
Online Situation-Determined Agents and their Supervision

Bita Banihashemi
York University

Toronto, ON, Canada
bita@cse.yorku.ca

Giuseppe De Giacomo
Sapienza Università di Roma

Roma, Italy
degiacomo@dis.uniroma1.it

Yves Lespérance
York University
Toronto, Canada

lesperan@cse.yorku.ca

Abstract

Agent supervision is a form of control/customization where
a supervisor restricts the behavior of an agent to enforce cer-
tain requirements, while leaving the agent as much autonomy
as possible. In this work, we investigate supervision of an
agent that may acquire new knowledge about her environment
during execution, for example, by sensing. Thus we consider
an agent’s online executions, where, as she executes the pro-
gram, at each time point she must make decisions on what to
do next based on what her current knowledge is. This is done
in a setting based on the situation calculus and a variant of
the ConGolog programming language. To reason about such
agents, we first define a notion of online situation-determined
agent which ensures that for any sequence of actions that the
agent can perform online, the resulting agent configuration is
unique. We then present our formalization of the online max-
imally permissive supervisor.

1 Introduction
In many settings, an agent’s behavior needs to be restricted
to conform to a set of specifications. For instance, the ac-
tivities of agents in an organization have to adhere to some
business rules and privacy/security protocols. One form of
this is customization, where a generic process for perform-
ing a task or achieving a goal is refined to satisfy a client’s
constraints or preferences. Process customization includes
personalization and configuration and finds applications in
number of areas.

A key challenge in such settings is ensuring confor-
mance to specifications while preserving the agent’s auton-
omy. Motivated by this and inspired by supervisory con-
trol of discrete event systems (Wonham 2014) De Gia-
como, Lespérance and Muise (De Giacomo, Lespérance,
and Muise 2012) (DLM) proposed agent supervision as a
form of control/customization of an agent’s behavior. The
DLM framework is based on the situation calculus (Re-
iter 2001) and a variant of the ConGolog (De Giacomo,
Lespérance, and Levesque 2000) programming language.
DLM represent the agent’s possible behaviors as a nonde-
terministic ConGolog process. It is assumed that some of
the agent’s actions may be uncontrollable (e.g. due to auton-

Copyright c⃝ 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

omy). Another ConGolog process represents the supervision
specification, i.e., which behaviors are acceptable/desirable.

DLM formalize a notion of maximally permissive su-
pervisor (MPS) that minimally constrains the behavior of
the agent in the presence of uncontrollable actions so as
to enforce the desired behavioral specifications. The orig-
inal DLM account of agent supervision assumes that the
agent does not acquire new knowledge about her environ-
ment while executing. This means that all reasoning is done
using the same knowledge base. The resulting executions are
said to be offline executions.

In this paper, we study how we can apply the DLM frame-
work in the case where the agent may acquire new knowl-
edge while executing, for example through sensing. This
means that the knowledge base that the agent uses in her
reasoning needs to be updated during the execution. For in-
stance, consider a travel planner agent that needs to book
a seat on a certain flight. Only after querying the airline
web service offering that flight will the agent know if there
are seats available on the flight. Technically, this requires
switching from offline executions to online executions (De
Giacomo and Levesque 1999), which, differently from of-
fline executions, are defined meta-theoretically since at ev-
ery time point the knowledge base used by the agent to de-
liberate about the next action is different.

Based on online executions, we define a notion of online
situation-determined agent which ensures that for any se-
quence of actions that the agent can perform, the resulting
agent configuration is unique. We then present our formal-
ization of the online maximally permissive supervisor.

2 Preliminaries
The situation calculus (SC) is a well known predicate logic
language for representing and reasoning about dynamically
changing worlds. Within the language, one can formulate
basic action theories (BATs) that describe how the world
changes as the result of actions; see (Reiter 2001) for de-
tails of how these are defined. Hereafter, we will use D
to refer to the BAT under consideration. We assume that
there is a finite number of action types A. Moreover, we
assume that the terms of object sort are in fact a count-
ably infinite set N of standard names for which we have
the unique name assumption and domain closure. A spe-
cial predicate Poss(a, s) is used to state that action a is

Proceedings, Fifteenth International Conference on
Principles of Knowledge Representation and Reasoning (KR 2016)

517

executable in situation s. The abbreviation Executable(s)
means that every action performed in reaching situation s
was possible in the situation in which it occurred. We write
do([a1, a2, . . . , an−1, an], s) as an abbreviation for the situ-
ation term do(an, do(an−1, . . . , do(a2, do(a1, s)) . . .)).

To represent and reason about complex actions or pro-
cesses obtained by suitably executing atomic actions, vari-
ous so-called high-level programming languages have been
defined. Here, we concentrate on (a fragment of) ConGolog
that includes the following constructs:

δ ::= α | ϕ? | δ1; δ2 | δ1|δ2 | πx.δ | δ∗ | δ1∥δ2 | δ1& δ2

In the above, α is an action term, possibly with parameters,
and ϕ is situation-suppressed formula, i.e., a SC formula
with all situation arguments in fluents suppressed. As usual,
we denote by ϕ[s] the formula obtained from ϕ by restoring
the situation argument s into all fluents in ϕ. Program δ1|δ2
allows for the nondeterministic choice between programs δ1
and δ2. The intersection/synchronous concurrent execution
of programs δ1 and δ2 (introduced by DLM) is denoted by
δ1& δ2. See (De Giacomo, Lespérance, and Levesque 2000)
for further details on the remaining constructs.

Formally, the semantics of ConGolog is specified
in terms of single-step transitions, using two predi-
cates (De Giacomo, Lespérance, and Levesque 2000): (i)
Trans(δ, s, δ′, s′), which holds if one step of program δ in
situation s may lead to situation s′ with δ′ remaining to be
executed; and (ii) Final(δ, s), which holds if program δ may
legally terminate in situation s. The definitions of Trans
and Final we use are as in (De Giacomo, Lespérance, and
Pearce 2010), where the test construct ϕ? does not yield
any transition, but is final when satisfied. This results in a
synchronous test construct which does not allow interleav-
ing (every transition involves the execution of an action).
Predicate Do(δ, s, s′) means that program δ, when executed
starting in situation s, has as a legal terminating situation s′,
and is defined as Do(δ, s, s′)

.
= ∃δ′.T rans∗(δ, s, δ′, s′) ∧

Final(δ′, s′) where Trans∗ denotes the reflexive transitive
closure of Trans.

A ConGolog program δ is situation-determined (SD) in
a situation s (De Giacomo, Lespérance, and Muise 2012) if
for every sequence of transitions, the remaining program is
determined by the resulting situation, i.e.,

SituationDetermined(δ, s)
.
= ∀s′, δ′, δ′′.

Trans∗(δ, s, δ′, s′) ∧ Trans∗(δ, s, δ′′, s′) ⊃ δ′ = δ′′,

For example, program (a; b) | (a; c) is not SD, while a; (b |
c) is (assuming the actions involved are always executable).
Thus, a (partial) execution of a SD program is uniquely de-
termined by the sequence of actions it has produced. Hence
a SD program in a starting situation generates a set/language
of action sequences, its executions, and operations like inter-
section and union become natural.

In the rest, we use C to denote the axioms defining the
ConGolog programming language.

3 Online Situation-Determined Agents
In our account of agent supervision, we want to accommo-
date agents that can acquire new knowledge about their en-
vironment during execution, for example by sensing, and

where their knowledge base is updated with this new knowl-
edge. Thus we consider an agent’s online executions, where,
as she executes the program, at each time point, she makes
decisions on what to do next based on what her current
knowledge is.

Sensing. A crucial aspect of online executions is that the
agent can take advantage of sensing. As in (Lespérance, De
Giacomo, and Ozgovde 2008), we model sensing as an ordi-
nary action which queries a sensor, followed by the reporting
of a sensor result, in the form of an exogenous action.

Specifically, to sense whether fluent P holds within a pro-
gram, we use a macro:

SenseP
.
= QryIfP ; (repV alP (1) | repV alP (0)),

where QryIfP is an ordinary action that is always executable
and is used to query (i.e., sense) if P holds and repV alP (x)
is an exogenous action with no effect that informs the agent
if P holds through its precondition axiom, which is of the
form:

Poss(repV alP (x), s) ≡ P (s) ∧ x = 1 ∨ ¬P (s) ∧ x = 0.

Thus, we can understand that SenseP reports value 1
through the execution of repV alP (1) if P holds, and 0
through the execution of repV alP (0) otherwise.

For example, consider the following agent program:

δi = SenseP ; [P?;A] | [¬P?;B]

and assume the agent does not know if P holds initially.
Initially we have D ∪ C |= Trans(δi ,S0 , δ′,S1) where
S1 = do(QryIfP ,S0) and δ′ = nil; (repV alP (1) |
repV alP (0))); [P?;A] | [¬P?;B]. At S1, the agent knows
one of the exogenous actions repV alP (0) or repV alP (1)
can occur, but does not know which. After the occurrence of
one of these actions, the agent learns whether P holds. For
example, if repV alP (1) occurs, the agent’s knowledge base
is now updated to D ∪ C ∪ {Poss(repV alP (1), S1)}. With
this updated knowledge, she knows which action to do next:
D ∪ C ∪ Poss(repV alP (1), S1) |= Trans(nil; [P?;A] |
[¬P?;B], do(repV alP (1), S1), nil, do([repV alP (1), A],
S1)). Notice that with this way of doing sensing, we
essentially store the sensing results in the situation (which
includes all actions executed so far including the exogenous
actions used for sensing). In particular the current KB after
having performed the sequence of actions a⃗ is:

D ∪ C ∪ {Executable(do(⃗a, S0)}.

Note that this approach also handles the agent’s acquiring
knowledge from an arbitrary exogenous action.

Agent online configurations and transitions. We denote
an agent by σ, which stands for a pair ⟨D, δi⟩, where δi is the
initial program of the agent expressed in ConGolog and D is
a BAT that represents the agent’s initial knowledge (which
may be incomplete). We assume that we have a finite set
of primitive action types A, which is the disjoint union of
a set of ordinary primitive action types Ao and exogenous
primitive action types Ae.

518

An agent configuration is modeled as a pair ⟨δ, a⃗⟩, where
δ is the remaining program and a⃗ is the current history, i.e,
the sequence of actions performed so far starting from S0.
The initial configuration ci is ⟨δi, ϵ⟩, where ϵ is the empty
sequence of actions.

The online transition relation between agent configura-
tions is (a meta-theoretic) binary relation between configu-
rations defined as follows:
⟨δ, a⃗⟩ →A(n⃗) ⟨δ′, a⃗A(n⃗)⟩

if and only if
either A ∈ Ao, n⃗ ∈ N k and
D ∪ C ∪ {Executable(do(⃗a, S0))} |=

Trans(δ, do(⃗a, S0), δ
′, do(A(n⃗), do(⃗a, S0)))

or A ∈ Ae, n⃗ ∈ N k and
D ∪ C ∪ {Executable(do(⃗a, S0)),

T rans(δ, do(⃗a, S0), δ
′, do(A(n⃗), do(⃗a, S0)))} is satisfiable.

Here, ⟨δ, a⃗⟩ →A(n⃗) ⟨δ′, a⃗A(n⃗)⟩ means that configuration
⟨δ, a⃗⟩ can make a single-step online transition to configu-
ration ⟨δ′, a⃗A(n⃗)⟩ by performing action A(n⃗). If A(n⃗) is an
ordinary action, the agent must know that the action is exe-
cutable and know what the remaining program is afterwards.
If A(n⃗) is an exogenous action, the agent need only think
that the action may be possible with δ′ being the remaining
program, i.e., it must be consistent with what she knows that
the action is executable and δ′ is the remaining program.
As part of the transition, the theory is (implicitly) updated
in that the new exogenous action A(n⃗) is added to the ac-
tion sequence, and Executable(do([⃗a,A(n⃗)], S0)) will be
added to the theory when it is queried in later transitions,
thus incorporating the fact that Poss(A(n⃗), do(⃗a, S0)) is
now known to hold.

The (meta-theoretic) relation c →∗
a⃗ c′ is the reflexive-

transitive closure of c →A(n⃗) c
′ and denotes that online con-

figuration c′ can be reached from the online configuration c
by performing a sequence of online transitions involving the
sequence of actions a⃗.

We also define a (meta-theoretic) predicate c! meaning
that the online configuration c is known to be final:

⟨δ, a⃗⟩! if and only if
D ∪ C ∪ {Executable(do(⃗a, S0))} |= Final(δ, do(⃗a, S0)).

Online situation determined agents. In this paper, we are
interested in programs that are SD, i.e., given a program, a
situation and an action, we want the remaining program to be
determined. However this is not sufficient when considering
online executions. We want to ensure that the agent always
knows what the remaining program is after any sequence of
actions. We say that an agent is online situation-determined
(online SD) if for any sequence of actions that the agent can
perform online, the resulting agent configuration is unique.
Formally, an agent σ = ⟨D, δi⟩ with initial configuration
ci = ⟨δi, ϵ⟩ is online SD if and only if for all sequences of
actions a⃗, if ci →∗

a⃗ c′ and ci →∗
a⃗ c′′ then c′ = c′′.

We say that an agent σ = ⟨D, δi⟩ always knows the re-
maining program after an exogenous action if and only if

for all action sequences a⃗, A ∈ Ae, n⃗ ∈ N k

if D ∪ C ∪ {Executable(do(⃗a, S0)),
T rans(δ, do(⃗a, S0), δ

′, do([⃗a,A(n⃗)], S0)) is satisfiable,

then there exists a program δ′ such that
D ∪ C ∪ {Executable(do([⃗a,A(n⃗)], S0))} |=

Trans(δ, do(⃗a, S0), δ
′, do([⃗a,A(n⃗)], S0)).

Essentially, this states that whenever the agent considers it
possible that an exogenous action may occur, then she knows
what the remaining program is afterwards if it does occur.

We can show that:
Theorem 1 For any agent σ = ⟨D, δi⟩, if δi is known to be
SD in D, i.e., D∪C |= SituationDetermined(δi, S0), and if
σ always knows the remaining program after an exogenous
action, then σ is online SD.

Online Runs. For an agent σ that is online SD, online exe-
cutions can be succinctly represented by runs formed by the
corresponding sequence of actions. The set RR(σ) of (par-
tial) runs of an online SD agent σ with starting configuration
ci is the sequences of actions that can be produced by execut-
ing ci from S0: RR(σ) = {a⃗ | ∃c.ci →∗

a⃗ c}. A run is complete
if it reaches a final configuration. Formally we define the set
CR(σ) of complete runs as: CR(σ) = {a⃗ | ∃c.ci →∗

a⃗ c∧c!}.
Finally we say that a run is good if it can be extended to
a complete run. Formally we define the set GR(σ) of good
runs as: GR(σ) = {a⃗ | ∃c, c′, a⃗′.ci →∗

a⃗ c ∧ c →∗
a⃗′ c

′ ∧ c′!}.

4 Online Agent Supervision
DLM’s account of agent supervision is based on offline exe-
cutions and does not accommodate agents that acquire new
knowledge during a run. Here, we want to deal with agents
that may acquire knowledge through sensing and exogenous
actions as they operate and make decisions based on what
they know, and we model these as online SD agents.

Assume that we have a (non-deterministic) online SD
agent σ = ⟨D, δi⟩ whose behavior we want to supervise.
Let’s also suppose that we have a supervision specification
δs of what behaviors we want to allow in the supervised sys-
tem and that the system ⟨D, δs⟩ is also online SD. First note
that if it is possible to control all the actions of the agent,
then the result of supervision can be defined as the intersec-
tion of the agent and the specification processes. However
in general, some of agent’s actions may be uncontrollable.
These are often the result of interaction of an agent with ex-
ternal resources, or may represent aspects of agent’s behav-
ior that must remain autonomous and cannot be controlled
directly. Similar to DLM, we model this by the special fluent
Au(a, s) that means action a is uncontrollable in situation s.

We say that a specification δs is online controllable wrt
online SD agent σ = ⟨D, δi⟩ iff:

∀a⃗au .⃗a ∈ GR(⟨D, δs⟩) and
D ∪ {Executable(do(⃗a, S0))} ̸|= ¬Au(au, do(⃗a, S0)) implies

(if a⃗au ∈ GR(σ) then a⃗au ∈ GR(⟨D, δs⟩)).

i.e., if we postfix a good online run a⃗ for ⟨D, δs⟩ with an ac-
tion au that is not known to be controllable which is good for
σ (and so a⃗ must be good for σ as well), then au must also
be good for ⟨D, δs⟩. (Note that a⃗au ∈ GR(σ) and a⃗au ∈
GR(⟨D, δs⟩) together imply that a⃗au ∈ GR(⟨D, δi& δs⟩).)
This definition differs from DLM’s in that it applies to online
runs as opposed to offline runs. Moreover it treats actions

519

that are not known to be controllable as uncontrollable, thus
ensuring that δs is controllable in all possible models/worlds
compatible with what the agent knows. Note that like DLM,
we focus on good runs of the process, assuming that the
agent will not perform actions that don’t lead to a final con-
figuration of δi. The supervisor only ensures that given this,
the process always conforms to the specification.

Given this, we can then define the online maximally per-
missive supervisor mpsonl(δs,σ) of the online SD agent
σ = ⟨D, δi⟩ which fulfills the supervision specification δs:

mpsonl(δ
s,σ) = set(

⋃
E∈E E) where

E = {E | E ⊆ CR(⟨D, δi & δs⟩)
and set(E) is online controllable wrt σ}

i.e., the online MPS is the union of all sets of action se-
quences that are complete online runs of both δi and δs that
are online controllable for the agent σ. Our definition is sim-
ilar to DLM’s, but applies to online runs, and relies on online
(as opposed to offline) controllability.

The above definition uses the set(E) construct intro-
duced by DLM, which is a sort of infinitary nondetermin-
istic branch; it takes an arbitrary set of sequences of actions
E and turns it into a program, and has the semantics:

Trans(set(E), s, δ′, s′) ≡ ∃a, a⃗.aa⃗ ∈ E ∧ Poss(a, s) ∧
s′ = do(a, s) ∧ δ′ = set({a⃗ | aa⃗ ∈ E ∧ Poss(a, s)})

Final(set(E), s) ≡ ϵ ∈ E

For the maximally permissive supervisor mpsonl(δs,σ)
of the online SD agent σ = ⟨D, δi⟩ which fulfills the super-
vision specification δs, where ⟨D, δs⟩ is also online SD, the
following properties hold: it always exists and is unique, it is
online SD, it is online controllable wrt σ, it is non-blocking
(i.e., its execution can always be completed successfully),
and it is maximally permissive. See (Banihashemi, De Gia-
como, and Lespérance 2016), for proofs and further results
on online supervision.
Example 1 Suppose that we have an agent that does not
know whether P holds initially, i.e., D ̸|= P (S0) and D ̸|=
¬P (S0). Suppose that the agent’s initial program is:

δi1 = [P?; ((A; (C | U)) | (B;D))] |
[¬P?; ((A;D) | (B; (C | U)))]

where all actions are ordinary, always executable, and con-
trollable except for U , which is always uncontrollable. Sup-
pose that the supervision specification is:

δs1 = (πa.a ̸= U?; a)∗

i.e., any action except U can be performed. The offline MPS
obtained using DLM’s definition is different depending on
whether P holds: for models of the theory where P holds,
the offline MPS is set({B;D}), as the set of complete of-
fline runs of δs1 in S0 is {[B;D], [A;C]} and set({[A;C]})
is not controllable wrt δi1 in S0. For models where P does
not hold, the offline MPS is set({A;D}), since the set of
complete offline runs of δs1 in S0 is {[A;D], [B;C]} and
set({[B;C]}) is not controllable wrt δi1 in S0. As it is not
known if P holds, it seems that a correct supervisor should
neither allow A nor B. Our definition of online MPS yields
the correct result, i.e., set({ϵ}).

As the above example illustrates, DLM have an offline
MPS for each model of the theory. Instead, we have a sin-
gle online MPS that works for all models and can include
sensing information when acquired.

Example 2 Supervision can also depend on the information
that the agent acquires as it executes. Again, suppose that we
have an agent that does not know if P holds initially, and that
the agent’s initial program is δi2 = SenseP ; δi1.

Again, we have different offline MPSs: in models where
P holds, the offline MPS is set({B;D}) and in models
where P does not hold the offline MPS is set({A;D}). But
since the exogenous report makes the truth value of P known
after the first action, we get one online MPS for this agent:

mpsonl(δ
s
1, ⟨D, δi2⟩) = set({[QryIfP , repV alP (1), B,D],

[QryIfP , repV alP (0), A,D]}).

Because the agent queries if P holds, the supervisor has
enough information to decide the maximal set of runs from
then on in each case. So if the reported value of P is true,
then the online supervisor should eliminate the complete run
[A,C] as it is not controllable, and if P does not hold, the
run [B,C] should be eliminated for the same reason.

As well, an action’s controllability and whether it satis-
fies the specification may depend on a condition whose truth
only becomes known during the execution. Such cases can-
not be handled by DLM’s original offline account but our
online supervision account does handle them correctly.

In (Banihashemi, De Giacomo, and Lespérance 2016), we
define a program construct for execution of an agent as con-
strained by such an online MPS and a new type of lookahead
search construct that ensures nonblockingness.

References
Banihashemi, B.; De Giacomo, G.; and Lespérance, Y. 2016. On-
line agent supervision in the situation calculus - Extended version.
Technical Report EECS-2016-02, York University.
De Giacomo, G., and Levesque, H. J. 1999. An incremental in-
terpreter for high-level programs with sensing. In Logical Founda-
tions for Cognitive Agents: Contributions in Honor of Ray Reiter.
86–102.
De Giacomo, G.; Lespérance, Y.; and Levesque, H. J. 2000. Con-
Golog, a concurrent programming language based on the situation
calculus. Artificial Intelligence 121(1–2):109–169.
De Giacomo, G.; Lespérance, Y.; and Muise, C. J. 2012. On super-
vising agents in situation-determined ConGolog. In Proc. AAMAS,
1031–1038.
De Giacomo, G.; Lespérance, Y.; and Pearce, A. R. 2010. Situa-
tion calculus-based programs for representing and reasoning about
game structures. In Proc. KR, 445–455.
Lespérance, Y.; De Giacomo, G.; and Ozgovde, A. N. 2008. A
model of contingent planning for agent programming languages.
In Proc. AAMAS, 477–484.
Reiter, R. 2001. Knowledge in Action: Logical Foundations for
Specifying and Implementing Dynamical Systems. The MIT Press.
Wonham, W. 2014. Supervisory Control of Discrete-Event Systems.
University of Toronto, 2014 edition.

520

