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Abstract 

 
Guiding the spacecraft docking process requires the 

use of sensors that estimate the relative position of the 
two vessels. This task is complicated by the widely 
variable on-orbit illumination. To combat this, 
controllable docking cameras are augmented by 
computer-controlled illuminants. But how should these 
illumination and capture parameters be controlled and 
how should the images obtained under different 
conditions be combined in order to estimate the 
relative pose of the vessels? We address these issues in 
the “Lights and Camera” system. Images captured 
with the same camera and scene geometry but under 
different lighting conditions are merged, and the 
resulting edges are used to estimate the target’s pose. 
A high level controller monitors the imaging process 
and determines the set of images to capture and use for 
pose estimation. This paper describes the “Lights and 
Camera” system architecture and initial results of its 
operation on mockups of space hardware. 
 
 
1. Introduction 
 

Rendezvous and docking are key requirements for 
assembling, retrieving, refueling, and repairing 
spacecraft, such as satellites, space shuttles, large space 
platforms, and even space stations (see Figure 1). 
Although spacecraft rendezvous and docking routinely 
occurs with humans “in the loop”, more autonomous 
operation is desired. Achieving “soft” docking with the 
target (the uncontrollable part, such as a docking 
platform) requires precise control of the relative 
velocity of the chaser (the vehicle whose movement is 
controlled). As a result, an essential requirement for 
autonomous docking is adequate sensing of the relative 

position and orientation between the docking 
spacecraft. 

Vision systems that support docking craft in space 
are faced with the highly variable lighting conditions 
associated with the outer space environment (see [10]). 
To overcome unfavorable natural illumination, the 
camera is often accompanied by one or more (typically 
fixed) light sources that can be controlled, and the 
camera itself has controllable image capture 
parameters. The task of the human operator or software 
agent is to manipulate the light conditions and camera 
parameters to appropriately illuminate and capture 
portions of the scene that are critical to the task at 
hand. 

To adequately capture the entire scene in one 
acquisition is often impossible. What is possible, 
however, is to capture images under different 
illumination and camera conditions (see Figure 2) and 
then to process these images together in a meaningful 
way. During the final phases of space docking, the 
spacecraft rate of approach is extremely low. As a 
result the scene can be treated as being essentially 
static over a small temporal window. Thus multiple 
images with the same image geometry, but captured 
under different lighting conditions are available in 
order to localize the target precisely. For the multiple 
images to enhance the information available over a 
single image, not only must the different illumination 
and image capture conditions be chosen in some 
intelligent manner, but also an effective process is 
required to merge information from these images. 

Given that the spacecraft docking system can collect 
multiple images of the scene with the same geometry, 
how difficult is the task of determining the appropriate 
set of images to use to localize the docking target? 
Suppose that the system is capable of controlling three 
illuminates each with eight possible illumination 
settings, and that the image acquisition system has 15 



possible capture setting (this describes our testbed 
system, operational systems have even higher degrees 
of freedom). Taking into account sets of images rather 
than single images, the search space size for the task is 
of size 28x8x8x15-1 = 27680-1>102311. An exhaustive 
search of the space is impractical and there is clearly a 
need for an intelligent parameter selection scheme that 
accumulates and exploits knowledge about which 
combinations of settings may be beneficial in the 
current conditions. The development of such a system 
is the primary goal of the research presented here. 

This paper describes the “Lights and Camera” 
control system that addresses the task of estimating 
spacecraft pose with controllable illumination and 
camera parameters. A knowledge-based intelligent 
controller guides the image acquisition process and 
selects light configurations. A multi-channel edge 
detector robustly extracts edge features that are 
statistically significant over the collection of images of 
the target, and the final pose estimate is produced from 
a line-based model-matching genetic algorithm. 

The rest of the paper is organized as follows. 
Section 2 discusses related work on knowledge-based 
control of vision and robotics. Section 3 describes the 
architecture of the “Lights and Camera” system and its 
main image processing and control components. 
Experimental results and a sample run of the system 
are presented in Section 4. Section 5 concludes the 
paper and outlines directions for future work. 
 
2. Related work 
 

A number of different approaches to adaptive and 
knowledge driven operation of vision systems have 
been proposed in the literature. Shekhar et al. [20] 
package basic image processing algorithms into 
multilayer “smart” modules that encapsulate 

knowledge of how to run the associated algorithm, 
evaluate its results, and tune its parameters. First, 
vision tasks are decomposed into a hierarchical plan. 
Rules expressing possible approaches, constraints, 
parameter adjustment, and failure handling are then 
used to complete the plan. Automatically solving a 
specific problem entails the selection, ordering, and 
deployment of vision modules, and the tuning of their 
parameters on training images. 

Robertson [17] uses the concept of procedural 
reflection to allow monitoring and modification of the 
computational state of an image processing filter. The 
adaptive operation of the vision system, incorporating 
the adaptable filters, is comparable to the control of a 
closed-loop system. 

Shanahan [18][19] describes an Event Calculus-
based active vision framework that incorporates 
feedback and expectation, linking low-level sensing 
and high-level reasoning. In this framework, an agent 
generates hypotheses about possible explanations of 
vision sensor data and selects an action – such as 
tuning a vision parameter or manipulating a robotic 
arm – that is expected to disambiguate among these 
hypotheses. 

Among recent work on knowledge-driven robotic 
agents is the development of executive control systems 
based on Intelligent Distributed Execution 
Architecture, IDEA. The basic hypothesis of IDEA is 
that a large control system, such as that for a rover [8] 
or a rescue robot [4], can be structured as collection of 
interacting agents, each with the same fundamental 
structure, implemented for example in an agent 
language such as the concurrent temporal version of 
Golog [16]. 

The Intelligent Controller we use in the “Lights and 
Camera” system is an extension of the controller 
described in [1] and is implemented using the high-
level model-based agent programming language 
IndiGolog [6][13], an extension of ConGolog [5] and 
Golog [14]. In IndiGolog, the programmer provides a 
declarative specification of the domain − actions and 
their preconditions and effects on fluents, i.e. the 

 
Figure 1. Spacecraft docking: a simulation 

of the overall task (courtesy of 
MacDonald, Dettwiler and Associates Ltd., 

www.mdacorporation.com). 

Figure 2. Views of the Dexterous Handling 
Target and Micro Fixture under various 
illumination conditions. Pose estimates 

computed from these images are used to 
capture the fixture autonomously. 



dynamic aspects of the state − and develops complex 
control programs in terms of these. IndiGolog supports 
both planning and high-level reactivity, in contrast to 
classical planners on the one hand and purely reactive 
architectures on the other. Agents written in IndiGolog 
are capable of sensing the (changing) environment and 
communicating with other agents or software modules, 
as opposed to expert system shells. The IndiGolog 
interpreter that we use in the project is implemented in 
Quintus Prolog and SWI Prolog. 

For the space docking application, the arguments in 
favour of using IndiGolog are mainly related to 
software engineering. For an agent to be able to reason 
about the perceived world and the vision system, it 
must keep track of all of the relevant aspects (states) of 
the environment and of the vision modules. 
Programming languages such as C, C++, or Java do 
not require the designer to specify system states and 
their  dynamics explicitly. As a result, they are not 
particularly suitable for the design of such intelligent 
controllers. In contrast, IndiGolog provides a 
transparent and scalable framework that encourages 
declarative description of a domain and automatically 
reasons about state updates. In addition, it supports the 
agent’s ability to interact with other modules and sense 
the environment. 
 
3. The Lights and Camera system 
 

The Lights and Camera system consists of the three 
primary components: the Image Server, the Vision 
Server, and the high-level Intelligent Controller (see 
Figure 3). The Image Server operates a digital camera 
and associated lights, providing control over 
parameters such as light intensities, camera aperture, 
shutter speed, and focal length. The Vision Server 
encapsulates the image processing pipeline consisting 
of multi-channel edge detection, edge linking, and 
model matching for pose estimation. The Intelligent 
Controller manages the image acquisition process. 
(The individual stages are described in detail below.) 

As long as the static scene assumption holds, the 
following feedback loop operates. Following a request 
from the Controller to capture a new image under a 
specific set of light and camera parameters, the Vision 
Server queries the Image Server for the corresponding 
image. The new image is captured and added to the 
existing collection of images taken under different 
illumination conditions and camera parameters. The 
Vision Server updates the composite edge map based 
on the current image set and estimates the pose of the 
target. The uncertainty of the current result, measured 
using the RMS error in the model matching stage, is 
then sent to the Controller, closing the feedback loop. 

The Controller module then determines whether the 
current image should be kept or discarded from the 
image set and generates a new set of image capture 
parameters for the next iteration. The Controller 
terminates this process when the target’s pose estimate 
error falls below a predefined threshold. At any time 
during the operation, the system maintains its current 
best estimate of the target’s position. 
 
3.1. The vision server 
 

This section describes the three components of the 
vision processing pipeline; edge detection, edge 
linking, and model-based pose estimation. 
 
3.1.1. Multi-channel edge detection 
 

The multi-channel edge detection algorithm [21] is 
an extension of the single-channel Canny edge detector 
[3] to operate on multiple input images (channels). 
Figure 4 provides a sketch of the approach. Input 
images are first processed in separate channels (one 
image per channel) to obtain individual gradient maps. 
In a local neighborhood centered at each pixel position, 
the local gradient orientation samples (weighted by the 
corresponding gradient magnitudes) are modeled as a 
two-component mixture of Gaussian’s in which the 
inliers (the normal gradient samples corresponding to 
the local edge structure) are modeled by the main 
Gaussian distribution and the outliers (gradients 
corresponding to shadow edges and other random 
noise) is modeled by the background Gaussian 
distribution. A scheme based on Expectation 
Maximization (EM) algorithm [7] is used to 
decompose the mixture model, and to identify and 
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architecture. 



separate the outliers from the inliers. The gradient of 
the local edge structure is estimated from the 
distribution of the inliers: its orientation is the mean of 
the main Gaussian distribution, and its magnitude is 
defined as the proportion of all the sample magnitudes 
that are associated with the main distribution. A 
composite gradient map corresponding to the 
underlying edge structure is then constructed from the 
merged local gradient estimates. This “edgel map” is 
computed from the integrated gradient map using the 
post-processing techniques of the Canny edge detector 
[3]. 
 
3.1.2. Edge linking 
 

An edge linking algorithm based on [12] is used to 
link the multi-channel edgels and group them into edge 
lists. A top-down polyline splitting algorithm [15] is 
then used to recursively fit line segments to each edge 
list. The algorithm takes as input the linked edgels. The 
line segment that approximates the edge list and joins 
the first and last edge points (x1,y1) and (x2,y2) is given 
by x(y1-y2)+y(x2-x1)+y2x1-y1x2=0. The distance of each 
edgel in the edge list from this line segment is 

computed, and this is used to compute the normalized 
maximum error e for the set of edgels: e=maxi|di|/D, 
where D is the distance between the end points of the 
line segment and di is the distance between the line 
segments and the i-th edgel in the edge list. This error 
is used to estimate the goodness of fit of the line 
segment to the edgel list. If the maximum error 
exceeds a pre-defined threshold value, a new vertex is 
inserted at the point in the list that is farthest away 
from the line, and the line segment is split into two 
new segments. This algorithm is applied recursively to 
each of these line segments, terminating when the 
normalized maximum error for all edge points in the 
list falls below a specified threshold value. After all 
edge lists have been fitted with segments, the edge 
linking module creates a list of edges that approximate 
the original edgel map (Figure 5). 
 
3.1.3. Pose estimation 
 

A genetic algorithm [9] is used to handle the feature 
correspondence and pose determination 
simultaneously. The approach is similar to that 
undertaken by Kawaguchi [11] in that line features are 

 

Figure 4. Outline of the multi-channel edge detection algorithm. 



used to match the model to the image. Here the 3D 
model is back-projected into the view space using a 
perspective projection. The fitness function 
incorporates angle and line end-point distance 
differences. Our approach determines the pose of an 
object from partial line features taken from an image. 

Each of the six pose parameters (Rx, Ry, Rz, Tx, Ty, 
Tz) is encoded in 8 bits. The range of values for each 
parameter is based upon an initial seed pose. The 
rotation parameters are ±25 degree’s and translation 
parameters are ±40 pixels. The initial population is 
seeded from a random uniform distribution over the 
entire solution set. For each generation, the fitness of 
each element of the population is computed and this is 
used to determine the members of the next generation. 
The fitness function is the sum of two metrics; the 
angle difference between model lines and image lines 
squared and the distance of image line end points and 
model lines squared. The best-fit image line is matched 
to each model line.The top five percent of the 
individuals are passed onto the next generation 
unchanged. The remaining members of the next 
generation are generated from the top 30 percent 
elements of the current generation. Two individuals are 
randomly chosen from the top 30 percent to create a 
new individual. A crossover point is chosen and 
material from the two parents is used to form this new 
individual by choosing one portion from one parent 
and the remainder from the second parent. One bit of 
this individual is then mutated. If the resulting 
individual is unique, then it is added to the population. 
The genetic algorithm operates for a fixed number of 
generations. The output from the algorithm is the 
solution corresponding to the individual with the best 
fitness. 

The algorithm typically converges to a stable set of 
values within 10 generations with a population size of 

200 individuals. The computational cost increases with  
the number of generations and larger population sizes. 
A number of trials were conducted with varying 
populations sizes and number of generations. The 
value of 200 individuals was chosen as a compromise 
between accuracy and speed. Figure 6 shows an input 
polyline representation and the resulting model-
polyline match. 
 
3.2. High-level Controller 
 

To obtain a precise pose of the target, the high-level 
controller manages the image acquisition process and 
determines the set of input images for the multi-
channel vision processing pipeline. This optimization 
task is complicated by the size of the search space and 
the complexity of the effects that changes in system 
parameters produce on the pose estimate. 

The Intelligent Controller maintains qualitative 
representations of system states, e.g. “low lighting 
coming evenly from all the three light sources”, in 
essence discretizing along the “light brightness” and 
“light directionality” dimensions. These qualitative 
representations permit reasoning about the similarity of 
image acquisition states and, consequently, the 
similarity of images taken under corresponding states. 
Moreover, this allows human domain knowledge to be 
expressed in a natural way and reduces the search 
effort required for image capture settings. Based on the 

 
(a) 

 
(b) 

Figure 5. (a) Multi-channel edge map of a 
Hubble Space Telescope Latch. (b) Its 

polyline approximation. 

 
(a) 

 
(b) 

Figure 6. (a) Multi-channel polyline data for 
a textured cube. (b) The resulting model 

match data overlaid on (a). 



described classification of images and system states, 
the Controller employs a greedy heuristic search for 
next system parameters, based on the likelihood of a 
set of images to share common information (see [1][2] 
for more details). 

The high-level control procedure for image 
acquisition and merging is as follows. At the first step 
of the algorithm, the settings for the initial image are 
picked randomly. The agent then iteratively chooses 
light intensity settings for the next image acquisition, 
seeking images that are expected to contribute 
additional information with respect to the existing 
image set and merit function. 

If the merit function does not increase sufficiently 
due to the newly added image, the image is marked to 
be discarded, the parameters under which it was taken 
are marked as unfavorable, and the search for a new 
addition to the set is initiated. When searching for the 
best additional image, the controller restricts its choice 
to the images that are not similar either to the current 
set of images or to the images discarded at earlier 
steps. Augmenting the composite continues until a 
maximum number of iterations have been performed or 
the merit function reaches a predetermined level. 
 
4. Sample run and experimental results 
 

Figures 7 and 8 illustrate a sample run of the Lights 
and Camera system for a cubical mockup target. The 
initial image capture parameters are chosen randomly 
and an initial estimate is calculated. At each iteration, 
the Controller obtains a new image, evaluates the effect 
of its addition on the quality of pose estimate, and thus 
determines if this image should be included in the set 
of images for future processing. In this example, after 
six iterations the match error measure falls below the 
preset threshold and the system outputs the final pose 
of the target. Four images were combined to produce 

this final estimate. Figure 8 shows the dynamics of the 
size of the current image set maintained by the system 
as well as the quality of match produced by the pose 
estimation module for each of the image sets. 

Running times excluding the image capture time 
averaged 1480 seconds for the current control system. 
Additional experimentation was carried out with the 
same cubical target to compare the performance of our 
heuristic control approach and basic control 
approaches. The results in terms of average running 
times over 5 runs are given in Figure 9. Here the 
“simple” controller acquires and merges images under 
randomly selected settings. The “greedy” controller 
acquires and merges images in a similar fashion, then 
evaluates system performance, and discards the last 
image from the image set if the error does not decrease. 
The “heuristic” controller performs a greedy search for 
“not similar” settings and is the one described earlier in 
the paper. The same error threshold was used for all 
three controller types. As seen from Figure 9, 
discarding images that do not provide an immediate 
increase of the quality of match improves convergence, 
as does using a heuristic search for image acquisition 
settings. 
 
5. Conclusions and future work 
 

Complex vision tasks – such as automating 
spacecraft docking – require solutions to a wide variety 
of image processing problems, from camera calibration 
to edge detection to high level system control. In the 
Lights and Camera system, the high level knowledge-
based controller, implemented in the model-based 
agent programming language IndiGolog, controls 
image acquisition and multiple image processing in the 
system in order to best estimate the relative pose of the 
camera with respect to a modeled object. 

      
(a) (b) (c) (d) (e) (f) 

      
{a} {a, b} {a, b, c} {a, b, d} {a, b, e} {a, b, e, f} 

Figure 7. The images acquired (top row) and the model matching result and edges 
recovered (bottom row) during the six iterations of the sample run. Images (a), (b), (e) 

and (f) were selected by the Controller for the final pose estimation. 



The system has been tested on a number of targets 
in a laboratory-based setting. In the future we plan to 
test the system in a more realistic space simulation on 
earth and to incorporate the pose estimates obtained by 
the system within a complete docking control system. 

Ongoing developments include a system 
configuration that provides a line-by-line evaluation of 
the performance of pose estimation stage. Based on 
this detailed error metric, the high-level controller will 
employ more precise, shape-dependent image 
acquisition and processing strategies. 

The process of computing pose from the set of 
available input images is quite complex involving a 
number of different phases from multi-channel edgel 
detection, through edge linking and genetic algorithm-
based model matching. Each of these modules 
incorporates tunable parameters. Planned future work 
includes incorporating parameter tuning mechanisms 
within the controller to provide intelligent selection 
and control of the various parameters that are available. 
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Figure 8. Sample run of the “Lights and 
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control loop, the number of images used 

in processing is given. 
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