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Abstract

The standard situation calculus assumes that atomic actions
are deterministic. But many domains involve nondetermin-
istic actions, with problems such as fully observable nonde-
terministic (FOND) planning and high-level program execu-
tion requiring solutions. Various approaches have been pro-
posed to accommodate nondeterminism on top of the stan-
dard situation calculus language, for instance by introduc-
ing nondeterministic programs as in Golog and ConGolog.
But a key problem in these approaches is that they don’t
clearly distinguish between choices that can be made by the
agent and choices that are made by the environment, i.e.,
angelic vs. devilish nondeterminism. In this paper, we pro-
pose a simple extension to the standard situation calculus that
accommodates nondeterministic actions and preserves Re-
iter’s solution to the frame problem and answering projection
queries through regression. We also provide a formalization
of FOND planning and show how ConGolog high-level pro-
gram execution in nondeterministic domains can be defined.

1 Introduction
The situation calculus is a popular predicate logic formal-
ism for reasoning about action and change (McCarthy and
Hayes 1969; Reiter 2001). In this formalism, a dynamic do-
main can be represented by a basic action theory, where suc-
cessor state axioms represent the causal laws of the domain
and provide a solution to the frame problem (Pirri and Re-
iter 1999; Reiter 2001). The formalism has been extended in
many ways and used to formalize many problems and sup-
port reasoning in applications.

In the standard situation calculus and basic action theo-
ries, atomic actions are deterministic, i.e., the situation/state
that results from performing an action in a situation/state is
unique and determined by the action and situation/state prior
to it. This is the case in two ways. First, the situation that
results from performing action a in situation s is represented
by term do(a, s), which denotes a unique situation in each
model. Secondly, in each model of a basic action theory, the
extension of each fluent in do(a, s) is uniquely determined
by fluent extensions in s and the action a, as specified by the
successor state axioms. So the resulting state is determined
by the action and state prior to it.

However, sometimes we need to model actions that are
nondeterministic, e.g., the action of flipping a coin where

the result may be heads or tails, or the unreliable action of a
robot unstacking a block where the result may be either the
robot holding the block (success) or the block falling on the
table (failure mode 1) or the block remaining where it was
(failure mode 2). Such nondeterministic actions are really
the results of two phenomena: the agent instructing the ac-
tion and the environment reacting to it, as in a game. But
once the agent’s action has been instructed and the environ-
ment’s reaction has been chosen, we get a single resulting
situation/outcome. We may say that the “system action”,
formed by the agent’s action and the environment’s reac-
tion, remains indeed deterministic, as in the standard situ-
ation calculus.

The need to handle nondeterministic actions has long
been recognized in the area, and somehow handled in an
ad-hoc manner, but never studied in detail. One option
is to model the different outcomes as distinct (system) ac-
tions, e.g., flipHead and flipTail for coin tossing, but this
does not distinguish between the instruction of the action,
which is decided by the agent, and its outcome, which is
chosen by the environment. So we have to add an addi-
tional mechanism to say that the agent cannot really distin-
guish before execution between flipHead and flipTail and
just sees them as flip (Bacchus et al. 1999). Having to in-
troduce indistinguishability to handle such a basic feature
is cumbersome (indeed the notion was introduced for han-
dling stochastic uncertainty, see below), and in any case re-
quires a fair amount of bookkeeping overhead. Another op-
tion is to introduce exogenous events (De Giacomo et al.
2000) to model the environment’s reaction explicitly. Then
nondeterministic actions are represented by an ordinary ac-
tion corresponding to the agent instructing the action itself
and exogenous events corresponding to the possible envi-
ronment responses. E.g., we could have action flip, which
per se only makes the preconditions of the possible exoge-
nous events head and tail true, and then an exogenous event
chosen among head and tail which brings about the actual
(nondeterministic) effect of the flip. While this is a possi-
ble solution, it is again cumbersome and requires significant
bookkeeping for making everything work as desired.

In this paper, we propose a simple extension to the stan-
dard situation calculus to handle nondeterministic actions
that preserves the solution to the frame problem and answer-
ing projection queries through regression. A key aspect of
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our formalization is that we maintain deterministic system
actions, as in the standard situation calculus, but see them as
formed by two separate contributions, the agent’s action and
the environment’s reaction. Specifically, we simply model
the environment reaction as an extra parameter of the action.
System actions have this extra parameter, while the agent’s
actions are simply environment reaction-suppressed system
actions. We show that this introduces only minimal over-
head, while giving us the power to quantify independently
over agent actions and environment reactions. This allows
us to distinguish between the angelic nondeterminism of the
agent’s choosing actions, through existential quantification,
and the devilish nondeterminism of the environment’s reac-
tion (which is not controlled by the agent), through univer-
sal quantification, see (Broy and Wirsing 1981). We also
show how we can formalize fully observable nondetermin-
istic (FOND) planning in our framework. Furthermore, we
show how ConGolog (De Giacomo et al. 2000) high-level
program execution in nondeterministic domains can be de-
fined. This is of particular interest since we can indeed write
angelically nondeterministic programs for the agent, as ad-
vocated in (Levesque et al. 1997), in a devilish nondeter-
ministic environment.

As already mentioned, nondeterministic actions are re-
lated to stochastic actions and noisy sensing, which have
indeed been studied in detail in the situation calculus.
In (Reiter 2001), (see also (Pinto et al. 2000)), a sit-
uation calculus formalization of stochastic actions and
decision-theoretic planning is proposed, where an ab-
breviation choice(agent action, system action) is intro-
duced to specify nature’s choices, e.g., one might have
choice(flip(c), a)

.
= a=flipHead(c, s) ∨ a=flipTail(c, s),

and then probabilities are specified for each possible nature
choice for an agent action in a situation. The account then
goes on to define probabilities for executions of programs
involving such stochastic actions as well as for a condition
holding after the execution of such a program (sensing ac-
tions are also handled as a kind of stochastic actions, as are
exogenous actions). The programs themselves however, are
deterministic, so all choices are nature’s choices. It is also
shown how one can define the expected value of policies in
MDP-like domains.

Nondeterministic actions are also considered in Bacchus
et al’s situation calculus-based account of uncertainty and
noisy acting and sensing (Bacchus et al. 1995; Bacchus
et al. 1999). They model nondeterministic actions by in-
troducing an extra parameter (like us) into the action func-
tion whose value is chosen by nature, e.g., flip(c, outcome).
These possible choices can be specified to follow a given
probability distribution. The agent is not aware of the ac-
tion’s outcome until she performs suitable sensing actions.
Degree of belief in propositions is defined in a “possible
world” model where the weight of each possible situation
depends on that of the initial situation it evolved from and
the probability of each action transition leading to it. De-
gree of belief in a proposition following a sequence of
agent actions is handled by quantifying existentially over
nature’s choices (and relying on Golog’s Do). But they do
not consider programs involving nondeterminism over the

agent’s choice of action, nor do they address stochastic plan-
ning. Later work in the same line of research in (Belle and
Levesque 2020) essentially retains this approach.

Finally, as mentioned, the dynamics of a system with non-
deterministic actions can be seen as a game between the
agent and the environment, with each making their moves.
This game-theoretic view can indeed be formalized in sit-
uation calculus variants for capturing games (De Giacomo
et al. 2010; De Giacomo et al. 2016c). However, it seems
like overkill to handle nondeterministic actions by moving to
such a sophisticated setting. The solution we propose here
is much simpler, and more elegant as it remains very close
to the standard situation calculus and basic action theories.

2 The Situation Calculus
The situation calculus is a well known sorted predicate
logic language for representing and reasoning about dy-
namically changing worlds (McCarthy and Hayes 1969;
Reiter 2001). It includes three sorts: Action , Situation ,
and Object . All changes to the world are the result of ac-
tions, which are terms in the language. A possible world
history is represented by a term called a situation. The
constant S0 is used to denote the initial situation where
no actions have yet been performed. Sequences of actions
are built using the function symbol do, such that do(a, s)
denotes the successor situation resulting from performing
action a in situation s. Predicates and functions whose
value varies from situation to situation are called fluents,
and are denoted by symbols taking a situation term as their
last argument (e.g., Holding(x, s)). s < s′ means that
s is a predecessor situation to s′, and s v s′ stands for
s < s′ ∨ s = s′. The abbreviation do([a1, . . . , an], s) stands
for do(an, do(an−1, . . . do(a1, s) . . .)).

Within the language, one can formulate action theories
that describe how the world changes as a result of the avail-
able actions. A basic action theory (BAT)D (Pirri and Reiter
1999; Reiter 2001) is the union of the following disjoint sets
of axioms: the foundational, domain independent, axioms
of the situation calculus (Σ), which include a second order
axiom characterizing the situation domain; precondition ax-
ioms stating when actions can be legally performed (Dposs);
successor state axioms describing how fluents change be-
tween situations (Dssa); unique name axioms for actions
(Duna); and axioms describing the initial configuration of
the world (DS0

). A special predicate Poss(a, s) is used to
state that action a is executable in situation s; precondition
axioms in Dposs characterize this predicate. Executable(s)
means that every action performed in reaching situation s
is executable in the situation in which it occurs. In turn,
successor state axioms encode the causal laws of the world
being modeled; they take the place of the so-called effect
axioms and provide a solution to the frame problem.

A key feature of BATs is the existence of a sound and
complete regression mechanism for answering queries about
situations resulting from performing a sequence of actions
(Pirri and Reiter 1999; Reiter 2001). In a nutshell, the re-
gression operator R∗ reduces a formula φ about a partic-
ular future situation to an equivalent formula R∗[φ] about
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the initial situation S0, essentially by substituting fluent re-
lations with the right-hand side formula of their successor
state axioms. A formula φ is regressable if and only if (i)
all situation terms in it are of the form do([a1, . . . , an], S0),
(ii) in every atom of the form Poss(a, σ), the action func-
tion is specified, i.e., a is of the form A(t1, . . . , tn), (iii) it
does not quantify over situations, and (iv) it does not contain
< or equality over situation terms. Thus in essence, a for-
mula is regressable if it does not contain situation variables.
Another key result about BATs is the relative satisfiability
theorem (Pirri and Reiter 1999; Reiter 2001): D is satisfi-
able if and only if DS0 ∪Duna is satisfiable (the latter being
a purely first-order theory). This implies that we can check
if a regressable formula φ is entailed by D, by checking if
its regressionR∗[φ] is entailed by DS0

∪ Duna only.

3 The Nondeterministic Situation Calculus
For any primitive action by the agent in a nondeterministic
domain, there can be a number of different outcomes. We
take the outcome as being determined by the agent’s action
and the environment’s reaction to this action. We represent
this by having every action type/function A(~x, e) take an
additional environment reaction parameter e, ranging over
a new sort Reaction of environment reactions. The agent
cannot control the environment reaction, so it performs the
reaction-suppressed version of the action A(~x) and the en-
vironment then selects a reaction e to produce the complete
action A(~x, e). We call the reaction-suppressed version of
the action A(~x) an agent action and the full version of the
action A(~x, e) a system action. We use the notation A(~x)[e]
to integrate the reaction e to the agent actionA(~x). Note that
A(~x)[e]

.
= A(~x, e). As usual, we denote the situation that

results from the system action A(~x, e) occurring in situation
s by the term do(A(~x, e), s) (i.e., the agent’s action A(~x)
followed by environment reaction e).

Nondeterministic Basic Action Theories (NDBATs) We
represent nondeterministic domains using action theories
called Nondeterministic Basic Action Theories (NDBATs),
which can be seen as a special kind of BAT, where:

• every action function takes an environment reaction pa-
rameter;
• for each agent action we have an agent action precondi-

tion formula, stating when the action can be performed by
the agent, specifically for each agent action A(~x) we de-
note by Possag(A(~x), s) its agent action precondition:1

Possag(A(~x), s)
.
= φagPoss

A (~x, s);

• for each agent action we have a reaction independence re-
quirement, stating that the precondition for the agent ac-
tion is independent of any environment reaction:

∀e.Poss(A(~x, e), s) ⊃ Possag(A(~x), s)

1In this paper, when we write ϕ(~x, s), as e.g., here
φagPoss
A (~x, s), we intend that the only free variables of ϕ(~x, s)

are among ~x and s, and moreover that ϕ(~x, s) is uniform in s, i.e.,
s is the only situation term, see (Reiter 2001).

these requirements must be entailed by the action theory
for it to be an NDBAT;

• for each agent action we also have a reaction existence
requirement, stating that if the precondition of the agent
action holds then there exists a reaction to it which makes
the complete system action executable, i.e., the environ-
ment cannot prevent the agent from performing an action
when its agent action precondition holds:

Possag(A(~x), s) ⊃ ∃e.Poss(A(~x, e), s);

again these requirements must be entailed by the action
theory for it to be an NDBAT.

A nondeterministic basic action theory (NDBAT) D is the
union of the following disjoint sets:

• Foundational, domain independent, axioms of the situa-
tion calculus (Σ), as in standard BATs (Pirri and Reiter
1999; Reiter 2001);

• Unique name axioms for actions (Duna), as in standard
BATs.

• Axioms describing the initial situation (DS0
), as in stan-

dard BATs;

• Successor state axioms describing how fluents change af-
ter system actions are performed (Dssa), as in standard
BATs;

• System action precondition axioms, one for each action
type, stating when the complete system action can occur
(Dposs); these are of the form:

Poss(A(~x, e), s) ≡ φpossA (~x, e, s)

In practice, most often these axioms have the form

Poss(A(~x, e), s) ≡ Possag(A(~x), s) ∧ ψposs
A (~x, e, s)

where Possag(A(~x), s) guarantees the executability of
the agent action A(~x) and ψposs

A (~x, e, s) characterizes
the possible reactions to such an agent action; when
this is the case, the reaction independence require-
ment ∀e.Poss(A(~x, e), s) ⊃ Possag(A(~x), s) is triv-
ially satisfied, while the reaction existence require-
ment Possag(A(~x), s) ⊃ ∃e.Poss(A(~x, e), s) reduces
to the simpler requirement that Possag(A(~x), s) ⊃
∃e.ψposs

A (~x, e, s), i.e., if the agent action is possible then
some environment reaction must always exist. must be

Example 1. Suppose that we have an agent that can move
back and forth along a track. Initially, the agent is at posi-
tion 0. The agent can perform the action fwd to go forward,
but this action is nondeterministic and as a result, she may
move forward by one or two positions. The agent can also
perform the deterministic action bk1, to go backwards by ex-
actly one postion. We can specify this domain as an NDBAT
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Dtrk as follows:

pos(S0) = 0

Possag(fwd , s)
.
= True

Possag(bk1, s)
.
= pos(s) > 0

Poss(fwd(e), s) ≡
Possag(fwd , s) ∧ (e = f(1) ∨ e = f(2))

Poss(bk1(e), s) ≡ Possag(bk1, s) ∧ e = f(1)

pos(do(a, s)) = k ≡
a = fwd(e) ∧ ∃n.e = f(n) ∧ k = pos(s) + n ∨
a = bk1(e) ∧ k = pos(s)− 1 ∨
pos(s) = k ∧ (¬∃e.a = fwd(e)) ∧ (¬∃e.a = bk1(e))

Note that we use a function f to map natural numbers to
reactions. We also include unique name axioms for actions,
axioms stating that f is a bijection, the axioms of first-order
arithmetic for natural numbers, and the foundational axioms
in Dtrk. Note also that the reaction independence and reac-
tion existence requirements are trivially entailed.

Note that successor state axioms can be obtained as usual
using Reiter’s method (Reiter 2001) if we assume that we
have an effect axiom of the form

φ(~x, ~y, e, s) ⊃ [¬]F (~x, ~y, do(A(~x, e), s))

for each fluent F (~x, ~y, s) that is affected by a system action
A(~x, e).

Example 2. For the domain in Example 1, we can specify
the effect axioms as follows:

pos(do(fwd(f(1)), s) = pos(s) + 1
pos(do(fwd(f(2)), s) = pos(s) + 2
pos(do(bk1(e), s) = pos(s)− 1

We can then obtain the successor state axiom in Example 1
by making the explanation closure assumption and applying
Reiter’s method.

Observe that an NDBAT is formally a BAT,2 which must
entail the additional reaction independence and reaction ex-
istence requirements. Hence, when writing a NDBAT, the
designer must check that these requirements are indeed en-
tailed. However all results in the literature about BATs apply
to NDBATs as well.

The key feature of NDBATs is that we have separated the
agent actionA(~x) and the environment reaction e, in the sys-
tem actionA(~x, e). This allows us to independently quantify
over the two components. In particular, we can talk about the
various possible executions (system actions) that may result
from an agent performing an agent action and what may hold
afterwards, considering the reaction of the environment.

Consider the familiar notation Do(A(~x, e), s, s′)
.
=

Poss(A(~x, e), s) ∧ s′ = do(A(~x, e), s), which denotes a
relation between the current situation s and the next situa-
tion s′ resulting from performing the complete system ac-
tion A(~x, e). Note that such a relation is functional since
the next situation is unique if it exists, i.e., when A(~x, e) is
executable (Poss(A(~x, e), s) holds).

2Assuming to use (a part of) the object sort as the reaction sort.

For agent actions, we can define an analogous relation
Doag(A(~x), s, s′), meaning that the system may reach sit-
uation s′ when the agent executes the agent action A(~x) in
situation s depending on the environment reaction. We de-
fineDoag(A(~x), s, s′) as follows (again as an abbreviation):

Doag(A(~x), s, s′)
.
=

∃e.Poss(A(~x, e), s) ∧ s′=do(A(~x, e), s)

There is at least one situation s′ reachable after the agent
executes the agent action A(~x) in situation s if A(~x) is exe-
cutable in s (given the requirement that Possag(A(~x), s) ⊃
∃e.Poss(A(~x, e), s)), and there may be several such situa-
tions depending on the environment reactions.
Example 3. Continuing with our running example, the do-
main in Example 1, it is easy to show that:

Dtrk |= pos(do(fwd(f(1)), S0)) = 1 ∧
pos(do(fwd(f(2)), S0)) = 2 ∧
pos(do(bk1(e), do(fwd(f(2)), S0))) = 1 ∧
(Doag(fwd , S0, s) ≡
s = do(fwd(f(1)), S0) ∧ pos(s) = 1 ∨
s = do(fwd(f(2)), S0) ∧ pos(s) = 2) ∧

(Doag(bk1, S0, s) ≡ s = do(bk1(f(1)), S0))

By using Doag we can talk about outcomes that are cer-
tainly true after executing the agent action A(~x), i.e., true
for all environment reactions:

CertainlyAfter(A(~x), φ, s)
.
= ∀s′.Doag(A(~x), s, s′) ⊃ φ[s′]

and possibly true, i.e., true after some environment reaction:

PossiblyAfter(A(~x), φ, s)
.
= ∃s′.Doag(A(~x), s, s′) ∧ φ[s′]

Indeed, CertainlyAfter(A(~x), φ, s) means that for all ex-
ecutions of agent action A(~x) in situation s (if any), φ
holds afterwards, while PossiblyAfter(A(~x), φ, s) means
that there exists an execution of agent action A(~x) in situ-
ation s after which φ holds. In the above, φ is a situation-
suppressed formula (i.e., a formula with all situation argu-
ments in fluents supressed); φ[s] denotes the formula ob-
tained by restoring the situation argument s into all fluents
in φ, see (Reiter 2001).
Example 4. Continuing with our running example, we have:

Dtrk |= CertainlyAfter(fwd , (pos = 1 ∨ pos = 2), S0) ∧
(k = 1 ∨ k = 2 ⊃ PossiblyAfter(fwd , pos = k, S0)) ∧
CertainlyAfter(fwd , (pos = 3 ∨ pos = 4),

do(fwd(f(2)), S0))

Example 5. To illustrate how NDBATs go beyond propo-
sitional logic, consider a variant Dtrk+ of the the domain
in Example 1 where the fwd action may move the agent by
arbitrarily many steps. We can axiomatize this by simply re-
placing the action precondition axiom for fwd in Dtrk+ by
the following:

Poss(fwd(e), s) ≡ Possag(fwd , s) ∧ ∃n.n>0 ∧ e=f(n)

In the above, we take n as ranging over the natural numbers.
For this domain, we can show that:

Dtrk+ |= ∀k.k > 0 ⊃ PossiblyAfter(fwd , pos = k, S0)
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4 Executability, Projection, and Regression
We now turn to sequences of actions. First, we consider
sequences of system actions. In this case, all standard def-
initions apply. In particular, we say that a (finite) sequence
of system actions [a1, . . . , an] is executable in the initial sit-
uation by writing Executable(do(an, , . . . , do(a1, S0) . . .))
which is defined as usual (Reiter 2001):

Executable(s)
.
= ∀a, s′.do(a, s′) v s ⊃ Poss(a, s′)

We also have a recursive characterization:
Executable(s) ≡ s = S0 ∨
∃a, s′.s = do(a, s′) ∧ Poss(a, s′) ∧ Executable(s′)

By using Executable, we can check whether a
situation-suppressed formula φ would hold after an exe-
cutable sequence of system actions [a1, . . . , an] by check-
ing whether Executable(do(an, . . . , do(a1, S0) . . .)) ∧
φ[do(an, . . . , do(a1, S0) . . .)]. This fundamental form of
hypothetical reasoning is called projection (Reiter 2001).3

When we separate the agent action from the environment
reaction, the notions of executability and projection become
more involved. In particular, we need to capture whether a
sequence of agent actions is executable independently of the
environment reactions, i.e., certainly executable, or whether
it is executable for suitably chosen environment reactions,
i.e., possibly executable. Formally we can define:

CertainlyExecutable(ε, s)
.
= True

CertainlyExecutable([A(~x), σ], s)
.
=

Possag(A(~x), s) ∧
∀s′.Doag(A(~x), s, s′) ⊃ CertainlyExecutable(σ, s′)

that is, in every situation that may result from the agent per-
forming the first action, the remaining action sequence must
be certainly executable. Also, we can define:

PossiblyExecutable(ε, s)
.
= True

PossiblyExecutable([A(~x), σ], s)
.
=

∃s′.Doag(A(~x), s, s′) ∧ PossiblyExecutable(σ, s′)

that is, in some situation that may follow the agent perform-
ing the first action, the remaining action sequence is possibly
executable.

Next we turn to projection for sequences of agent actions.
We start by extending the notion of Doag(A(~x), s, s′) from
single agent actions A(~x) to (finite) sequences of agent ac-
tions σ = [A1( ~x1), . . . , An( ~xn)]. The notion Doag(σ, s, s′)
means that the system, starting from situation s, may reach
situation s′ when the agent executes the agent action se-
quence σ, with each agent action getting an environment
reaction (which are not under the agent’s control). This is
defined as follows (again as an abbreviation):

Doag(ε, s, s′)
.
= s = s′

Doag([A(~x), σ], s, s′)
.
=

∃e.Poss(A(~x, e), s) ∧Doag(σ, do(A(~x, e), s), s′)

3Projection can also be checked for sequences of actions that
are not executable, thus separating projection from executability
(Reiter 2001). We instead consider projection only for executable
sequences of actions.

With Doag(σ, s, s′), we can easily look at the various no-
tions of projection that come out of the separation of the
agent actions and the environment reactions. Specifically,
given a (situation-suppressed) formula φ, we can check
whether it holds after the execution of a sequence of agent
actions independently of the reactions of the environment,
i.e., φ is certainly true after the sequence of agent actions
σ, or that it holds with some reaction of the environment,
i.e., φ is possibly true after the sequence of agent actions σ.
Formally:

CertainlyAfter(σ, φ, s)
.
= ∀s′.Doag(σ, s, s′) ⊃ φ[s′]

PossiblyAfter(σ, φ, s)
.
= ∃s′.Doag(σ, s, s′) ∧ φ[s′]

CertainlyAfter(σ, φ, s) does not guarantee per se that the
sequence σ is indeed executable for all environment reac-
tions (or even for same of them). If we want to ensure that σ
forces φ to hold afterwards, we need to ensure both that φ is
certainly true after σ and that σ is executable independently
of the reactions of the environment:

ForcesAfter(σ, φ, s)
.
=

CertainlyAfter(σ, φ, s) ∧ CertainlyExecutable(σ, s)

Note that CertainlyAfter is analogous to a partial correct-
ness requirement in Formal Methods while ForcesAfter is
analogous to a total correctness requirement (Hoare 1969).

Example 6. Continuing with our running example, we have:

Dtrk |= PossiblyAfter([fwd , bk1], (pos = 0), S0) ∧
PossiblyAfter([fwd , bk1], (pos = 1), S0) ∧
ForcesAfter([fwd , bk1], (pos = 0 ∨ pos = 1), S0) ∧
CertainlyAfter([fwd , bk1, bk1], (pos = 0), S0) ∧
¬CertainlyExecutable([fwd , bk1, bk1], S0)

One of the main results for the situation calculus is that
you can perform both executability and projection checks
through regression when the situation is sufficiently ground
(it may contain object, or for us reaction variables, but not
situation or action variables) (Reiter 2001). We can show
that this also applies to NDBATs:

Theorem 1. Let D be an NDBAT, σ a ground agent
action sequence, s a situation term containing no
situation or action variables, and φ a situation-
suppressed formula containing no action variables.
Then CertainlyExecutable(σ, s) is equivalent to a re-
gressable formula, and so are PossiblyExecutable(σ, s),
CertainlyAfter(σ, φ, s), PossiblyAfter(σ, φ, s), and
ForcesAfter(σ, φ, s).

Proof: See Appendix A.

5 FOND Planning and Synthesis
Let us now consider fully observable nondeterministic
(FOND) domains as used in AI planning (Cimatti et al.
1998; Geffner and Bonet 2013; Geffner and Geffner 2018).
We use a first-order PDDL-like notation for FOND domains
(Haslum et al. 2019).

A FOND domain (we include the initial state in the do-
main) is a tuple Dom = (Flu, Const, Act, Init) where:
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• Flu is a finite set of (situation-suppressed) fluents, each
with a specified arity;

• Const is a finite set of object constants;
• Init is finite set of fluent atoms obtained from the fluents
Flu and constants Const, which are true initially, with
each fluent being initially false for all other objects (i.e.,
we have complete information about the initial situation);

• Act is a finite set of actions A(~x) with parameters ~x with:
– Precondition specification Pre(A(~x)), which is a first-

order formula over Flu stating the condition under
which action A(~x) can be performed;

– Effects specification Eff(A(~x)), which is an ex-
pression of the form oneof(eff1, . . . , effn) with
n ≥ 1, where each alternative effect specifica-
tion effi is a conjunction of clauses of the form
forall ~y. when(φj(~x, ~y), ψj(~x, ~y)), with φj(~x, ~y) a
formula over Flu and Const with free variables in
~x, ~y and with all such φj(~x, ~y) in one alternative effect
specification effi mutually exclusive, and ψj(~x, ~y) a
conjunction of (non-contradictory) positive and nega-
tive literals, having fluents in Flu as predicates, and ei-
ther constants or variables in ~x, ~y as terms, where each
such clause means that for all ~y, if φj(~x, ~y) holds when
the action is performed, then afterwards the literals in
ψj(~x, ~y) come to hold, and oneof(eff1, . . . , effn)
means that one of the alternative effects effi where
1 ≤ i ≤ n is applied.

A goal is a closed first-order formula Goal over Flu.
Following (Claßen et al. 2007), we translate such a

FOND domain into a corresponding NDBAT D as follows:4

• For each fluent F (~x) ∈ Flu, we include a situation calcu-
lus fluent F (~x)[s], i.e., F (~x, s).
• For each action A(~x) ∈ Act, we include an agent action
A(~x) and a system action A(~x, e), where e is the reaction
parameter.

• We define the initial situation description as F (~x, S0) ≡∨
F (~t)∈Init ~x = ~t, for every fluent F (~x) ∈ Flu.

• We define Possag(A(~x), s)
.
= Pre(A(~x))[s].

• We define Poss(A(~x, e), s) ≡ Possag(A(~x), s)∧ e=1∨
· · · ∨ e=n where Eff(A(~x)) = oneof(eff1, . . . , effn).
Note that the reaction independence requirement and re-
action existence requirement are both trivially satisfied (in
the FOND specification every effect/reaction can occur
when the action preconditions hold).
4In fact D can be generalized in several way maintaining all the

properties we talk about later. First we could have, infinite many
constants, and an initial situation description expressed as a set of
first-order formulas, as long as they are admit only one model mod-
ulo isomorphism (we have complete information on the initial sit-
uation). Second, we could allow environment reactions of the form
ei = Ei(~t), (i = 1, . . . , n), which include object parameters ~t to
be chosen by the environment. In this way even if the constants
are finite in the initial situation description corresponding to Init,
arbitrarily many new objects can be introduced by the environment
in its response along the execution. Studying conditions for decid-
ability of such theories, such as forms of state-boundedness (De
Giacomo et al. 2016a), is an interesting line for further work.

• We define effect axioms
φi(~x, ~y)[s] ⊃ [¬]F (~x, ~y, do(A(~x, i), s)

for each clause forall ~y. when(φj(~x, ~y), ψi(~x, ~y)) in
effi such that [¬]F is in one of the conjuncts in ψi. From
these effect axioms we obtain the successor axioms by
handling the frame problem through explanation closure
in the usual way (Reiter 2001).
We want to check whether there exists a (strong) plan,

i.e., a conditional plan, to achieve the goal Goal. The agent
has a strong plan if she can choose an action such that for
all environment reactions, she takes a step towards Goal,
and she can continue choosing actions in this way until she
reaches Goal. Formally, we can capture this by defining
inductively a predicate AgtCanForce(Goal, s) as follows:

AgtCanForce(Goal, s)
.
= ∀P.[ . . . ⊃ P (s)]

where . . . stands for
[Goal[s] ⊃ P (s)] ∧
[∃A.∃~x.(Possag(A(~x), s) ∧
∀e.(Poss(A(~x, e), s) ⊃ P (do(A(~x, e), s))))

⊃ P (s)]

That is,AgtCanForce(Goal, s) is defined as the least set of
situations such that (1) if Goal holds in situation s, then s is
in the set, and (2) if there exists an actionA(~x) that the agent
can perform in situation s such that for every environment
reaction e, the resulting situation do(A(~x, e), s) is in the set,
then s is in the set (∃A is a shorthand for a disjunction over
all action types/functions).

Observe that we are handling simultaneously two kinds
of nondeterminism here: an angelic one coming from the
(existential) choices of the agent, and a devilish one coming
from the possible (adversarial) reactions of the environment,
which are indeed quantified universally. The ability to quan-
tify separately over agent actions and environment reactions
is crucial for defining such a notion.

We take a strategy to be a function from situations to (in-
stantiated) agent actions. That is, f(s) = A(~t) denotes that
the strategy f applied to situation s returns A(~t) as the next
action to do. Note that situations represent histories in the
situation calculus, since they record all system actions, i.e.,
agent actions and environment reaction; thus, a strategy may
prescribe a different action in different situations where the
state is the same. For convenience, we assume to have a spe-
cial stop agent action with no effects and no preconditions,
that we use to denote when the strategy stops.

Given a strategy, we can check whether it forces Goal to
become true in spite of the environment reactions, i.e., is
a strong plan to achieve the goal. When Goal is achieved,
we require it to return the special action stop. Formally,
we can capture this by defining inductively a predicate
AgtCanForceBy(Goal, s, f) as follows:

AgtCanForceBy(Goal, s, f)
.
= ∀P.[ . . . ⊃ P (s)]

where . . . stands for
[(f(s) = stop ∧ Goal[s]) ⊃ P (s)] ∧
[∃A.∃~t.(f(s) = A(~t) 6= stop ∧ Possag(A(~t), s) ∧
∀e.(Poss(A(~t, e), s) ⊃ P (do(A(~t, e), s))))

⊃ P (s)]
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Notice that since the we are defining the predicate by in-
duction (i.e., by least fixpoint), a strategy that defers for-
ever without ever reaching the Goal would not satisfy such
a definition. In other words, we are guaranteed that sooner
or later by executing the actions prescribed by the strategy
f , the agent will achieve Goal no matter what reactions the
environment chooses.

The planning problem consists of finding a strategy f
such that AgtCanForceBy(Goal, S0, f) holds. In particu-
lar, if D corresponds to a FOND Dom then any technique to
synthesize (strong) plans in FOND, actually generates as the
plan one such f .
Theorem 2. Let Dom = (Flu, Const, Act, Init) be a
FOND and Goal a goal over it. Let D be the ND-
BAT corresponding to Dom. Then every strong plan f
that achieves Goal in Dom is a strategy such that D |=
AgtCanForceBy(Goal, S0, f) holds, and conversely any
strategy f such that D |= AgtCanForceBy(Goal, S0, f)
holds is a strong plan for achieving Goal in Dom.

Proof. (Sketch) We follow along the lines of (Claßen et
al. 2007) to show the correctness of the translation of Dom
into the NDBAT D. Moreover that given the description
in Dom, and in particular the fact that we have only finitely
many constants, a finite complete description of the ini-
tial states in terms of facts, and that effects cannot intro-
duce new terms, we may consider the object domain of
D finite. Then we exploit the second-order definition of
AgtCanForceBy(Goal, S0, f) to get the result.

Related to this result, it is interesting to observe that
the predicateAgtCanForce(Goal, s) could alternatively be
expressed in the Mu-Calculus as a least fixpoint (for details
see (De Giacomo et al. 2020)):

AgtCanForce(Goal, s)
.
=

[µX, s.Goal(s) ∨
∃A.∃~x.Possag(A(~x), s) ∧
∀e.(Poss(A(~x, e), s) ⊃ X(do(A(~x, e), s)))](s)

This means that in the propositional case, or when we have
finitely many objects, as in the case D is obtained from Dom,
we can generate a finite transition system that is bisimilar
to the situation tree of the NDBAT D, and on such a tran-
sition system the above formula can be evaluated directly
as a Mu-Calculus formula (De Giacomo et al. 2016a), thus
giving us a technique to check for the existence of a strat-
egy to achieve Goal via model checking, and then using the
witnesses of the existentials in the fixpoint computation to
build the strategy itself. In fact, the same idea applies also
if D has an infinite object domain, but is state-bounded (De
Giacomo et al. 2016a).

We close this section by observing that here we have
not considered any fairness constraints in the domain
(D’Ippolito et al. 2018; Aminof et al. 2020). Also,
we have not handed incomplete information about the ini-
tial situation (Sardiña et al. 2006), which relates to gen-
eralized planning, i.e., have a plan that works in differ-
ent domains (in our case models) (Srivastava et al. 2011;
Bonet and Geffner 2018). Both of these notions are indeed
of interest and deserve further study.

6 ConGolog Program Execution in
Nondeterministic Domains

Next we turn to high-level programs, which comprise ac-
tions and tests that belong to the domain of concern (rather
than being based on classical variables and assignments),
and are meant to be executed against a theory of action. In
the situation calculus, several such languages have been de-
veloped, including Golog (Levesque et al. 1997), which pro-
vides the usual structured programming constructs as well as
constructs for nondeterministic choices, ConGolog (De Gi-
acomo et al. 2000), which extends Golog to accommodate
concurrency, and IndiGolog (Sardina et al. 2004), which also
supports interleaving planning and execution.

Here, we consider programs in a variant of ConGolog
without recursive procedures (De Giacomo et al. 2000) and
where the test construct yields no transition and is final when
satisfied (Claßen and Lakemeyer 2008; De Giacomo et al.
2010).5 The key feature of our variant is that programs in-
struct agent actions and not system actions.

We consider the usual ConGolog constructs:

A(~x) agent action
φ? test for a condition
δ1; δ2 sequence
δ1 | δ2 nondeterministic branch
πx.δ nondeterministic choice of argument
δ∗ nondeterministic iteration
δ1‖δ2 interleaved concurrency

where A(~x) is an agent action and φ is situation-suppressed
(uniform) situation calculus formula. We require that the
variable x in programs of the form πx.δ range over ob-
jects, and occurs in some action term in δ, i.e., πx.δ acts
as a construct for the nondeterministic choice of action pa-
rameters. Conditional and while-loop constructs are defin-
able as usual: if φ then δ1 else δ2 = φ?; δ1|¬φ?; δ2 and
while φ do δ = (φ?; δ)∗;¬φ?. We use ε to denote the empty
program; in fact ε is simply an abbreviation for True?.

Programs are meant to be executed over an NDBAT. This
means that the actions, fluents, and constants mentioned in a
program δ must be those in the NDBAT.

The semantics of ConGolog is specified as usual in terms
of single-steps, using the following two predicates (De Gia-
como et al. 2000): Final(δ, s), specifying that the program
δ may terminate in situation s, and Trans(δ, s, δ′, s′), spec-
ifying that one step of program δ in situation s may lead to
situation s′ with δ′ remaining to be executed. We can call
configuration a pair (δ, s) with program δ and situation s.
Trans denotes one-step transitions between configurations
and Final denotes that a configuration may terminate.

For agent actions, we have Final(A(~x, s) ≡ False as
usual, while

Trans(A(~x), s, δ′, s′) ≡
∃e.Poss(A(~x, e), s) ∧ δ′ = ε ∧ s′ = do(A(~x, e), s).

This reflects the fact that agent actions are nondeterminis-
tic and their outcome depends on the environment reaction.

5This results in a synchronous test construct that does not allow
interleaving (every transition involves the execution of an action).
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The definitions of Trans and Final for the other ConGolog
constructs are as in (De Giacomo et al. 2010):

Final(φ?, s) ≡ φ[s]
Final(δ1; δ2, s) ≡ Final(δ1, s) ∧ Final(δ2, s)
Final(δ1|δ2, s) ≡ Final(δ1, s) ∨ Final(δ2, s)
Final(πx.δ, s) ≡ ∃x.Final(δ, s)
Final(δ∗, s) ≡ True
Final(δ1‖δ2, s) ≡ Final(δ1, s) ∧ Final(δ2, s)

Trans(φ?, s, δ′, s′) ≡ False
Trans(δ1; δ2, s, δ

′, s′) ≡
Trans(δ1, s, δ

′
1, s
′) ∧ δ′ = δ′1; δ2 ∨

Final(δ1, s) ∧ Trans(δ2, s, δ
′, s′)

Trans(δ1 | δ2, s, δ′, s′) ≡
Trans(δ1, s, δ

′, s′) ∨ Trans(δ2, s, δ
′, s′)

Trans(πx.δ, s, δ′, s′) ≡ ∃x.Trans(δ, s, δ′, s′)
Trans(δ∗, s, δ′, s′) ≡ Trans(δ, s, δ′′, s′) ∧ δ′ = δ′′; δ∗

Trans(δ1‖δ2, s, δ′, s′) ≡
Trans(δ1, s, δ

′
1, s
′) ∧ δ′ = δ′1‖δ2 ∨

Trans(δ2, s, δ
′
2, s
′) ∧ δ′ = δ1‖δ′2

Using Trans and Final , we can define Do(δ, s, s′), which
says that the complete execution of the program δ from s
may result in the new situation s′ (Levesque et al. 1997;
De Giacomo et al. 2000). Formally Do(δ, s, s′)

.
=

∃δ′. Trans∗(δ, s, δ′, s′) ∧ Final(δ′, s′), where Trans∗ de-
notes the reflexive transitive closure (defined by induction)
of the one-step transition Trans , i.e., Trans∗(δ, s, δ′, s′)
means that there exists a sequence of one-step transitions
taking the configuration (δ, s) into the configuration (δ′, s′).

Note that in Do(δ, s, s′), we can think of s′ as describing
a sequence of actions from s that correspond to a nondeter-
ministically chosen execution of the program δ in s. When
one uses a standard BAT where actions are deterministic, s′
can also be considered as implicitly representing a strategy
(c.f., previous section) for the agent to execute the program.
However when Do(δ, s, s′) is used with an NDBAT, we lose
the interpretation of s′ as an agent strategy, since we need to
consider the nondeterministic environment reactions, which
are implicitly assumed to be chosen by the environment co-
operatively with the agent so as to arrive to a successful ter-
minating execution of the program.

It is of great interest to define a version of Do that sep-
arates the nondeterminism in the program due to the agent
choices and can be considered angelic, from the nondeter-
minism due to environment choices, which under skeptical
reasoning should be considered adversarial. For this reason,
we define an adversarial version of Do that maintains the
angelic nondeterminism for the agent, but assumes a devil-
ish (adversarial) nondeterminism for the environment. Such
a definition requires the explicit use of agent strategies al-
ready introduced in the previous section. Specifically we
introduce a predicate AgtCanForceBy(δ, s, f) that states
that the strategy f , a function from situation to agent action
(including the special action stop), executes the nondeter-
ministic program δ considering its nondeterminism angelic,
as in the standard Do, but also considering the nondeter-
minism of environment reactions devilish (i.e., adversarial).

Formally, we define AgtCanForceBy(δ, s, f) inductively:

AgtCanForceBy(δ, s, f)
.
= ∀P.[ . . . ⊃ P (δ, s)] ∧

where . . . stands for
[(f(s) = stop ∧ Final(δ, s)) ⊃ P (δ, s)] ∧
[∃A.∃~t.(f(s) = A(~t) 6= stop ∧
∃e.∃δ′.Trans(δ, s, δ′, do(A(~t, e), s)) ∧
∀e.(∃δ′.Trans(δ, s, δ′, do(A(~t, e), s)) ⊃
∃δ′.Trans(δ, s, δ′, do(A(~t, e), s)) ∧ P (δ′, do(A(~t, e), s))))
⊃ P (δ, s)]

Crucially in the above, the choice of δ′ is considered angelic,
i.e., in favor of the agent, and quantified existentially, while
instead the choice of the environment reaction e is consid-
ered devilish, i.e., adversarial, and quantified universally.

To fully grasp this definition, let’s suppose for a moment
that the program δ is situation determined (De Giacomo et
al. 2012), that is:

SituationDetermined(δ, s)
.
= ∀s′, δ′, δ′′.

T rans∗(δ, s, δ′, s′) ∧ Trans∗(δ, s, δ′′, s′) ⊃ δ′=δ′′

Then, given a configuration (δ, s) and a new situation
do(A(~t, e), s), there will be only one choice for δ′ such that
Trans(δ, s, δ′, do(A(~t, e), s)) in the definition above.

If instead the program is not situation determined, there
could be many possible δ′. Notice that the agent does not
choose any of them explicitly, but the existential quantifica-
tion in AgtCanForceBy(δ, s, f) will be resolved in favor
of actually making the formula true, in this way guarantee-
ing that the strategy f leads to termination. In the original
paper on Golog, where Do was first introduced (Levesque et
al. 1997), one of the key feature of the language is angelic
nondeterminism. Quoting from that paper: “The GOLOG
programmer can define complex action schemas-advice to
a robot about how to achieve certain effects–without spec-
ifying in detail how to perform these actions. It becomes
the theorem prover’s responsibility (i.e., the interpreter’s re-
sponsibility, ndr) to figure out one or more detailed exe-
cutable sequences of primitive actions which will achieve
the desired effects.” Here we are maintaining this angelic
nondeterminism, though now the strategy cannot be simply
a sequence of actions, since we are executing our program
in a nondeterministic (i.e., adversarial) environment.

We observe that if we want the agent to control also
the remaining program in the transitions, we need a sec-
ond strategy function g, such that that given the current
program δ and the next situation do(A(~t, e), s), as deter-
mined by the current situation s, the agent action A(~t), and
the environment reaction e, returns the remaining program
after the transition δ′. We can define a new version of
AgtCanForceBy that also takes g as an argument:

AgtCanForceBy(δ, s, f, g)
.
= ∀P.[ . . . ⊃ P (δ, s)]
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where . . . stands for

[(f(s) = stop ∧ Final(δ, s)) ⊃ P (δ, s)] ∧
[∃A.∃~t.(f(s) = A(~t) 6= stop ∧
∃e.∃δ′.Trans(δ, s, δ′, do(A(~t, e), s)) ∧
∀e.(∃δ′.T rans(δ, s, δ′, do(A(~t, e), s)) ⊃
∃δ′.g(δ, do(A(~t, e), s)) = δ′ ∧
Trans(δ, s, δ′, do(A(~t, e), s)) ∧ P (δ′, do(A(~t, e), s))))

⊃ P (δ, s)]

Finally, note that in a setting of complete information (i.e.,
we have complete information about the initial state), we can
check for the existence of such strategies by:

AgtCanForce(δ, s)
.
= ∀P.[ . . . ⊃ P (δ, s)]

where . . . stands for

[Final(δ, s)) ⊃ P (δ, s)] ∧
[∃A.∃~x.(∃e.∃δ′Trans(δ, s, δ′, do(A(~x, e), s))) ∧
∀e.(∃δ′.Trans(δ, s, δ′, do(A(~x, e), s)) ⊃
∃δ′.Trans(δ, s, δ′, do(A(~x, e), s)) ∧ P (δ′, do(A(~x, e), s)))
⊃ P (δ, s)]

The strategy itself here is implicit in the existential choices.
Example 7. Continuing with our running example, we have:

Dtrk |= AgtCanForceBy(δ1, S0, f)

where δ1
.
= while pos < Dest do fwd ;

if pos > Dest then bk1 else ε

and f(s) =

{
fwd if pos(s) < Dest,
bk1 if pos(s) > Dest,
stop if pos(s) = Dest

Here δ1 is a program that fully specifies the strategy, i.e., do
fwd until at or beyond the destination and then do bk1 once
if beyond. We can also show that

Dtrk |= AgtCanForceBy(δ2, S0, f)

where δ2
.
= (fwd |bk1)∗; pos(s) = Dest?

Here δ2 is a very general program that repeatedly does fwd
or bk1 and may stop when the agent is at the destination.
Note that δ2 is situation-determined. We also have that

Dtrk |= Dest > 0 ⊃ AgtCanForceBy(δ3, S0, f)

where δ3
.
= fwd∗; fwd ;

if pos > Dest then bk1 else ε

δ3 is not situation-determined and the executor has to
choose when to do the last fwd .

Let us focus for a moment on the case where the environ-
ment is deterministic in its responses, i.e.:

Possag(A(~x), s) ⊃
Poss(A(~x, e), s) ∧ Poss(A(~x, e′), s) ⊃ e = e′

Note that we already have Possag(A(~x), s) ⊃
∃e.Poss(A(~x, e), s) by the reaction existence require-
ments. Let C be our ConGolog axioms and definitions plus
the representation of programs as terms as in (De Giacomo
et al. 2000). Then we have

Theorem 3. Let D be an NDBAT be such that the environ-
ment is deterministic in its responses. Then

D ∪ C |= AgtCanForce(δ, s) ≡ ∃s′.Do(δ, s, s′)

Proof. (Sketch) If the the environment is deterministic in
its responses, then we can substitute the universal quan-
tification over e in AgtCanForce(δ, s) by an existential,
and then check that the resulting formula is equivalent to
∃δ′. Trans∗(δ, s, δ′, s′) ∧ Final(δ′, s′).

This theorem shows that our AgtCanForce(δ, s),
and hence AgtCanForce(δ, s, f), are extensions of
∃s′.Do(δ, s, s′) and Do(δ, s, s′) respectively.

In a setting with incomplete information the existential
choices, and hence strategy implicit in the resulting situation
s′ inDo, as well as the strategy f inAgtCanForce(δ, s, f),
would depend on the model. In both cases, in different mod-
els the strategy would be different in general. Hence the
agent would need to know in which model she is, in order
to adopt the correct strategy. If we want instead a strat-
egy the works for all models, then in a deterministic en-
vironment we would need to find a ground system action
sequence ~a such that D ∪ C |= Do(δ, S0, do(~a, S0)), and
in our general setting find a ground strategy f such that
D ∪ C |= AgtCanForceBy(δ, S0, f) (or f and g such that
D ∪ C |= AgtCanForceBy(δ, S0, f)). In both cases, this
is difficult since it requires second-order quantification over
functions to quantify over strategies.

7 Conclusion
In this paper, we have presented a nondeterministic vari-
ant of the situation calculus. We started by separating the
agent’s actuation of the action from the environment’s de-
termination of the action’s outcome. We modeled this by
adding to every action type/function an additional param-
eter that captures the environment’s reaction to the action.
In this way, we retain a notion of “system action” formed
by the agent’s action together with the environment’s reac-
tion, as in the standard situation calculus. In addition, we
gain the ability to quantify separately over the agent’s ac-
tion and the environment’s reaction. Thus notably, we can
capture the angelic nondeterminism of the agent’s choos-
ing actions through existential quantification, and the devil-
ish nondeterminism of the environment’s response (which is
not controlled by the agent), though universal quantification.
We have also shown that we can capture planning in non-
deterministic domains, as well as the original idea of hav-
ing Golog/ConGolog programs specify program sketches,
with angelic nondeterminism to be resolved by the agent
as needed. In particular, we make this powerful idea work
seamlessly in our nondeterministic situation calculus.

We note that predicates that define planning in nonde-
terministic domains, as well as nondeterministic program
execution, must be expressed in second order logic, thus
making automated reasoning challenging (see (Reiter 2001)
for some approaches without termination guarantees). But,
it should be noted that all these formulas are in the end
fixpoint-formulas. So if we consider the propositional case,
or if we consider domains with a finitely many objects (and
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environment reactions based on these objects) as in (Ter-
novskaia 1999), then all these properties can be reduced to
Mu-Calculus formulas over situations (De Giacomo et al.
2016a) or over configurations formed by pairs of programs
and situations (De Giacomo et al. 2016b)). This means
that checking these properties is decidable, has it is decid-
able to synthesize strategies/plans to fulfill them. Moreover,
reasoning remains decidable when the NDBAT admits in-
finitely many objects, but is state-bounded (De Giacomo et
al. 2016a; Calvanese et al. 2018; De Giacomo et al. 2021).
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A Proof of Theorem 1
Theorem 1. Let D be an NDBAT, σ a ground agent action
sequence, s a situation term containing no situation or action
variables, and φ a situation-suppressed formula containing
no action variables. Then CertainlyExecutable(σ, s)
is equivalent to a regressable formula, and so are
PossiblyExecutable(σ, s), CertainlyAfter(σ, φ, s),
PossiblyAfter(σ, φ, s), and ForcesAfter(σ, φ, s).

Proof: Assume that σ is ground agent action sequence and
s a situation term containing no situation or action variables.

First, we show that CertainlyExecutable(σ, s) is equivalent
to a regressable formula by induction on the length of
σ. Base case: D |= CertainlyExecutable(ε, s) ≡ True,
which is regressable. For the general case, we have:

D |= CertainlyExecutable([A(~x), σ], s)
≡ Possag(A(~x), s) ∧
∀s′.Doag(A(~x), s, s′) ⊃ CertainlyExecutable(σ, s′)

≡ Possag(A(~x), s) ∧
∀e.(Poss(A(~x, e), s) ⊃

CertainlyExecutable(σ, do(A(~x, e), s)))
≡ ∃e.φPoss

A (~x, e, s) ∧ ∀e.(φPoss
A (~x, e, s) ⊃

CertainlyExecutable(σ, do(A(~x, e), s)))

where φPoss
A (~x, e, s) is the right-hand-side of the action pre-

condition axiom for A and is regressable when s contains
no situation or action variables. The result follows by the
induction hypothesis.

Secondly, we show that PossiblyExecutable(σ, s) is equiva-
lent to a regressable formula by induction on the length of σ.
Base case: D |= PossiblyExecutable(ε, s) ≡ True, which
is regressable. For the general case, we have:

D |= PossiblyExecutable([A(~x), σ], s)
≡ ∃s′.Doag(A(~x), s, s′) ∧ PossiblyExecutable(σ, s′)
≡ ∃e.Poss(A(~x, e), s) ∧

PossiblyExecutable(σ, do(A(~x, e), s))
≡ ∃e.φPoss

A (~x, e, s) ∧
PossiblyExecutable(σ, do(A(~x, e), s))

where φPoss
A (~x, e, s) is the right-hand-side of the action pre-

condition axiom for A and is regressable when s contains

no situation or action variables. The result follows by the
induction hypothesis.

Thirdly, we show that CertainlyAfter(σ, φ, s) is equivalent
to a regressable formula by induction on the length of σ. For
the base case, we have:

D |= CertainlyAfter(ε, φ, s)
≡ ∀s′.Doag(ε, s, s′) ⊃ φ[s′]
≡ ∀s′.s′ = s ⊃ φ[s′]
≡ φ[s]

The latter is regressable given our assumptions about s. For
the general case, we have:

D |= CertainlyAfter([A(~x), σ], φ, s)
≡ ∀s′.Doag([A(~x), σ], s, s′) ⊃ φ[s′]
≡ ∀s′′.Doag(A(~x), s, s′′)
⊃ ∀s′Doag(σ, s′′, s′) ⊃ φ[s′]
≡ ∀s′.Doag(A(~x), s, s′) ⊃ CertainlyAfter(σ, φ, s′)
≡ ∀e.Poss(A(~x), e), s) ⊃

CertainlyAfter(σ, φ, do(A(~x, e), s))
≡ ∀e.φPoss

A (~x, e, s) ⊃
CertainlyAfter(σ, φ, do(A(~x, e), s))

where φPoss
A (~x, e, s) is the right-hand-side of the action pre-

condition axiom for A and is regressable when s contains
no situation or action variables. The result follows by the
induction hypothesis.

Fourthly, we show that PossiblyAfter(σ, φ, s) is equivalent
to a regressable formula by induction on the length of σ. For
the base case, we have:

D |= PossiblyAfter(ε, φ, s)
≡ ∃s′.Doag(ε, s, s′) ∧ φ[s′]
≡ ∃s′.s′ = s ∧ φ[s′]
≡ φ[s]

The latter is regressable given our assumptions about s. For
the general case, we have:

D |= PossiblyAfter([A(~x), σ], φ, s)
≡ ∃s′.Doag([A(~x), σ], s, s′) ∧ φ[s′]
≡ ∃s′′.Doag(A(~x), s, s′′)
∧ ∃s′.Doag(σ, s′′, s′) ∧ φ[s′]

≡ ∃s′.Doag(A(~x), s, s′) ∧ PossiblyAfter(σ, φ, s′)
≡ ∃e.Poss(A(~x), e), s) ∧

PossiblyAfter(σ, φ, do(A(~x, e), s))
≡ ∃e.φPoss

A (~x, e, s) ∧
PossiblyAfter(σ, φ, do(A(~x, e), s))

where φPoss
A (~x, e, s) is the right-hand-side of the action

precondition axiom forA and is regressable when s contains
no situation or action variables. The result follows by the
induction hypothesis.

Finally, ForcesAfter(σ, φ, s) is defined as
CertainlyAfter(σ, φ, s) ∧ CertainlyExecutable(σ, s).
It follows immediately by our first and third results above
that is ForcesAfter(σ, φ, s) equivalent to a regressable
formula under the assumptions.
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