusTail (H, [E|H1],[E|H2]) :- minusTail (H,H1,H2).

/* getPath(+,+,-)
[path list, current history, path] */
getPath([],H,[]1).
getPath([E1,H1] ,H,P) :- !, minusTail(H,H1,H2), reverselList(H2,P).
getPath([E1,H1|L],H,P) :- getPath(L,H,P).

/* traceTest (+,+,+)
[complex predicate, value, history]
It prints the predicate, its value and also the history list */

traceTest(_,_,_) :- \+ clause(tracingTest,_), !.
traceTest(P,V,H) :-
format(’ test : "p <- ’,[V]), format(’~“p in ’,[P]), printHist(H,3), nl, !.

/* tracePath(+,+)
[path generated from search, history list]
It prints the path or plan generated by search() */

tracePath(_,_) :- \+ clause(tracingPath,_), !.
tracePath([],H) :- write(’ path : [] in ’), printHist(H,3), nl.
tracePath(L,H) :-
write(’ path : ’), getPath(L,H,P), printHist(P,15), write(’ in ’),
printHist(H,3), nl.

/* traceLeft (+)
[program]
It prints the advanced program when the executor is following a path */
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traceLeft(_) :- \+ clause(tracingleft,_), !.
traceLeft(E) :- write(’ 1left : ’), write(E), nl.

/***************************************************************************

** Tools for External Path Manipulation * %
sk ke sk ok ok ok ke sk ok ok ok ok ok ok ok ok sk ok ok ok ok sk sk ok sk sk sk sk sk s s s s s s s s s s ke ok ok ke ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk s s s s s s sk s sk ke ok ke ok /

/* now

A primitive fluent for obtaining the current history in the user program. */
prim_fluent (now) .
/* (added) has_val(now,H,H) :- !. */

/* path evaluation
a) evaluate path step by step
finalpath(+Path)
- succeed when Path is [E,H]
transpath(+Path,-Path,-Action)
- advance the path by one step and return the involved action if
there is omne
b) evaluate path as plan (also works for program with sim action)
finalpathseg(+Path)
- succeed when the following the Path does not involve any action
transpathseg(+Path,-Path,-Action)
- advance the path upto the point where an action is involved */

finalpath([E,H]).

transpath([E,H,E1,H|L], [E1,H|L] ,no_op).
transpath([E,H,E1, [A|H] |L],[E1, [A|H] |L],A).

finalpathseg([E,H]).
finalpathseg([E,H,E1,H|L]) :- finalpathseg([E1,HIL]).

transpathseg([E,H,E1,H|L] ,PS,A) :- transpathseg([E1,H|L],PS,A).
transpathseg([E,H,E1, [A|H] |L], [E1, [A|H]IL],A).

187



/* (added) holds(P,H) :- (P=posspath(_,_); P=finalpath(_); P=transpath(_,_,_);
P=finalpathseg(_); P=transpathseg(_)), !, call(P).
Each of these prolog predicates contain a path. The values of the fluents
inside this path should not be affected by the current history H. Therefore,
no subsitution should be done on P. */

/* (added) trans(execute_update(A,LS,[[A|H]|LS]),H,[]1,[A|H]) :-
prim_action(A), poss(A,P), holds(P,H).
to support executing an action and updating the snapshots at the same time
in meta_follow

(?) I guess this can be removed by doing:
if (1s1 = [[a|now]|1ls],

[a, ... ]
)
instead of [ execute_update(a,ls,lsl), ... ] */

/* The prolog condition update_ls caches the list of snapshots in the
memory. It can be retrieved by calling listO0fSnapshots(LS) inside the
condition for passing simulated action in the call of meta_follow.

(?) Is this useless? *x/

update_1s(LS) :-
clause(listOfSnapshots(_),_), !, retract(listO0fSnapshots(_)),
asserta(list0fSnapshots(LS)).

update_1s(LS) :- asserta(listOfSnapshots(LS)).

/***************************************************************************

** Meta Planner and Executor *k
sk e sk sk ke o sk sk e o sk ok e ok sk ok e ok sk ok s sk sk ke e skl s e ok sk sk ok s sk sk ok e sk sk ke s sk ke s sk sk ke ok sk sk ok s sk sk ok s skesk ke sk ok ke ks ok ok s ok ok /

/* insert all new possible branches into the database */
queue_push(N) :-

clause (branchR(N,AL,E,H,P),_),

retract (branchR(N,AL,E,H,P)),
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asserta(branch(N,AL,E,H,P)),
fail.
queue_push(_).

stack_push(N, []1,E,H,P) :-

trans(E,H,E1,H1), asserta(branchR(N,[],E1,H1,[E1,H1|P])), fail.
stack_push(N, [inside(A) |AL],E,H,_) :-

trans(E,H,E1,[A|H]), asserta(branchR(N,AL,E1,[A|H],[E1,[AIH]])), fail.
stack_push(N, [A|AL] ,E,H,_) :-

A \= inside(_), asserta(branchR(N,AL,E,[A|H],[E,[A|H]])), fail.
stack_push(N, [A|AL] ,E,H,_) :-

trans(E,H,E1,H), asserta(branchR(N,[A|AL],E1,H,[E1,H])), fail.
stack_push(N,_,_,_,_) :-

queue_push () .

/* call as reverselist(AL, [],Result) */
reverselist([E,H],L, [E,H|L]).
reverselist([E,H|L1],L2,R) :- reverselist(L1i,[E,H|L2],R).

/* get the first unvisited branch of search tree N */
firstbranch(N,AL,E,H,P) :- clause(branch(N,AL,E,H,P),_), !.

/* new version of findpath,
which will return either a path [...] or search_log(N) */

contfindpath(branch(N, [],E,H,P),Cond,Path) :-

final(E,H), reverselist (P, [],Path).
contfindpath(branch(N,AL,E,H,P) ,Cond,Path) :-

stack_push(N,AL,E,H,P), /* trans(branches) */

( (holds(Cond,[]), Path = search_log(N)) ;

findpath(search_log(N),Cond,Path)).

findpath(AL,E0,HO,Cond,Path) :-
reserveMemory (AL,E0,HO,SLog) ,
findpath(SLog,Cond,Path) .

findpath(search_log(N),Cond,Path) :-
firstbranch(N,AL,E,H,P),
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retract(branch(N,AL,E,H,P)),
contfindpath(branch(N,AL,E,H,P),Cond,Path).

/* pick a new number N and convert the search info into a search_log(N)
object */
reserveMemory (AL,E0,HO,search_log(1)) :-
\+ clause(memoryCounter(X),_),
asserta(memoryCounter (1)),
asserta(branch(1,AL,E0,HO, [EO,H0])).
reserveMemory (AL,E0,HO,search_log(N)) :-
clause (memoryCounter (X),_),
retract (memoryCounter (X)),
Nis X + 1,
asserta(memoryCounter(N)),
asserta(branch(N,AL,E0,HO, [E0,H0])) .

/* Condition meta_search(+E0,+H0,+LS,-Path)
It finds a path by searching from the initial configuration.

EO : the original history
HO : the initial history
LS : list of snapshots

Path : the path that will be found and returned by meta_search */

proc(rsearch(E,PauseCond,SimCond,Remainer),

pi(h0, [ ?(and(neg(E = remain(_,_,_,_)),
and (neg(E = rpath(_,_,_,_)),
hO = now))),

rsearch(E,h0, [h0] ,PauseCond,SimCond,Remainer)

]

/* for no subsitution on path assignment */
assignTo(E,E).

/* a version of rsearch that should not be called in the user program */

proc(rsearch(E0,HO,LS,PauseCond,SimCond ,Remainer) ,
pi([hO,al,branches,mypath],
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[ ?(and(h0 = now,
and(extactout ([hO|LS], [],al),
and (reserveMemory (al,E0,HO,branches),
findpath(branches,PauseCond,mypath))))),
if (mypath = search_log(_),
?7(assignTo(Remainer,remain(mypath,E0,HO,LS))),
else,
[ ?(tracePath(mypath,h0)),
if (PauseCond,
?(assignTo(Remainer,rpath(mypath,E0,H0,LS))),
else,
rsearch(rpath(mypath,E0,HO,LS) ,PauseCond,SimCond ,Remainer)

/* a version of rsearch to handle remain structure */
proc (rsearch(remain(search_log(N) ,E0,H0,LS) ,PauseCond,SimCond,Remainer),
pi(mypath,
[ ?(findpath(search_log(N) ,PauseCond,mypath)),
if (mypath = search_log(_),
?(assignTo(Remainer,remain(mypath,E0,HO0,LS))),
else,
if (PauseCond,
?(assignTo(Remainer,rpath(mypath,E0,H0,LS))),
else,
rsearch(rpath(mypath,E0,H0,LS) ,PauseCond,SimCond ,Remainer)

/* a version of rsearch to handle rpath structure */
proc(rsearch(rpath(Path,E0,H0,LS) ,PauseCond,SimCond,Remainer),

/* should not check PauseCond at here (pi.mypath = Path) */
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/* check if the path has been completed */
if(finalpathseg(Path),
if(some(chl, and(chl = now, posspath(Path,chl))),
?(Remainer = []),

else,
rsearch(E0,H0O,LS,PauseCond, SimCond,Remainer) /* replan */
),
/* try to do a path transition */
else,
pi([p,al,
[ ?(transpathseg(Path,p,a)),
if(a = sim(_),
[ ?(and(update_1s(LS),
SimCond)), /* wait for condition */
rsearch(rpath(p,E0,H0,LS) ,PauseCond,SimCond ,Remainer)
1,
else,
if (some(ch2, and(ch2 = now, posspath(Path,ch2))),
pi(1si,
[ execute_update(a,LS,1s1), /* perform action a */
rsearch(rpath(p,E0,H0,1s1) ,PauseCond,SimCond,Remainer)
]
),
else,
rsearch(E0,HO,LS,PauseCond,SimCond ,Remainer) /* replan */
)
)
]
)
)

/***************************************************************************

** Meta Planner and Executor (simple version) *k
S o K o K oK oK oK oK o K o K o K o K o o o o o o o ok o ok K o o s sk o K K sk sk oK oK oK K oK o Ko K K o KoK ook ok ook /
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mfindpath([],E,H,Cond, [E,H]) :- final(E,H).
mf indpath(AL,E,H,Cond, [1) :- holds(Cond,[]), !.
mfindpath([],E,H,Cond,P) :-
trans(E,H,E1,H1), mfindpath([],E1,H1,Cond,L),
(=10, p=10; P=[EHIL]D.

mfindpath([A|AL] ,E,H,Cond, [1) :- holds(Cond,[1), !.
mfindpath([inside(A) |AL] ,E,H,Cond,L) :-

prim_action(A), trans(E,H,E1,[A|H]), mfindpath(AL,E1,[A|H],Cond,L).
mfindpath([A|AL] ,E,H,Cond,L) :-

A \= inside(_), mfindpath(AL,E, [A|H],Cond,L).
mfindpath([A|AL] ,E,H,Cond,L) :-

trans (E,H,E1,H), mfindpath([A|AL],E1,H,Cond,L) .

proc(executepath(Path,E0,H0,LS,PCond,SCond,Status),
if (finalpathseg(Path),
if (some(chl, and(chl = now, posspath(Path,chl))),
?(Status = [1),
else,
?(Status = remain(E0,HO,LS))
),
else,
if (PCond,
?(assignTo(Status,rpath(Path,E0,H0,LS))),
else,
pi([lp,al,
[ ?(transpathseg(Path,p,a)),
if (some(ch2, and(ch2 = now, and(posspath(Path,ch2),
a = sim(_)))),
[ a, /*7?(and(update_1s(LS), SCond)),*/
executepath(p,E0,H0,LS,PCond,SCond,Status)
1,
else,
if (some(ch3, and(ch3 = now, posspath(Path,ch3))),
pi(1si,
[ execute_update(a,LS,1sl),
executepath(p,E0,H0,1s1,PCond,SCond,Status)
]
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),

else,
?(Status = remain(EO0,H0,LS))

proc (msearch(E,PCond,SCond,Status),
pi(h0, [ ?(and(neg(E = remain(_,_,_)),
and(neg(E = rpath(_,_,_,_)),
hO = now))),
msearch(E,h0, [],PCond,SCond,Status)

]

proc (msearch(E0,H0,LS,PCond,SCond,Status),
pi([mypath,h0,1s1,al],
[ ?(and(h0 = now,
and (addtail(HO,LS,1s1),
and (extactout ([h0|1s1],[],al),
and (mfindpath(al,E0,HO0,PCond,mypath),
tracePath(mypath,h0)))))),

if (mypath = [J, /* is this useless? */

?(Status = remain(EO,HO,LS)),
else,

if (PCond,
?(assignTo(Status,rpath(mypath,E0,H0,LS))),

else,
pi(ans,
[ executepath(mypath,E0,H0,LS,PCond,SCond,ans),
if(ans = remain(_,_,_),
pi(1s2,
[ ?(remain(E0,H0,1s2) = ans),
msearch(E0,H0,1s2,PCond,SCond,Status)
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),

else,
?(assignTo(Status,ans))

proc (msearch(remain(EO,HO0,LS) ,PCond,SCond,Status),
msearch(EO,H0,LS,PCond,SCond,Status)

).

proc (msearch(rpath(Path,E0,H0,LS) ,PCond,SCond,Status),
pi(ans,
[ executepath(Path,E0,H0,LS,PCond,SCond,ans),
if(ans = remain(_,_,_),
pi(1s2,
[ ?(remain(E0,H0,1s2) = ans),
msearch(E0,H0,1s2,PCond,SCond,Status)
]
),
else,
?(assignTo(Status,ans))
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Appendix F

Routines for TCP /IP

Communication for Indi(GGolog

/**************************************************************************

*ok *ok
**% ICP/IP Connection Routines for IndiGolog (April 17, 2000) *ok
*ok *ok

**************************************************************************/

:- use_module(library(tcp)).

/* init_tcpip (initialization) */
init_tcpip :-

prolog_flag(fileerrors,_,on),
prolog_flag(syntax_errors,_,error).

/* create_socket (+Host,+Port) */
/* It generates a socket for tcpip communication. x/
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create_socket (Host,Port) :-

/*
/*
/*
/*
/*
/*

tcp_create_listener (address(Port ,Host) ,PassiveSocket) .

accept_link */
It initializes the communication link to another socket if an */
acknowledgement has been sent from a connection. It initializes the  */
link by adding the clause connection(NAME,SOCKET) into the system */
database, where NAME is the name that represents the other end of the */
link, and SOCKET is the socket number. */

accept_link :-

/*
/*
/*

tcp_select (0, term(GuiSocket,GuiName)),
asserta(connection(GuiName,GuiSocket)),
write(’Accepted connection ’), write(GuiSocket),
write(’ from ’), write(GuiName), nl.

create_link (+Name,+Listener,+Host,+Port) */
Name is the name of the client, Listener is the name of the server, */
Host is the host name of the server, Port is the port number. */

create_link(Name,Listener ,Host,Port) :-

/*
/*

tcp_connect (address(Port ,Host) ,Socket),
asserta(connection(Listener,Socket)),
send_term_message (Listener ,Name),
write(’Created connection ’), write(Socket),
write(’ from ’), write(Listener), nl.

close_connections */
It closes all connections. */

close_connections :-

tcp_connected (Socket),
tcp_shutdown(Socket),
fail.

close_connections.

197



/* send_message (+GuiName , +Message)
/* It sends the input Message to the GUI GuiName.

send_message (GuiName ,Message) :-
connection(GuiName ,GuiSocket),
tcp_output_stream(GuiSocket,Stream),
format (Stream, ’~“w™n’, [Messagel),
flush_output (Stream) .

/* send_message (+GuiName , +Message)
/* It sends the message term(Message). to the GUI GuiName.

send_term_message (GuiName,Message) :-
connection(GuiName ,GuiSocket),
tcp_output_stream(GuiSocket,Stream),
format (Stream, ’term(“w)."n’, [Messagel),
flush_output (Stream) .

/* read_message (+GuiName ,-Message)
/* It reads a Message from the GUI GuiName.

read_message (GuiName,Message) :-
connection(GuiName,GuiSocket),
tcp_input_stream(GuiSocket,Stream),
read(Stream,Message) .

/* read_poll_message (-GuiName,-Message)

/* It reads a message from some connected link. The argument Message is
/* the obtained message and GuiName is where the message came from.

/* Notice that it is able to get the message only if the message was

/* sent in the format term(Message).

read_poll_message (GuiName,Message) :-

tcp_select (0, term(GuiSocket,Message)),
connection(GuiName,GuiSocket) .
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/* get_buf_message(-Sender,-Message)

/* It reads a Message from the Sender. If there is a message in the
/* buffer, it gets that message. If the buffer is empty, it gets a
/* message from the socket.

get_buf_message(Sender,Message) :-

clause (message_buffer(Sender,Message),_),

P

retract (message_buffer(Sender ,Message)) .
get_buf_message(Sender,Message) :-

read_poll_message(Sender,Message) .

/* peek_buf_message(-Sender,-Message)
/* It reads a Message from Sender and then leaves the message in the
/* buffer.

peek_buf_message(Sender,Message) :-
clause (message_buffer(Sender,Message),_ ), !.

peek_buf_message (Sender ,Message) :-—

read_poll_message (Sender,Message),
assertz(message_buffer(Sender,Message)) .

/* no_buf_message
/* It checks if there is a message for read.

no_buf_message :- \+ peek_buf_message(Sender,Message).
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Appendix G

Graphical User Interface for

Shipment Delivery

import java.io.*;
import java.net.x*;

/****************************************************************************

* Class Connector *
* It provides facilities for the GUI to send and receive messages from the *
* IndiGolog control through a tcpip communication link. *
* Written by Ho Ng (March 29, 2000) *

s ks o o ok ok K ok 3K o o o o ok K 3k o o o o ok sk o o o o ok o o o o kK o o o ok sk ko o o o sk sk ok o o ok sk ok ok e ok ok sk ok ok ok ke k ok ok ok o ok /
public class Connector

{
private String linkName; // name of the communication link
private String hostName; // name of the host
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private int portNum; // port number

private Socket sckt;
private PrintWriter output;
private BufferedReader input;
private boolean connected;
/*x

* Constructor of class Connector
*/

public Connector(String name, String host, int port) {

linkName = new String(name);
hostName = new String(host);
portNum = port;
connected = false;
X
/**
* It sends the input message to the IndiGolog control
* Pre : connectedToIndi() == true
*/

public void sendMessage(String message) {
output.println("term(" + message + ").");

}

VA
* It reads a message from the IndiGolog control. If there is no
* incoming message, then it will return nil
* Pre : connectedToIndi() == true
*/
public String receiveMessage() {
String message = null;

try {
/* check if there is any message from the IndiGolog control */

message = input.readLine();

/* remove "term(" and ")" */
message = message.substring(5,message.length()-2);

201



}
catch (IOException e) {
System.err.println("Could not read message from socket");

}

return message;

VAL

* It creates a communication link to the IndiGolog control. Notice that
* it will send its name as an acknowledgement to the IndiGolog control
* after the connection is created successfully

* Pre : connectedToIndi() == false
*/
public void comnectToIndi() {

try {

/* establish the connection to the IndiGolog program */

sckt = new Socket(hostName, portNum);
input = new BufferedReader (new InputStreamReader (sckt.getInputStream()));
output = new PrintWriter(sckt.getOutputStream(), true);

connected = true;

/* acknowledge the IndiGolog control */
sendMessage (1inkName.toLowerCase()) ;
}
catch (IOException e) {
System.err.println("Failed to create the I/0 stream");
}
catch (NullPointerException e) {
System.err.println("Could not establish the connection");

}
X
/**
* It closes the communication link to the IndiGolog control
* Pre : connectedToIndi() == true
*/
public void discomnectFromIndi() {
try {
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/* close the connection */
input.close();
output.close();
sckt.close();
connected = false;
}
catch (IOException e) {
System.err.println("Could not close the connection");

}

/**
* It returns true if the communication link to the IndiGolog control
* has been established
*/
public boolean connectedToIndi() {
return connected;

}

VAL
* A dumb test program
*/
public static void main(String[] s) {
Connector x = new Connector("test", s[0],
Integer.valueOf (s[1]).intValue());
x.connectToIndi();
if (x.connectedToIndi() == true) {
System.out.println("Connected to IndiGolog control");
x.disconnectFromIndi();
}
else
System.out.println("Unable to establish the connection");
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** Class Connector

** It provides the facilities for a client to generate the connection for
** sending and receiving messages from ConGolog/Indigolog interpreter.

s sk sk s s ok ok sk sk sk s s ke ke sk sk sk s s s s ke sk sk s s ke ke sk s s s ke ke sk sk s s ke sk sk s s ke ke sk sk sk e ek sk sk s s e sk skssk e s e kok /

import java.awt.x*;
import java.io.x;
import java.awt.event.x;
import java.net.x*;

class OrderConnector extends Thread

{
private Socket sckt; // socket for communication
private BufferedReader in; // input stream descriptor
private PrintWriter out; // output stream descriptor
private boolean connected;
private String hostName; // host name of the robot
private int portNum; // port number of the robot
private String userName;

private ClientInterface uinf;

private boolean msgToSend;
private String message;

VAL

* Constructor of class Connector

* Input : host - host name of the robot control (interpreter)

* port - port number of the robot control (interpreter)
name - name of the client

*/

public OrderConnector(String name, String host, int port)
{
hostName = new String(host);
portNum = port;
new String(name.toLowerCase());
null;

userName

uinf
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sckt = null;
in = null;
out = null;
connected = false;
msgToSend = false;
message = null;

}

/%%

* Purpose : It stores the link for refering the textual user interface
* Pre : inter != null

*/

public void setInterface(ClientInterface myInterface)

{

uinf = myInterface;

}
VAL
* Purpose : It shuts down the connection
*/
public void shutdown()
{
connected = false;
X
/**
* Purpose : It stores a message in its buffer
* Pre : outMessage != null
*/
public void writeMessage(String outMessage)
{
message = outlMessage;
msgToSend = true;
}
VAL

* Purpose : It sends the message that is in the buffer to the
* control (indigolog program)
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*/
public void sendMessage() throws InterruptedException, I0Exception

{

String incomingMsg = null;

if (connected)
{

try

{
/* send the message */
out.println("term(" + message + ").");
//sckt.setSoTimeout (0) ;

msgToSend = false;

}
catch (InterruptedException e)
{
}
catch (IOException e)
{
}
}
}
VA
* It creates a communication link to the IndiGolog control. Notice that
* it will send its name as an acknowledgement to the IndiGolog control
* after the connection is created successfully
* Pre : connectedToIndi() == false
*/
public void connectToIndi()
{
try
{
/* establish the connection to the IndiGolog program */
sckt = new Socket (hostName, portNum);
in = new BufferedReader(new InputStreamReader (sckt.getInputStrea
m()));
out = new PrintWriter(sckt.getOutputStream(), true);

connected = true;
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/* acknowledge the IndiGolog control by send the name */
/* of the user */

writeMessage (userName) ;

sendMessage () ;

}
catch (IOException e)
{
System.err.println("Failed to create the I/0 stream");
}
catch (NullPointerException e)
{
System.err.println("Could not establish the connection");
}
}
[ **
* It closes the communication link to the IndiGolog control
* Pre : connectedToIndi() == true
*/
public void disconnectFromIndi()
{
try
{

/* close the connection */
input.close();
output.close();
sckt.close();

connected = false;

}
catch (IOException e)
{
System.err.println("Could not close the connection");
}
}
VAL
* Purpose : Thread that listens to the socket
*/

public void run()
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String incomingMsg = null;
String suspendMsg = "term(notifyStopServing(" + userName + ")).";
long delay = 50;

/* try to connect to the control */
connectToIndi();

/* loop to receive and send messages */
while (connected)

{
try
{
/* check if some messages to send */
if (msgToSend)
sendMessage () ;
/* check if some messages to read */
sckt.setSoTimeout (50) ;
incomingMsg = in.readLine();
if (incomingMsg != null)
uinf.parseMessage (incomingMsg) ;
}
catch (InterruptedException e)
{
// it is fine in this case
}
catch (InterruptedI0OException e)
{
// it is fine in this case
}
catch (IOException e)
{
System.err.println("Connector: Fail to read from/write to socket");
System.exit (1);
}
/* delay for a few seconds */
try
{
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sleep(delay);
}
catch (InterruptedException e)
{
}

/* close all I/0 streams and the socket */
disconnectFromIndi();

}

[/ttt oke ks ok ko ok sk ok sk ks ke ks kst ke ks sk ke ks ke ks ks s sk stk sk sk sk sk sk sk ks ks s ks ke sk s ks ke ko
Program : OrderGUI

A graphical user interface for a client to communicate with the shipment
delivery robot system.

Written by: Ho Ng (March 29, 2000)

To compile this program, use the command:
javac OrderGUI.java

To run the this program when the indigolog control program is running,
use the command:

¥ O X K K X X X X X ¥ X ¥ ¥ * *

java OrderGUI <client> <indi_host> <indi_port>
sk ke ke o o sk sk ok o s o sk sk sk ok ok e s ok sk sk sk ok ek s s sk sk sk sk ok sk ok o s s sk sk sk sk sk ek ok e sk s ok sk sk sk sk ok ks s sk ok sk sk sk sk ke ke k sk sk ok ok sk ke ok /

import java.awt.x*;
import java.awt.event.*;
import java.io.*;
import java.net.x*;
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import javax.swing.*;

/* the structure of each input message */
class InputMessage

{
public
public
public
public
public
};

String command = new String("");
String robot = new String("");
String shipmentNo = new String("");
String sender = new String("");
String recipient = new String("");

/* the structure of each shipment record */

class Order

{

public
public
public
public
};
VAL

Status

String num = new String("");

String from

new String("");

String to = new String("");

String state

* Class OrderGUI

*/
public clas
{

private

/* name
private

private
private
private
private
private

s OrderGUI extends Thread
int TOTALRECORDS = 4;

s of the clients */
String[] client = {"grad",

String username;
OrderGUIFrame frame;
Connector connector;
OrderStatus[] record;
int total;
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// maximum number of records

"graph", "inout", Ilrefll’ "store"};

// name of the user

// link to the java frame
// link to the robot system
// shipment records

// numbers of records



/**

* A function for blocking the execution of the thread for a specific
* amount of time

* @param time time in seconds

*/
private void longWait(int time)
{
try {
sleep((long)time) ;
}

catch (InterruptedException e) {
// do nothing
}

VAL

* Constructor of class OrderGUI

* @param name name of the user

* @param host host’s name of the robot system
* Qparam port port number of the robot system

*/
public OrderGUI(String name, String host, int port)
{
/* initialize all member variables */
username = new String(name.toLowerCase());
frame = new OrderGUIFrame("Ordering System", name, this);

connector = new Connector(name, host, port);

record new OrderStatus[TOTALRECORDS] ;

for (int i = 0; i < TOTALRECORDS; i++)
record[i] = new OrderStatus();

total = 0;

/* establish the connection to robot system */
connector.connectToIndi();

if (connector.connectedToIndi() == true) {
System.out.println("Connected to IndiGolog control");
start();

}

else {

System.out.println("Unable to establish the connection");
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//start();

VAL

* Update the information of a row on the table

* Q@param row the row number (0 - total-1)

*/

public void updateFrameTable(int row) {
frame.setEntryText (row, 0, record[row].num);
frame.setEntryText (row, 1, record[row].from) ;
frame.setEntryText (row, 2, record[row].to);
frame.setEntryText (row, 3, record[row].state);

VAL
* It analyzes the input button event and performs the corresponding
* reaction
* QOparam button the name of the button
*/
public void handleButtonEvent (String button) {
/* user pressed the exit buttion (open/close the comnnection) */
if (button.equals("exit") == true) {
if (connector.connectedToIndi() == true) {
connector.disconnectFromIndi () ;

}
else {
connector.connectToIndi();
if (connector.connectedToIndi() == true) {
System.out.println("Connected to IndiGolog control");
start();
}
}
return;
}
/* if there is no connection, do nothing */
if (connector.connectedToIndi() == false) {
System.out.println("Not connected to IndiGolog control");
return;
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/* user pressed one of the ordering buttons */
System.out.println("button : " + button + " " + username + " " + total);
record[total] .from new String(username);

record[total].to new String(button) ;

record[total] .state = new String("requested");

String message = "order(" + username + "," + button + ")";
connector.sendMessage (message) ;

updateFrameTable(total);

total++;

System.out.println("To indi : " + message);

VAL
* Parse the input message and save the information in output
* The input message should be in the form :
* <type>(<robot>,<sno>,<sender>,<recipient>)
* Q@param input input message
* Q@param output an InputMessage structure for holding the parsed message
*/
public boolean parselnputMessage(String input, InputMessage output) {
int posl = input.index0f(’(’);
if (posl == -1)
return false;
output.command = input.substring(0, posl);

int pos2 = input.index0f(’,’, posli+l);
if (pos2 == -1)
return false;
output.robot = input.substring(posi+l, pos2);

int pos3 = input.index0f(’,’, pos2+1);
if (pos3 == -1)
return false;
output.shipmentNo = input.substring(pos2+1, pos3);

int pos4 = input.index0f(’,’, pos3+1);
if (posé4 == -1)
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return false;
output.sender = input.substring(pos3+1, pos4);

int posb = input.index0f(’)’, posd+1);
if (posb == -1)
return false;
output.recipient = input.substring(pos4+1, posb5);

return true;

VAL
* It analyzes the input message and performs the corresponding reaction

* Q@param message an input message

*/
public void handleInputMessage(String message)
{
if (message == null)
return;
System.out.println("From Indi : " + message);

/* parse the input message */

InputMessage tokens = new InputMessage() ;

if (parseInputMessage(message, tokens) == false)
return;

/* follow the instruction of the message */

if (tokens.command.equals("ackShipment") == true) {
for (int j = 0; j < total; j++) {
if ((record[j].from.equals(tokens.sender) == true) &&
(record[j] .to.equals(tokens.recipient) == true) &&
(record[j] .state.equals("requested") == true)) {
record[j].num = new String(tokens.shipmentNo) ;
record[j].state = new String("serving by " + tokens.robot);
updateFrameTable(j) ;
return;
}
}
}
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else if (tokens.command.equals("rejectShipment") == true) {
for (int j = 0; j < total; j++) {
if ((record[j].from.equals(tokens.sender) == true) &&
(record[j].to.equals(tokens.recipient) == true) &&
(record[j] .state.equals("requested") == true)) {
record[j].state = new String("rejected");

updateFrameTable(j);
return;
}
}
}
else if (tokens.command.equals("shipmentDelivered") == true) {
for (int j = 0; j < total; j++) {
if ((record[j].num.equals(tokens.shipmentNo) == true) &&
(record[j] .from.equals(tokens.sender) == true) &&
(record[j] .to.equals(tokens.recipient) == true)) {
record[j].state = new String("delivered");
updateFrameTable(j);
return;
}
}
}
}
/*x

* A thread for receiving messages from the IndiGolog program during
* the execution of the whole application
*/
public void run() {
String message;

while (connector.connectedToIndi() == true) {
/* try to get the next message */
message = connector.receiveMessage();
handleInputMessage (message) ;

/* wait for a while before accepting the next message */
longWait (10);
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VAL
* Main function
*/
public static void main(String[] s)
{
if (s.length != 3) {
System.out.println("Usage: java OrderGUI <client> <host> <port>");
return;

OrderGUI control = new OrderGUI(s[0], s[i],
Integer.valueOf (s[2]).intValue());

import java.awt.*;
import java.awt.event.*;
import java.io.x*;

import javax.swing.*;

/****************************************************************************

* Class OrderGUIFrame *
* A graphical user panel of the IndiGolog shipment delivery robot control. *
* Written by Ho Ng (March 29, 2000) *

s ks s o o ok ok sk sk oo s ok ok sk sk sk oo s o sk sk s ok o sk sk o s o o sk sk skl s ok ok sk skl s s ok sk sk sk s o sk sk s o s ok sk s sk ke ok kesk ok sk ke k /
public class OrderGUIFrame extends JFrame implements ActionListener
{
final int TOTALROWS
final int TOTALCOLS

4;
4,

private String[] columnNames = {"Shipment #", "Sender", "Recipient",
"Status"};
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private String[] buttonText = {'grad", "graph", "inout", "ref", "store",

"exit"};
private JPanel upanel, dpanel;
private JLabel label;
private String[][] entry;
private JTable table;

private JScrollPane scrollPane;
private JButton[] button = new JButton[buttonText.length];

private OrderGUI handler;

VAL

* Constructor of class OrderGUIFrame

*/

public OrderGUIFrame (String title, String username, 0OrderGUI gui) {
super (title);

handler = gui;

// upper panel

upanel = new JPanel();

upanel.setOpaque(true);

upanel.setPreferredSize(new Dimension(500,30));
label = new JLabel(username + "’s control panel");
label.setOpaque(true) ;

label.setHorizontalAlignment (SwingConstants.CENTER) ;
upanel.add(label);

// middle panel

entry = new String[TOTALROWS] [];

for (int i = 0; i < TOTALROWS; i++)
entry[i] = new String[TOTALCOLS];

table = new JTable(entry, columnNames) ;
table.setPreferredScrollableViewportSize (new Dimension (500, 70));

scrollPane = new JScrollPane(table);

// lower panel
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dpanel = new JPanel();

dpanel.setLayout (new GridLayout (0,buttonText.length,0,0));
dpanel.setOpaque (true) ;

dpanel .setPreferredSize (new Dimension(500,50));

for (int i = 0; i < buttonText.length; i++) {
button[i] = new JButton(buttonText[i]);
button[i] .setActionCommand (buttonText[i]);
button[i] .addActionListener (this);
dpanel.add(button[i]);

// add all panels to the frame
getContentPane() .add (upanel, BorderLayout.NORTH);
getContentPane() .add(scrollPane, BorderLayout.CENTER) ;
getContentPane () .add(dpanel, BorderLayout.SOUTH) ;

// make it visible
pack();
setVisible(true);

// dumb code to display something on screen
/*

table.setValueAt("1", 0, 0);
table.setValueAt("grad", 0, 1);
table.setValueAt ("reference", 0, 2);
table.setValueAt("serving by rbi",0,3);
table.setValueAt("2", 1, 0);
table.setValueAt("grad", 1, 1);
table.setValueAt("graphics", 1, 2);
table.setValueAt ("requested",1, 3);

*/

/**

* Set the text of a cell on the table

*/

public void setEntryText(int row, int col, String text) {
table.setValueAt (text, row, col);

}
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VAL

* It is the button event handler

*/

public void actionPerformed(ActionEvent e) {
handler.handleButtonEvent (e.getActionCommand()) ;

}
[ **
* A simple test driver
*/
public static void main(String[] s) {
OrderGUIFrame frame = new OrderGUIFrame("Ordering System", "test", null);
}

};
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