
A.T. Borgida et al. (Eds.): Mylopoulos Festschrift, LNCS 5600, pp. 483–503, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Using the ConGolog and CASL Formal Agent
Specification Languages for the Analysis, Verification,

and Simulation of i* Models

Alexei Lapouchnian1 and Yves Lespérance2

1 Department of Computer Science, University of Toronto,
Toronto, ON M5S 3G4, Canada
alexei@cs.toronto.edu

2 Department of Computer Science and Engineering, York University,
Toronto, ON M3J 1P3, Canada
lesperan@cse.yorku.ca

Abstract. This chapter describes an agent-oriented requirements engineering
approach that combines informal i* models with formal specifications in the
multiagent system specification formalisms ConGolog and its extension CASL.
This allows the requirements engineer to exploit the complementary features of
the frameworks. i* can be used to model social dependencies between agents
and how process design choices affect the agents’ goals. ConGolog or CASL
can be used to model complex processes formally. We introduce an intermedi-
ate notation to support the mapping between i* models and ConGolog/CASL
specifications. In the combined i*-CASL framework, agents’ goals and knowl-
edge are represented as their subjective mental states, which allows for the for-
mal analysis and verification of, among other things, complex agent interactions
and incomplete knowledge. Our models can also serve as high-level specifica-
tions for multiagent systems.

This volume is dedicated to John Mylopoulos. Yves was fortunate to have John as his
Master's thesis supervisor 30 years ago and John is Alexei's current Ph.D. thesis su-
pervisor. The work described in this paper fits perfectly in the model-based approach
to software/systems engineering that John developed and promoted throughout his
career. His vision, with its roots in knowledge representation research, its embrace of
ideas from social science, and its insights into the "model-based" future of soft-
ware/systems engineering continues to inspire us. Thanks John, for all the inspiration
and mentoring.

1 Introduction

i* [29] is an informal diagram-based language for early-phase requirements engineer-
ing that supports the modeling of social and intentional dependencies between agents
and how process design choices affect the agents’ goals, both functional and non-
functional. It has become clear that such social and organizational issues play an im-
portant role in many domains and applications. However, i* is not a formal language,

484 A. Lapouchnian and Y. Lespérance

has inadequate precision, and thus provides limited support for describing and analyz-
ing complex processes. While it is possible to informally analyze small systems, for-
mal analysis is needed for realistically-sized ones.

To alleviate this, we first propose an approach that integrates i* with a formal mul-
tiagent system specification language, ConGolog [5, 13], in the context of agent-
oriented requirements engineering. ConGolog is an expressive formal language for
process specification and agent programming. It supports the formal specification of
complex multiagent systems, but lacks features for modeling the rationale behind design
choices available in i*. In this paper, we show how i* and ConGolog can be used in
combination. The i* framework will be used to model different alternatives for the de-
sired system, to analyze and decompose the functions of the different actors, and to
model the dependency relationships between the actors and the rationale behind process
design decisions. The ConGolog framework will be used to formally specify the system
behaviour described informally in the i* model. The ConGolog model will provide
more detailed information about the actors, tasks, processes, and goals in the system,
and the relationships between them. Complete ConGolog models are executable and this
will be used to validate the specifications by simulation. To bridge the gap between i*
and ConGolog models, an intermediate notation involving the use of process specifica-
tion annotations in i* SR diagrams will be introduced [26, 27]. We will describe how
such annotated SR (ASR) diagrams can be systematically mapped into ConGolog
formal specifications that capture their informal meaning, and support validation
through simulation and verification. The annotations are not used to capture design-
level information, but to obtain a more complete and precise model of the domain.

Its support for modeling intentional notions such as goals makes the i* notation
especially suited for developing multiagent systems, e.g., as in the Tropos
agent-oriented development framework [2]. Agents are active, social, and adaptable
software system entities situated in some environment and capable of autonomous
execution of actions in order to achieve their objectives [28]. Furthermore, most prob-
lems are too complex to be solved by just one agent — one must create a multiagent
system (MAS) with several agents working together to achieve their objectives and
ultimately deliver the desired application. Therefore, adopting the agent-oriented
approach to software engineering means that the problem is decomposed into multi-
ple, autonomous, interacting agents, each with their own objectives. Agents in MAS
frequently represent individuals, companies, etc. This means that there is an “underly-
ing organizational context” [8] in MAS. Like humans, agents need to coordinate their
activities, cooperate, request help from others, etc., often through negotiation. Unlike
in object-oriented or component-based systems, interactions in multiagent systems
occur through high-level agent communication languages, so interactions are mostly
viewed not at the syntactic level, but “at the knowledge level, in terms of goal delega-
tion, etc.” [8]. Therefore, modeling and analyzing agents’ mental states helps in the
specification and analysis of multiagent systems.

In requirements engineering (RE), goal-oriented approaches, e.g., KAOS [4] have
become prominent. In Goal-Oriented Requirements Engineering (GORE), high-level
stakeholder objectives are identified as goals and later refined into fine-grained re-
quirements assignable to agents/components in the system-to-be or in its environment.
Their reliance on goals makes goal-oriented requirements engineering methods and
agent-oriented software engineering a great match. Moreover, agent-oriented analysis

 Using the ConGolog and CASL Formal Agent Specification Languages 485

is central to requirements engineering since the assignment of responsibilities for
goals and constraints among components in the software-to-be and agents in the envi-
ronment is the main outcome of the RE process [10]. Therefore, it is natural to use a
goal-oriented requirements engineering approach when developing MAS. With
GORE, it is easy to make the transition from the requirements to the high-level MAS
specifications. For example, strategic relationships among agents will become high-
level patterns of inter-agent communication.

Thus, it would be desirable to devise an agent-oriented requirements engineering
approach with a formal component that supports rigorous formal analysis, including
reasoning about agents’ goals (and knowledge). This would allow for rigorous formal
analysis of the requirements expressed as the objectives of the agents in a MAS.

Ordinary ConGolog does not support the specification of the intentional features of
i* models, that is, the mental states of the agents in the system/organization modeled;
these must be operationalized before they are mapped into ConGolog. But there is an
extension of ConGolog called the Cognitive Agents Specification Language (CASL)
[22, 23, 24] that supports formal modeling of agent mental states, incomplete agent
knowledge, etc. Mapping i* models into CASL gives the modeler the flexibility and
intuitiveness of the i* notation as well as the powerful formal analysis capabilities of
CASL. So we will extend the i*-ConGolog approach to combine i* with CASL and
accommodate formal models of agents’ mental states. Our intermediate notation will
be generalized to support the intentional/mental state modeling features of CASL [11,
12], in what we will call intentional annotated SR (iASR) diagrams. With our i*-
CASL-based approach, a CASL model can be used both as a requirements analysis
tool and as a formal high-level specification for a multiagent system that satisfies the
requirements. This model can be formally analyzed using the CASLve [22, 24] verifi-
cation tool or other tools and the results can be fed back into the requirements model.

One of the main features of this approach is that goals (and knowledge) are as-
signed to particular agents thus becoming their subjective attributes as opposed to
being objective system properties as in many other approaches, e.g., Tropos [2] and
KAOS [4]. This allows for the modeling of conflicting goals, agent negotiation, in-
formation exchange, complex agent interaction protocols, etc.

The rest of the chapter is organized as follows. Section 2 briefly introduces i* and a
case study that we will refer to throughout the chapter, and gives an overview of the
ConGolog framework. Section 3 presents our approach to map i* diagrams into Con-
Golog formal specifications and discusses the use of simulation to validate the mod-
els. Section 4 discusses our second approach where i* models are mapped into CASL,
to preserve the intentional features of the models in the formal specifications; we also
discuss verification. We conclude in Section 5 by summarizing our results, comparing
our approach to related work, and discussing possible extensions.

2 Background

2.1 The i* Framework and a Case Study

i* [29] is an agent-oriented modeling framework that can be used for requirements
engineering, business process reengineering, etc. i* centers on the notion of inten-
tional actor and intentional dependency. In the approaches described here, we use i*

486 A. Lapouchnian and Y. Lespérance

as a graphical requirements modeling notation. We will assume a basic knowledge of
i* in the remainder; to learn about i* see [30] or the chapter by Yu in this book. We
will add various new notational elements to SR diagrams to produce our ASR and
iASR diagrams; we will discuss these in detail in later sections. Note also that we do
not use softgoals or resource dependencies in ASR and iASR (we will explain why
later).

To illustrate the approach that we propose, we will use a variant of the meeting
scheduling problem, which has become a popular exemplar in RE [9]. In the context
of the i* modeling framework a meeting scheduling process was first analyzed in
[30]. We introduce a number of modifications to the meeting scheduling process to
make our models easier to understand. For instance, we take the length of meetings to
be the whole day. We also assume that in the environment of the system-to-be there is
a legacy software system called the Meeting Room Booking System (MRBS) that handles
the booking of meeting rooms. Complete case studies are presented in [11, 12].

Disruptor AtMeetingMeeting
Initiator

Meeting
Participant

Meeting
Scheduler

MRBS

Meeting
Scheduled

Meeting
Info

AtMeeting

Room Booked

Available
Dates

Location

Meeting
Info

Agent Role

Actors

Task Dependency

Goal Dependency

Resource Dependency

Intentional
Dependencies

Softgoal Dependency

Fig. 1. The Meeting Scheduler in its environment

SetupMeeting

MeetingSetup

Meeting
Scheduled

Use
Meeting

Scheduler

Meeting
Scheduler

Meeting
Scheduled

Get
Meeting

Info

Meeting Info

+/-

Task Decomposition

Means-Ends Link

Softgoal Contribution

Actor Boundary

Task

Goal

Softgoal

Legend
Meeting
Initiator

Schedule
Manually

Minimize Effort

+ –

Fig. 2. SR model for the meeting initiator

Fig. 1 is a Strategic Dependency diagram showing the computerized Meeting
Scheduler (MS) agent in its environment. Here, the role Meeting Initiator (MI) depends on
the MS for scheduling meetings and for being informed about the meeting details. The
MS, in turn, depends on the Meeting Participant (MP) role for attending meetings and for
providing his/her available dates to it. The MS uses the booking system to book rooms

 Using the ConGolog and CASL Formal Agent Specification Languages 487

for meetings. The Disruptor actor represents outside actors that cause changes in par-
ticipants’ schedules, thus modeling the environment dynamics.

Fig. 2 is a simple SR models showing some details of the MI process. To schedule
meetings, the MI can either do it manually, or delegate it to the scheduler. Softgoal
contribution links specify how process alternatives affect quality requirements (soft-
goals), and so softgoals such as MinimizeEffort in Fig. 2 are used to evaluate these
alternatives.

2.2 The Formal Foundations: The Situation Calculus and ConGolog

ConGolog [5] is a framework for process modeling and agent programming. It is
based on the situation calculus [15], a language of predicate logic for representing
dynamically changing worlds. The ConGolog framework can be used to model com-
plex processes involving loops, concurrency, multiple agents, etc. Because it is logic-
based, the framework can accommodate incompletely specified models, either in the
sense that the initial state of the system is not completely specified, or that the proc-
esses involved are non-deterministic and may evolve in any number of ways.

A ConGolog specification includes two components. First, to support reasoning
about the processes executing in a certain domain, that domain must be formally
specified: what predicates describe the domain, what primitive actions are available to
agents, what the preconditions and effects of these actions are, and what is known
about the initial state of the system. The other component of a ConGolog specification
is the model of the process of interest, i.e. the behaviour of the agents in the domain.

In ConGolog and in the situation calculus, a dynamic domain is modeled in terms
of the following entities:

 Primitive actions: all changes to the world are assumed to be the result of named
primitive actions that are performed by some agent; primitive actions are repre-
sented by terms, e.g. acceptAgreementReq(participant,MS,reqID, date), i.e. the
participant agent accepts the request reqID from the MS agent to attend a meeting
on date.

 Situations: these correspond to possible world histories viewed as sequences of
actions. The actual initial situation (where no actions have yet been executed) is
represented by the constant S0. There is a distinguished binary function symbol do
and a term do(a,s) denotes the situation that results from action a being performed
in situation s. For example, do(a3,do(a2,do(a1,S0))) represents the situation where
first a1, then a2, and then a3 have been performed starting in the initial situation S0.
Thus, situations are organized in tree structures rooted in some initial situation; the
situations are nodes in the tree and the edges correspond to primitive actions.

 Fluents: these are properties, relations, or functions of interest whose value may
change from situation to situation; they are represented by predicate and function
symbols that take a situation term as their last argument, e.g. agreementReqRcvd(
participant,MS,reqID, date,s), i.e. participant has received a request reqID from
MS to agree to hold a meeting on date in situation s. Non-fluent predi-
cates/functions may also be used to represent static features of the domain.

488 A. Lapouchnian and Y. Lespérance

The dynamics of a domain are specified using four kinds of axioms:

 Action precondition axioms: these state the conditions under which an action can
be performed; they use the predicate Poss(a,s), meaning that action a is possible in
situation s. E.g., in our meeting scheduling domain, we have:

Poss(acceptAgreementReq(participant,MS,reqID,date),s) ≡
 agreementReqRcvd(participant,MS,reqID,date,s) ∧

dateFree(participant,date,s)

This says that in situation s, participant may perform the action of accepting a
request reqID from MS to hold a meeting on date if and only if he has received a
request to that effect and the date is free for him.

 Successor state axioms (SSA): these specify how the fluents are affected by the
actions in the domain. E.g., in our meeting scheduling domain, we have:

agreementReqRcvd(participant,MS,reqID,date,do(a,s)) ≡
a = requestAgreement(MS,participant,date) ∧

requestCounter(s) = reqID ∨
agreementReqRcvd(participant,MS,reqID,date,s)

This says that participant has received a request reqID from MS to agree to hold
a meeting on date in situation do(a,s) if and only if the action a is such a request
and the value of the request counter is reqID or if she had already received such a
request in situation s.

Successor state axioms were introduced by Reiter [19] and provide a solution
to the frame problem. They can be generated automatically from a specification
of the effects of primitive actions if we assume that the specification is complete.
Lespérance et al. [13] described a convenient high-level notation for specifying
the effects (and preconditions) of actions and a tool that compiles such specifica-
tions into successor state axioms.

 Initial situation axioms: these specify the initial state of the modeled system. E.g.,
in our meeting scheduling domain, we might have the following initial situation
axiom: participantTimeSchedule(Yves,S0) = [10,12], representing the fact that
agent Yves is busy on the 10th and 12th in the initial situation.

 Other axioms: these include unique name axioms for actions, axioms specifying
the agent of each type of action, and domain independent foundational axioms as
described in [19].

The process of a system is specified procedurally in the ConGolog framework. We
define a main procedure that specifies the behaviour of the whole system. Every agent
has an associated ConGolog procedure to represent its behaviour in the system. The
behaviour of agents is specified using a rich high-level programming language with
recursive procedures, while loops, conditionals, non-determinism, concurrency, and
interrupts [5]. The available constructs include:

 Using the ConGolog and CASL Formal Agent Specification Languages 489

a, primitive action
φ?, wait for condition
δ1;δ2, sequence
δ1|δ2, nondeterministic branch
δ*, nondeterministic iteration
πv.δ, nondeterministic choice of argument
if φ then δ1 else δ2 endIf, conditional
while φ do δ endWhile, while loop
δ1||δ2, concurrency with equal priority
δ1»δ2, concurrency with δ1 at higher priority
guard φ do δ endGuard guard
<v: φ → δ until α> interrupt
β(p), procedure call

Note the presence of several non-deterministic constructs. For instance, δ1|δ2 nonde-
terministically chooses between executing δ1 or δ2. πv.δ non-deterministically picks a
binding for the variable v and performs the program δ for that binding. δ* performs δ
zero or more times. A test/wait action φ? blocks until the condition φ becomes true.
<v: φ → δ until α> represents an interrupt; when the trigger condition φ becomes true
for some value of v, the interrupt triggers and the body, δ, is executed; the interrupt
may trigger repeatedly as long as its cancellation condition α does not hold. The guard
construct blocks the execution of a program δ until the condition φ becomes true.

A formal semantics based on transition systems (structural operational semantics)
has been specified for ConGolog [5]. It defines a special predicate Do(program,s,s′)
that holds if there is a successful execution of program that ends in situation s′ after
starting in s. Communication between agents can be represented by actions performed
by the sender agent, which affect certain fluents that the recipient agent has access to.

A process simulation and validation tool for ConGolog has been implemented [5].
It uses an interpreter for ConGolog implemented in Prolog. This implementation
requires that the precondition axioms, successor state axioms, and axioms about the
initial situation be expressed as Prolog clauses, and relies on Prolog’s closed world
assumption and negation as failure. Thus with this tool, simulation can only be per-
formed for completely specified initial states.

A verification tool has also been developed [22, 24]. We discuss verification in
Section 4.3. De Giacomo et al. [5] describe applications of ConGolog in different
areas, such as robot programming, personal assistants, etc. Lespérance et al. [13]
discuss the use of ConGolog (without combining it with i*) for process modeling and
requirements engineering.

3 Using ConGolog for the Analysis, Simulation, and Verification
of i* Models

While the informal i* notation can be successfully used for modeling and analysing
relatively small systems, formal analysis is very helpful with larger systems. Thus,
formal analysis of i* models is one of the goals of the approaches presented here.
Another aim is to allow for a smooth transition from requirements specifications to

490 A. Lapouchnian and Y. Lespérance

high-level design for agent-based systems. While the i* SR diagram notation allows
many aspects of processes to be represented, it is somewhat imprecise and the models
produced are often incomplete. For instance, it is not specified whether the subtask in a
task decomposition link has to be performed once or several times. In a ConGolog
model, on the other hand, the process must be completely and precisely specified (al-
though non-deterministic processes are allowed). We need to bridge this gap. To do
this, we will introduce a set of annotations to SR diagrams that allow the missing in-
formation to be specified. We also want to have a tight mapping between this Anno-
tated SR (ASR) diagram and the associated ConGolog model, one that specifies which
parts of each model are related. This allows us to identify which parts of the ConGolog
model need to be changed when the SR/ASR diagram is modified and vice versa. The
i*-ConGolog approach that we describe in this section is largely based on [26, 27].

3.1 Annotated SR Diagrams

The main tool that we use for disambiguating SR diagrams is annotations. Annota-
tions allow analysts to model the domain more precisely and capture data/control
dependencies among goals and other details. Annotations, introduced in [26, 27] and
extended in [11, 12], are textual constraints on ASR diagrams and can be of three
types: composition, link, and applicability conditions. Composition annotations
(specified by σ in Fig. 3) are applied to task and means-ends decompositions and
specify how the subtasks/subgoals are to be combined to execute the supertask and
achieve the goal respectively. Four types of composition are allowed: sequence (“;”),
which is the default for task decompositions, concurrency (“||”), prioritized concur-
rency (“»”), and alternative (“|”), which is the default for means-ends decompositions.
These annotations are applied to subtasks/subgoals from left to right. E.g., in Fig. 3, if
the ”»” annotation is applied, n1 has the highest priority, while nk has the lowest. The
choice of composition annotations is based on the ways actions and procedures can be
composed in ConGolog.

Link annotations (γi in Fig. 3) are applied to subtasks/subgoals (ni) and specify
how/under which condition they are supposed to be achieved/executed. There are six
types of link annotations (corresponding to ConGolog operators): while loop, for loop
(introduced in [22]), the if condition, the pick, the interrupt, and the guard (introduced
in [11, 12]). The difference between the if annotation and the guard is that the guard
blocks execution until its condition becomes true while the task with the if link anno-
tation is skipped if the condition is not true. The pick annotation
(π(VariableList,Condition)) non-deterministically picks values for variables in the

...

Composition
Annotation

γ1 γkγ2 γ3

σ
Supertask

n1 n3n2 nk

Fig. 3. Composition and link annotations

 Using the ConGolog and CASL Formal Agent Specification Languages 491

subtask that satisfy the condition. The interrupt (whenever(varList, Condition, Can-
celCondition)) fires and executes the subtask whenever there is a binding for the vari-
ables that satisfies the condition until the cancellation condition becomes true. Guards
(guard(Condition)) block the subtask’s execution until the condition becomes true.
The absence of a link annotation on a particular decomposition link indicates the
absence of any conditions on the subgoal/subtask.

If alternative means of achieving a certain goal exist, the designer can specify
under which circumstances it makes sense to try each alternative. We call these appli-
cability conditions and introduce a new annotation ac(condition) to be used with
means-ends links to specify them. The presence of an applicability condition (AC)
annotation specifies that only when the condition is true may the agent select the
associated alternative in attempting to achieve the parent goal. E.g., one may specify
that phoning participants to notify them of the meeting details is applicable only for
important participants, while the email option is applicable for everyone (see Fig. 6).
When there is no applicability condition, an alternative can always be selected.

3.2 Increasing Precision with ASR Models

The starting point for developing an ASR diagram for an actor is the regular SR dia-
gram for that actor (e.g., see Fig. 2). It then can be appropriately transformed to be-
come an ASR diagram every element of which can easily be mapped into ConGolog.
The steps for producing ASR diagrams from SR ones include the addition of model
annotations, the removal of softgoals, the deidealization of goals [9], and the addition
of details of agent interaction to the model. Since an ASR diagram is going to be
mapped into a ConGolog specification consisting of parameterized procedures, pa-
rameters for annotations/goals/tasks capturing the details of events as well as what
data or resources are needed for goal achievement or task execution can be specified
in ASR diagrams (see Fig. 6) to simplify the generation of ConGolog code. However,
we sometimes omit the parameters in ASR diagrams for brevity.

Softgoals. Softgoals represent non-functional requirements [3] and are imprecise
and difficult to handle in a formal specifications language such as ConGolog. There-
fore in this approach, we use softgoals to choose the best process alternatives and then
remove them before ASR diagrams are produced. Alternatively, softgoals can be
operationalized or metricized, thus becoming hard goals. The removal of softgoals in
ASR diagrams is a significant deviation from the standard i* framework.

Deidealization of goals. Goals in ASR diagrams that cannot always be achieved
are replaced by weaker goals that can. This involves identifying various possible
failure conditions and guarding against them.

Providing agent interaction details. i* usually abstracts from modeling any details
of agent interactions. In ASR diagrams, we specify the interactions through which
intentional dependencies are realized by the actors involved. Interactions are specified
as processes involving various “communication” primitive actions that change the
state of the system. The effects of these actions are modeled using ordinary flu-
ents/properties. This supports simulation, but does not capture the fact that these ac-
tions operate on the mental states of the communicating agents. We address this in
Section 4. Agent interaction details include tasks such as requests for services or

492 A. Lapouchnian and Y. Lespérance

information from agents in the system, tasks that supply information or communicate
about success or failure in providing services, etc. Arbitrarily complex interaction
protocols can be specified. We assume that the communication links are reliable.

In ASR diagrams, all resource dependencies are modeled more precisely using ei-
ther goal or task dependencies according to the level of freedom that the dependee has
in supplying the resource.

whenever(Requested
ScheduleMeeting

guard(AllAvailDates
Received)

...

||

TryToSchedule
Meeting

AvailableDates
Known

obtainAvailableDates
FromParticipant

TryGetAgreement
OnDate

Meeting
Participant

MS
Behaviour

MeetingScheduled
IfPossible

for(p,Participants(p))

requestEnterDate
Range

MeetingScheduled
IfPossible

EnterDate
Range

Meeting
Initiator

sendAvailable
Dates

guard(DateRangeEntered)

...

...

mergeAvail
Dates

Fig. 4. A fragment of the ASR diagram for the MS agent

Fig. 4 shows a small fragment of the ASR diagram for the Meeting Scheduler agent.
This model shows a very high-level view of the achievement of the goal TryToSched-
uleMeeting. Here, the MS must get the suggested meeting dates from the MI, get the
available dates from the participants, find agreeable dates (potential dates for the
meeting), and try to arrange the meeting on one of those days. Various annotations
have been added to the model. The absence of a composition annotation for the Try-
ToScheduleMeeting task indicates that it is sequentially decomposed. There are inter-
rupt/guard annotations that let the MS agent monitor for incoming requests and for
replies to its queries about the meeting date range and available dates for participants.
The for annotation indicates that the querying for the available dates is iterated for all
the participants. Note that the goal TryToScheduleMeeting in Fig. 4 is a deidealized
(weakened) goal.

 Using the ConGolog and CASL Formal Agent Specification Languages 493

3.3 Mapping ASR Diagrams into ConGolog

Once all necessary details have been introduced into an ASR diagram, it can be
mapped into a corresponding formal ConGolog model, thus making the model ame-
nable to formal analysis. The modeler must define a mapping m that maps every ele-
ment (except for intentional dependencies) of an ASR diagram into ConGolog. This
mapping associates ASR diagram elements with ConGolog procedures, primitive
actions, and formulas so that a ConGolog program can be generated from an ASR
diagram. Specifically, agents are mapped into constants that serve as their names and
ConGolog procedures that specify their behaviour; roles and positions are mapped
into similar procedures with an agent parameter so that they can be instantiated by
individual agents. So, when an agent plays several roles or occupies several positions,
it executes the procedures that correspond to these roles/positions concurrently. Leaf-
level task nodes are mapped into ConGolog procedures or primitive actions. Compo-
sition and link annotations are mapped into the corresponding ConGolog operators,
and conditions present in the annotations map into ConGolog formulas.

Mapping Task Nodes. A non-leaf task node with its decomposition is automatically
mapped into a ConGolog procedure that reflects the structure of the decomposition
and all the annotations.

Consider the shaded part of Fig. 4, where the task TryToScheduleMeeting is decom-
posed into a number of subtasks/subgoals. This task will be mapped into the follow-
ing ConGolog procedure (it contains parts still to be mapped into ConGolog; they are
the parameters of the mapping m). Here, the parameter mid stands for “meeting ID”, a
unique meeting identifier:

proc TryToScheduleMeeting(mid,mi)
 requestEnterDateRange(MS,mi,mid);
 guard m(DateRangeEntered) do
 m(AvailableDatesKnown).achieve;
 endGuard;
 guard m(AllAvailDatesReceived) do
 mergeAvailDates(MS,mid);
 endGuard;
 TryToGetAgreementOnDate(MS,mid);
endProc

Notice that the mapping of tasks into ConGolog procedures is compositional. We have
defined a set of mapping rules that formally specify this part of the mapping process.

Mapping Goal Nodes. In the i*-ConGolog approach, goal nodes are mapped into a
ConGolog formula that represents the desired state of affairs associated with the goal
and a procedure that encodes means for achieving the goal. The achievement proce-
dure is generated from the decomposition of the goal into means for achieving it,
which is modeled in the ASR diagram through means-ends links. This is similar to the
mapping of task decompositions as seen above and can be performed automatically.
The achievement procedure for a goal G can be referenced as m(G).achieve (e.g., see
the code fragment above). Fig. 5 shows a generic goal decomposition together with
the generated achievement procedure. At the end of the achievement procedure, there
is typically a test that makes sure that the goal is achieved: m(G).formula)?.

494 A. Lapouchnian and Y. Lespérance

σ
αn

ac(φn)α1
ac(φ1)

...Means1 Meansn

proc GAchieve
 (guard m(φ1) do
 m (α1)(m(Means1))
 endGuard
 m(σ)
 …
 m(σ)
 guard m (φn) do
 m (αn)(m(Meansn))
 endGuard);

(m(G).formula)?
endProc

G
m

Fig. 5. Generating a goal achievement procedure

The default composition annotation for means-ends decompositions (represented
by σ in Fig. 5) is alternative (“|”). This indicates that the means for achieving the goal
is selected non-deterministically. As shown in Fig. 5, each goal achievement alterna-
tive is wrapped in a guard operator with the guard condition being the result of
mapping the corresponding applicability condition annotation. This ensures that an
alternative will only be selected when it can begin execution and its applicability
condition holds. Other composition annotations (e.g. concurrency or sequence) can
also be used. Note that neither ConGolog nor CASL currently provides built-in
language constructs for sophisticated handling of alternative selection, execution
monitoring, failure handling, retries, etc.; this is an area for future work.

Since in this approach, softgoals are removed from ASR diagrams, applicability
conditions can be used to capture in a formal way the fitness of the alternatives with
respect to softgoals (this fitness is normally encoded by the softgoal contribution links
in SR diagrams). For example, one can specify that phoning participants to notify
them of the meeting details is applicable only in cases with few participants, while the
email option is applicable for any number of participants (see Fig. 6). This may be
due to the softgoal Minimize Effort that has been removed from the model before the
ASR diagram was produced.

In addition to applicability conditions, other link annotations can be used with
means-ends decompositions to specify extra control information. These are repre-
sented by αi in Fig. 5 and are exemplified by the for loop annotations in Fig. 6. Note
that these annotations are applied after applicability conditions.

for(p,Participant (mid,p))

ac(NoOfPtcpts(mid) < 4)

Phone
Participant

(mid,p)

Email
Participant

(mid,p)

 proc NotifyAchieve
 guard

NoOfPtcpts(mid) < 4 do
 for p:Participant (mid,p) do

m(PhoneParticipant (mid,p))
endFor

 endGuard
 |
 for p:Participant (mid,p) do

m(EmailParticipant (mid,p))
endFor

endProc

Notify
Participants

(mid)

m

for(p,Participant (mid,p))

Fig. 6. Goal achievement procedure example

 Using the ConGolog and CASL Formal Agent Specification Languages 495

Specifying Domain Dynamics. To obtain a complete ConGolog specification, one
needs to provide the declarative part of the specification, namely an action precondi-
tion axiom for every primitive action, a successor state axiom for every fluent, and
initial state axioms, as described in Section 2.2.

3.4 Simulation

ConGolog models can be executed to run process simulation experiments. To do this,
the modeler must first specify an instance of the overall system. We do this by defin-
ing a main procedure. Here is how this looks in the ConGolog simulation tool nota-
tion (#= is the concurrent execution operator):

 proc(main,[
 initiator_behavior(mi,ms)#=
 meetingScheduler_behavior(ms,mi)#=
 participant_behaviour(yves,ms)#=
 participant_behaviour(alexei,ms)#=
]).

Here, there are the Meeting Initiator agent, mi, the Meeting Scheduler ms, and two
participants, yves and alexei. The modeler must also provide a complete specifi-
cation of the initial state of the system. Here, the possible meeting dates are repre-
sented as integers in order to simplify the explanation. Initially the schedule for the
participant alexei is [11,12,14], i.e., alexei is busy on the 11th, 12th, and 14th
of some month. The schedule for the participant yves is [10,12], i.e. yves is
busy on the 10th and 12th. The Meeting Initiator mi wants to schedule a meeting with
alexei and yves on the 12th or 14th. Then the modeler can execute the main pro-
cedure to obtain a simulation trace. The simulation obtained from this instance of the
system is as follows:

// start interrupts in initial situation
startInterrupts
// mi requests ms to schedule a meeting with alexei and yves
requestScheduleMeeting(mi,ms,[alexei,yves])
// ms requests mi to enter the possible date range for meeting with id = 1
requestEnterDateRange(ms,mi,1)
// mi enters 12, 14 as possible meeting dates
enterDateRange(mi,ms,1,[12,14])
// ms requests available dates from all participants
obtainAvailDatesFromParticipant(ms,yves,1)
obtainAvailDatesFromParticipant(ms,alexei,1)
// yves sends his available dates
sendAvailDates(yves,ms,1,[…])
// alexei sends his available dates
sendAvailDates(alexei,ms,1,[…])
mergeAvailableDates(ms,1)
// ms finds the list of common available dates empty
setAllMergedlist(ms,1,[])

496 A. Lapouchnian and Y. Lespérance

// ms notifies both participants and the initiator that it failed to schedule
// meeting 1
notifyFail(ms,mi,1,[alexei,yves])
notifyFail(ms,alexei,1,[alexei,yves])
notifyFail(ms,yves,1,[alexei,yves])

Generally, this validation step of the process involves finding gaps or errors in the
specification by simulating the processes. The ConGolog code can be instrumented
with tests (using the “?” operator) to verify that desired properties hold, e.g., during
or at the end of the execution of the program. Alternative specifications can be also
compared. A graphical user interface tool for conducting such simulation experiments
is available, see [13]. As mentioned, the simulation tool requires a complete specifica-
tion of the initial state. This limitation comes from the fact that the tool uses Prolog
and its closed world assumption to reason about how the state changes. The tool (like
ConGolog itself) does not provide support for modeling agent mental states and how
they are affected by communication and other actions. As we saw in the examples, it
is possible to model limited aspects of this using ordinary actions and fluent predi-
cates, but this does not capture the full logic of mental states and communication.
Work is underway to relax these limitations and develop techniques for efficient rea-
soning about limited types of incomplete knowledge and knowledge-producing ac-
tions in ConGolog [20]. ConGolog models can also be verified using the CASLve
tool discussed in Section 4.3.

4 Modeling Mental States in Requirements Engineering

4.1 Motivation

Suppose that we are employing an approach like Tropos [2, 6] to model a simple goal
delegation involving two agents. Fig. 7 shows a goal dependency where the Meeting
Scheduler depends on the Meeting Participant for attending a meeting. We would like to

AtMeeting(MP)

1. Before delegation
Goal(MS,AtMeeting(MP)) .
Know(MS,Goal(MS,AtMeeting(MP)))

2. Delegation through
request(MS,MP,AtMeeting(MP))

3. After Delegation
¬Goal(MP,¬AtMeeting(MP))
Know(MS,Goal(MP,AtMeeting(MP)))
Know(MS,Know(MP,

Goal(MP,AtMeeting(MP))))
Know(MS,Know(MP,

Goal(MS,AtMeeting(MP))))

1. Before delegation
?

2. Delegation through
request(MS,MP,AtMeeting(MP))

3. After Delegation
¬Goal(MP,¬AtMeeting(MP))
Goal(MP,AtMeeting(MP))
Know(MP,Goal(MP,AtMeeting(MP)))
Know(MP,Goal(MS,AtMeeting(MP)))
Know(MP,Know(MS,

Goal(MP,AtMeeting(MP))))

MS MP

Meeting
Participant

Meeting
Scheduler

Fig. 7. A motivating example

 Using the ConGolog and CASL Formal Agent Specification Languages 497

be able to analyze this interaction and predict how it will affect the agents’ goals and
knowledge. Using the i*-CASL approach presented in this section [11, 12], one can
create a formal model based on the diagram, analyze it, and conclude that, e.g., before
the goal delegation, the MS has the goal AtMeeting(MP) and knows about this fact.
After the delegation (and provided that the MP did not have a conflicting goal), the MS
knows that the MP has acquired the goal, that the MP knows that it has the goal, and
that the MP knows that the MS has the same goal, etc. Similar questions can be asked
about MP.

Note that the change in the mental state of the requestee agent is the core of goal
delegation. One of the main features of the i*-CASL approach is that goals (and
knowledge) are assigned to particular agents thus becoming their subjective attributes
as opposed to being objective system properties as in many other approaches (e.g.,
[4]). This allows for the modeling of conflicting goals, agent negotiation, information
exchange, complex agent interaction protocols, etc. In CASL, the full logic of these
mental states and how they change is formalized. The i*-CASL approach thus allows
for creating richer, more expressive specifications with precise modeling of agents’
mental states. However, the more complex CASL models currently require the use of
a theorem-prover-based verification tool such as CASLve and cannot be used with the
ConGolog simulation tool.

4.2 The Cognitive Agents Specification Language

The Cognitive Agents Specification Language (CASL) [22, 23] is a formal specifica-
tion language that extends ConGolog to incorporate models of mental states expressed
in the situation calculus [21]. CASL uses modal operators to formally represent
agents’ knowledge and goals; communication actions are provided to update these
mental states and ConGolog is then employed to specify the behaviour of agents. The
logical foundations of CASL allow it to be used to specify and analyze a wide variety
of MAS as shown in [22, 23]. For instance, it can model non-deterministic behaviours
and systems with an incompletely specified initial state. Similar to ConGolog (see
Section 2.2), CASL specifications consist of two parts: the model of the domain and
its dynamics (the declarative part) and the specification of the agents’ behaviour (the
procedural part).

The formal representation for both goals and knowledge in CASL is based on a
possible worlds semantics incorporated into the situation calculus, where situations
are viewed as possible worlds [16, 21]. CASL uses accessibility relations K and W to
model what an agent knows and what it wants respectively. K(agt,s′,s) holds if the
situation s′ is compatible with what the agent agt knows in situation s. In this case, the
situation s′ is called K-accessible. When an agent does not know the truth value of
some formula φ, it considers possible (formally, K-accessible) some situations where
φ is true and some where it is false. An agent knows that φ in situation s if φ is true in
all its K-accessible situations in s: Know(agt,φ,s)=∀s′(K(agt,s′,s)⊃ φ[s′]). Constraints
on the K relation ensure that agents have positive and negative introspection (i.e.,
agents know whether they know/don’t know something) and guarantee that what is
known is true. Built-in communication actions such as inform are used for exchanging
information among agents. The precondition for the inform action ensures that no

498 A. Lapouchnian and Y. Lespérance

false information is transmitted. The changes to agents’ knowledge due to communi-
cation and other actions are specified by the successor state axiom for the K relation.
The specification ensures that agents are aware of the execution of all actions. En-
hanced accounts of knowledge change and communication in the situation calculus
have also been proposed to handle, for instance, encrypted messages [23] or belief
revision [25].

The accessibility relation W(agt,s′,s) holds if in situation s an agent considers that
everything that it wants to be true actually holds in s′, which is called W-accessible.
We use the formula Goal(agt,ψ,s) to indicate that in situation s the agent agt has the
goal that ψ holds. The definition of Goal says that ψ must be true in all W-accessible
situations that have a K-accessible situation in their past. This ensures that while
agents may want something they know is impossible to achieve, the goals of agents
must be consistent with what they currently know. There are constraints on the W and
K relations that ensure that agent’s goals are consistent and that agents introspect their
goals. In our approach, we mostly use achievement goals that specify the desired
states of the world. We use the formula Goal(agt,Eventually(ψ),s) to state that agt has
the goal that ψ is eventually true. The built-in communication actions request and
cancelRequest are used by agents to request services from other agents and to cancel
such requests respectively. Requests are used to establish intentional dependencies
among actors and lead to changes in goals of the requested agent. The dynamics of
the W relation are specified, as usual, by a successor state axiom that guarantees that
no inconsistent goals are adopted.

4.3 The i*-CASL Notation and Process

Increasing Precision with Intentional Annotated Strategic Rationale Models. Our
aim in this approach is to tightly associate i* models with formal specifications in
CASL. As was the case with the i*-ConGolog approach presented in Section 3, we
use an intermediate notation, Intentional Annotated SR (iASR) diagrams, to bridge the
gap between SR diagrams and CASL specifications.

When developing an iASR diagram, one starts with the corresponding SR diagram
(e.g., see Fig. 2). The steps for producing iASR diagrams from the corresponding SR
ones are similar to the ones presented in Section 3.

Agent Goals in iASR Models. A CASL agent has procedural (behaviour) and declara-
tive (mental state) components. iASR diagrams only model agent processes and thus
are used to represent the procedural component of CASL agents. A goal node in an
iASR diagram indicates that the agent knows that the goal is in its mental state and is
prepared to deliberate about if and how to achieve it. For the agent to modify its be-
haviour in response to the changes to its mental state, it must synchronize its proce-
dural and declarative components (see Fig. 8A). Agent mental states usually change
as a result of communication acts that realize goal delegation and information ex-
change. So, the procedural component of the agent must monitor for these changes.
The way to do this is to use interrupts or guards with their conditions being the pres-
ence of certain goals or knowledge in the mental state of the agent (Fig. 8B). Proce-
durally, the goal node is interpreted as invoking the means to achieve it.

 Using the ConGolog and CASL Formal Agent Specification Languages 499

commit
guard,

interrupt

Declarative
Component

Procedural
Component

request,
inform, etc.

CASL
Agent

guard(Goal(agt,Goal1))

Task1

Goal1A B

Fig. 8. Synchronizing declarative and procedural components of CASL specifications

In CASL, only communication actions have effects on the mental state of the
agents. However, we also would like the agents to be able to change their mental state
on their own by executing the action commit(agent,φ), where φ is a formula that the
agent (or the modeler) wants to hold. Thus, in iASR diagrams all agent goals must be
acquired either from intentional dependencies or by using the commit action. By in-
troducing goals into the models of agent processes, the modeler captures the fact that
multiple existing or potential alternatives exist in these processes and makes sure the
mental state of agents reflect this. This allows agents to reason about their goals and
ways to attain them at runtime.
Modeling agent interactions. We take an intentional stance towards modeling agent
interactions. We are modeling them with built-in generic communication actions (e.g.,
request, inform) that modify the mental states of the agents. In iASR models, these
generic communication actions are used to request services, provide information, etc.
Also, the conditions in annotations and communication actions (as well as the commit
action) may refer to the agents’ mental states, knowledge and goals. Because of the
importance of agent interactions in MAS, in order to formally verify multiagent sys-
tem specifications in CASL, all high-level aspects of agent interaction must be pro-
vided in the corresponding iASR models.

Fig. 9A and Fig. 9B illustrate how an intentional goal dependency RoomBooked
(see Fig. 1) can be modeled in SR and iASR models respectively. It is established by
the MS’s execution of the request action (with that goal as the argument) towards the
MRBS agent. This will cause the MRBS to acquire the goal RoomBooked (if it is consis-
tent with its existing goals). The interrupt in the iASR model for the MRBS monitors

whenever(Goal(MRBS,
RoomBooked(mid,d)),

systemTerminated)

guard(KWhether(MS,
RoomBooked(mid,d)))

;

ReserveRoom
forDate(mid,d))

request(MRBS,
RoomBooked(mid,d))

Notify
Participants(mid,d)

MRBS
BehaviourMeeting

Scheduler

MRBS

Room
Booked(mid,d)

Room
Booked(mid,d)

ReserveRoom
forDate

Room
Booked(mid,d)

Room
Booked(mid,d)

Meeting
Scheduler MRBS

A

B

Fig. 9. Adding iASR-level agent interaction details

500 A. Lapouchnian and Y. Lespérance

its mental state for the goal and triggers the behaviour for achieving it (i.e. booking a
room, which is not shown) when the goal is acquired. Also, once the MS’s knowledge
state is updated and it knows whether (formally, KWhether) the room has been
booked (note the guard condition), the task for notifying participants will be triggered.

From iASR Models to CASL Specifications. Once an iASR model has been
produced, it can be mapped into a CASL specification for formal analysis.

As previously, the modeler defines a mapping m that associates iASR model ele-
ments (except for dependencies) with CASL procedures, primitive actions, and for-
mulas, so that a CASL program can be generated from an iASR model. Specifically,
actors are mapped into CASL procedures, leaf-level tasks are mapped into procedures
or primitive actions, while annotations are mapped into CASL operators. Conditions
in the annotations map into CASL formulas that can refer to agents’ mental states.

Mapping Goal Nodes. An iASR goal node is mapped into a CASL formula (the
formal definition for the goal) and an achievement procedure that is based on the
means-ends decomposition for the goal in the iASR diagram (see Fig. 5). E.g., a for-
mal definition for MeetingScheduled(mid,s) could be: ∃d[AgreeableDate(mid, date,s)
∧ AllAccepted(mid,date,s) ∧ RoomBooked(mid,date, s)]. This says that there must be
a date agreeable for everybody on which a room was booked and all participants
accepted to meet. Often, an initial goal definition is too ideal and needs to be
deidealized [9] or weakened. See [12] for an example.

CASL’s support for reasoning about agents’ goals gave us the ability not to main-
tain meeting participants’ schedules explicitly. Rather, we relied on the presence of
goals AtMeeting(participant,mid,date,s) in their mental states together with an axiom
that made sure that they could only attend one meeting per time slot (see [12]).

The achievement procedures for goals are automatically constructed based on the
modeled means for achieving them as described in Section 3.

Modeling Dependencies. Intentional dependencies are not mapped into CASL per se
— they are established by the associated agent interactions. iASR tasks requesting
help from agents will generally be mapped into actions of the type re-
quest(FromAgt,ToAgt,Eventually(φ)) for an achievement goal φ. For task dependen-
cies, we use request(FromAgt, ToAgt, DoAL(SomeProcedure)) to request that a
known procedure be executed while allowing other actions to occur (DoAL stands for
“do at least”).

In order for a dependency to be established, we also need a commitment from a de-
pendee agent to act on the request from the depender. It must monitor its mental state
for the newly acquired goals, which is done using interrupts that trigger whenever un-
achieved goals of certain types are in their mental states. The bodies of interrupts spec-
ify appropriate responses to the messages. Also, cancellation conditions in interrupts
allow the agents to monitor for certain requests/informs only in particular contexts (e.g.,
while some interaction protocol is being enacted). For details, see [11, 12].

Analysis and Verification. Once an iASR model is mapped into the corresponding
CASL specification, it is ready to be formally analyzed. One tool that can be used is
CASLve [24, 22], a theorem-prover-based verification environment for CASL.
CASLve provides a library of theories for representing CASL specifications and
lemmas that facilitate various types of verification proofs. In addition to physical

 Using the ConGolog and CASL Formal Agent Specification Languages 501

executability of agent programs, one can also check for the epistemic feasibility of
agent plans [14], i.e., whether agents have enough knowledge to successfully execute
their processes. Alternative verification approaches based, for instance, on simulation
or model checking can be used. However, they require much less expressive
languages, so CASL specifications need to be simplified for these approaches.

If expected properties of the system are not entailed by the CASL model, it means
that the model is incorrect and needs to be fixed. The source of an error found during
verification can usually be traced to a portion of the CASL code, and to a part of its
iASR model, since our systematic mapping supports traceability.

5 Discussion and Future Work

In this chapter, we have presented an approach to requirements engineering that in-
volves the combined use of i* and some multiagent system specification formalisms,
ConGolog and its extension CASL. This allows the requirements engineer to exploit
the complementary features of the frameworks. The i* framework can be used to
model social dependencies between agents, perform an analysis of opportunities and
vulnerabilities, explore alternatives and trade-offs. These models are then gradually
made more precise with the use of annotated models. ConGolog or CASL can then be
used to model complex processes formally with subsequent verification or simulation
(for ConGolog only). Additionally, CASL supports the explicit modeling of agent
mental states and reasoning about them. In our approach, both graphical/informal and
textual/formal notations are used, which supports a progressive specification process
and helps in communicating with the clients, while providing traceability.

There have been a few other proposals for using i* with formal specification lan-
guages for RE. The Trust-Confidence-Distrust (TCD) approach combining i* and Con-
Golog to model/analyze trust in social networks was proposed in [7]. TCD is focused on
a specific type of applications and has an extended SR notation that is quite different
from our proposal in terms sequencing of elements, explicit preconditions, etc.

Formal Tropos (FT) [6] is another approach that supports formal analysis of i*
models though model checking. Its specifications use temporal logic and it can be
used at the SD level, unlike our approaches, which use procedural notations that are
more suitable for SR models. Unlike CASL, the formal components of FT and the i*-
ConGolog approach do not support reasoning about goals and knowledge and thus
require that goals be abstracted out of the specifications. However, most agent inter-
actions involve knowledge exchange and goal delegation. The ability of CASL to
formally model and reason about mental states as properties of agents is important
and supports new types of analysis (e.g., of conflicting goals).

In future work, we would like to develop tool support for representing ASR/iASR
diagrams and mapping them into ConGolog/CASL and for supporting the co-
evolution of the two representations. We expect that our RE toolkit will be able to
significantly simplify the specification of the declarative component of Con-
Golog/CASL models. We plan to explore how different types of agent goals (e.g.,
maintenance) as well as privacy, security, and trust can be handled in CASL. There
are also a number of limitations of CASL’s formalization of mental state change and
communication that should be addressed in future work. One such limitation is that

502 A. Lapouchnian and Y. Lespérance

agents cannot send false information. Removing this limitation requires modeling
belief revision, which adds a lot of complexity (see [25]). However, this will support
modeling of, e.g., malicious and untruthful agents.

We also note that CASL assumes that all agents are aware of all actions being exe-
cuted in the system. Often, it would be useful to lift this restriction, but dealing with
the resulting lack of knowledge about agents’ mental states can be challenging.

Finally, there is also ongoing work on supporting limited forms of incomplete
knowledge and information acquisition actions in a logic programming-based Con-
Golog implementation [20]. This may eventually lead to an executable version of
CASL where simulation can be performed on models of agents with mental states.

Bibliography

1. Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.): Multi-agent pro-
gramming: Languages, platforms and applications. Springer, Heidelberg (2005)

2. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: TROPOS: An agent-
oriented software development methodology. Journal of Autonomous Agents and Multi-
Agent Systems 8(3), 203–236 (2004)

3. Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-functional requirements in software en-
gineering. Kluwer, Dordrecht (2000)

4. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisition.
Science of Computer Programming 20(1-2), 3–50 (1993)

5. De Giacomo, G., Lespérance, Y., Levesque, H.: ConGolog, a concurrent programming lan-
guage based on the Situation Calculus. Artificial Intelligence 121(1-2), 109–169 (2000)

6. Fuxman, A., Liu, L., Mylopoulos, J., Pistore, M., Roveri, M., Traverso, P.: Specifying and
analyzing early requirements in Tropos. Requirements Engineering Journal 9(2), 132–150
(2004)

7. Gans, G., Jarke, M., Kethers, S., Lakemeyer, G.: Continuous requirements management for
organisation networks: a (Dis)trust-based approach. Requirements Engineering Jour-
nal 8(1), 4–22 (2003)

8. Jennings, N.R.: Agent-oriented software engineering. In: Garijo, F.J., Boman, M. (eds.)
MAAMAW 1999. LNCS, vol. 1647, pp. 1–7. Springer, Heidelberg (1999)

9. van Lamsweerde, A., Darimont, R., Massonet, P.: Goal-directed elaboration of require-
ments for a meeting scheduler: problems and lessons learnt. In: Proc. RE 1995, York, UK
(1995)

10. van Lamsweerde, A.: Requirements engineering in the year 00: a research perspective. In:
Proc. ICSE 2000, Limerick, Ireland (2000)

11. Lapouchnian, A.: Modeling mental states in requirements engineering - an agent-oriented
framework based on i* and CASL. M.Sc. Thesis. Department of Computer Science, York
University, Toronto (2004)

12. Lapouchnian, A., Lespérance, Y.: Modeling mental states in agent-oriented requirements
engineering. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006. LNCS, vol. 4001, pp. 480–494.
Springer, Heidelberg (2006)

13. Lespérance, Y., Kelley, T.G., Mylopoulos, J., Yu, E.S.K.: Modeling dynamic domains
with conGolog. In: Jarke, M., Oberweis, A. (eds.) CAiSE 1999. LNCS, vol. 1626, pp.
365–380. Springer, Heidelberg (1999)

14. Lespérance, Y.: On the epistemic feasibility of plans in multiagent systems specifications.
In: Meyer, J.-J.C., Tambe, M. (eds.) ATAL 2001. LNCS, vol. 2333, pp. 69–85. Springer,
Heidelberg (2002)

 Using the ConGolog and CASL Formal Agent Specification Languages 503

15. McCarthy, J., Hayes, P.: Some philosophical problems from the standpoint of artificial in-
telligence. Machine Intelligence 4, 463–502 (1969)

16. Moore, R.C.: A formal theory of knowledge and action. In: Hobbs, J.R., Moore, R.C.
(eds.) Formal Theories of the Common Sense World, pp. 319–358. Ablex Publishing,
Greenwich (1985)

17. van Otterloo, S., van der Hoek, W., Wooldrige, M.: Model checking a knowledge ex-
change scenario. Applied Artificial Intelligence 18(9-10), 937–952 (2004)

18. Reiter, R.: The frame problem in the Situation Calculus: a simple solution (sometimes) and
a completeness result for goal regression. In: Lifschitz, V. (ed.) Artificial Intelligence and
Mathematical Theory of Computation: Papers in Honor of John McCarthy, pp. 359–380.
Academic Press, London (1991)

19. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Implementing
Dynamical Systems. MIT Press, Cambridge (2001)

20. Sardina, S., Vassos, S.: The Wumpus world in IndiGolog: A Preliminary Report. In: Proc.
Sixth Workshop on Nonmonotonic Reasoning, Action, and Change (NRAC 2005) at
IJCAI 2005, Edinburgh, UK (2005)

21. Scherl, R.B., Levesque, H.: Knowledge, action, and the frame problem. Artificial Intelli-
gence 144(1-2), 1–39 (2003)

22. Shapiro, S.: Specifying and Verifying Multiagent Systems Using CASL. Ph.D. Thesis.
Dept. of Computer Science, University of Toronto (2004)

23. Shapiro, S.: Modeling Multiagent Systems with CASL - A Feature Interaction Resolution
Application. In: Castelfranchi, C., Lespérance, Y. (eds.) ATAL 2000. LNCS, vol. 1986,
pp. 244–259. Springer, Heidelberg (2001)

24. Shapiro, S., Lespérance, Y., Levesque, H.: The Cognitive Agents Specification Language
and verification environment for multiagent systems. In: Proc. AAMAS 2002, Bologna, It-
aly, pp. 19–26 (2002)

25. Shapiro, S., Pagnucco, M., Lespérance, Y., Levesque, H.: Iterated belief change in the
Situation Calculus. In: Proc. KR-2000, Breckenridge, Colorado, USA (2000)

26. Wang, X.: Agent-oriented requirements engineering using the ConGolog and i* frame-
works. M.Sc. Thesis. Department of Computer Science, York University, Toronto (2001)

27. Wang, X., Lespérance, Y.: Agent-oriented requirements engineering using ConGolog and
i*. In: Proc. AOIS 2001 (2001)

28. Wooldridge, M.: Agent-based software engineering. IEE Proceedings on Software Engi-
neering 144(1), 26–37 (1997)

29. Yu, E.: Modeling strategic relationships for process reengineering. Ph.D. Thesis. Depart-
ment of Computer Science, University of Toronto (1995)

30. Yu, E.: Towards modeling and reasoning support for early requirements engineer-
ing. In: Proc. RE 1997, Annapolis, MD, USA (1997)

	Using the ConGolog and CASL Formal Agent Specification Languages for the Analysis, Verification, and Simulation of i* Models
	Introduction
	Background
	The i* Framework and a Case Study
	The Formal Foundations: The Situation Calculus and ConGolog

	Using ConGolog for the Analysis, Simulation, and Verification of i* Models
	Annotated SR Diagrams
	Increasing Precision with ASR Models
	Mapping ASR Diagrams into ConGolog
	Simulation

	Modeling Mental States in Requirements Engineering
	Motivation
	The Cognitive Agents Specification Language
	The i*-CASL Notation and Process

	Discussion and Future Work
	Bibliography

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

