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Abstract. This chapter describes an agent-oriented requirements engineering 
approach that combines informal i* models with formal specifications in the 
multiagent system specification formalisms ConGolog and its extension CASL. 
This allows the requirements engineer to exploit the complementary features of 
the frameworks. i* can be used to model social dependencies between agents 
and how process design choices affect the agents’ goals. ConGolog or CASL 
can be used to model complex processes formally. We introduce an intermedi-
ate notation to support the mapping between i* models and ConGolog/CASL 
specifications. In the combined i*-CASL framework, agents’ goals and knowl-
edge are represented as their subjective mental states, which allows for the for-
mal analysis and verification of, among other things, complex agent interactions 
and incomplete knowledge. Our models can also serve as high-level specifica-
tions for multiagent systems. 

This volume is dedicated to John Mylopoulos.  Yves was fortunate to have John as his 
Master's thesis supervisor 30 years ago and John is Alexei's current Ph.D. thesis su-
pervisor.  The work described in this paper fits perfectly in the model-based approach 
to software/systems engineering that John developed and promoted throughout his 
career. His vision, with its roots in knowledge representation research, its embrace of 
ideas from social science, and its insights into the "model-based" future of soft-
ware/systems engineering continues to inspire us.  Thanks John, for all the inspiration 
and mentoring. 

1   Introduction 

i* [29] is an informal diagram-based language for early-phase requirements engineer-
ing that supports the modeling of social and intentional dependencies between agents 
and how process design choices affect the agents’ goals, both functional and non-
functional. It has become clear that such social and organizational issues play an im-
portant role in many domains and applications. However, i* is not a formal language, 
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has inadequate precision, and thus provides limited support for describing and analyz-
ing complex processes. While it is possible to informally analyze small systems, for-
mal analysis is needed for realistically-sized ones. 

To alleviate this, we first propose an approach that integrates i* with a formal mul-
tiagent system specification language, ConGolog [5, 13], in the context of agent-
oriented requirements engineering. ConGolog is an expressive formal language for 
process specification and agent programming. It supports the formal specification of 
complex multiagent systems, but lacks features for modeling the rationale behind design 
choices available in i*. In this paper, we show how i* and ConGolog can be used in 
combination. The i* framework will be used to model different alternatives for the de-
sired system, to analyze and decompose the functions of the different actors, and to 
model the dependency relationships between the actors and the rationale behind process 
design decisions. The ConGolog framework will be used to formally specify the system 
behaviour described informally in the i* model. The ConGolog model will provide 
more detailed information about the actors, tasks, processes, and goals in the system, 
and the relationships between them. Complete ConGolog models are executable and this 
will be used to validate the specifications by simulation. To bridge the gap between i* 
and ConGolog models, an intermediate notation involving the use of process specifica-
tion annotations in i* SR diagrams will be introduced [26, 27]. We will describe how 
such annotated SR (ASR) diagrams can be systematically mapped into ConGolog  
formal specifications that capture their informal meaning, and support validation 
through simulation and verification. The annotations are not used to capture design-
level information, but to obtain a more complete and precise model of the domain. 

Its support for modeling intentional notions such as goals makes the i* notation  
especially suited for developing multiagent systems, e.g., as in the Tropos  
agent-oriented development framework [2]. Agents are active, social, and adaptable 
software system entities situated in some environment and capable of autonomous 
execution of actions in order to achieve their objectives [28]. Furthermore, most prob-
lems are too complex to be solved by just one agent — one must create a multiagent 
system (MAS) with several agents working together to achieve their objectives and 
ultimately deliver the desired application. Therefore, adopting the agent-oriented 
approach to software engineering means that the problem is decomposed into multi-
ple, autonomous, interacting agents, each with their own objectives. Agents in MAS 
frequently represent individuals, companies, etc. This means that there is an “underly-
ing organizational context” [8] in MAS. Like humans, agents need to coordinate their 
activities, cooperate, request help from others, etc., often through negotiation. Unlike 
in object-oriented or component-based systems, interactions in multiagent systems 
occur through high-level agent communication languages, so interactions are mostly 
viewed not at the syntactic level, but “at the knowledge level, in terms of goal delega-
tion, etc.” [8]. Therefore, modeling and analyzing agents’ mental states helps in the 
specification and analysis of multiagent systems. 

In requirements engineering (RE), goal-oriented approaches, e.g., KAOS [4] have 
become prominent. In Goal-Oriented Requirements Engineering (GORE), high-level 
stakeholder objectives are identified as goals and later refined into fine-grained re-
quirements assignable to agents/components in the system-to-be or in its environment. 
Their reliance on goals makes goal-oriented requirements engineering methods and 
agent-oriented software engineering a great match. Moreover, agent-oriented analysis 
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is central to requirements engineering since the assignment of responsibilities for 
goals and constraints among components in the software-to-be and agents in the envi-
ronment is the main outcome of the RE process [10]. Therefore, it is natural to use a 
goal-oriented requirements engineering approach when developing MAS. With 
GORE, it is easy to make the transition from the requirements to the high-level MAS 
specifications. For example, strategic relationships among agents will become high-
level patterns of inter-agent communication. 

Thus, it would be desirable to devise an agent-oriented requirements engineering 
approach with a formal component that supports rigorous formal analysis, including 
reasoning about agents’ goals (and knowledge). This would allow for rigorous formal 
analysis of the requirements expressed as the objectives of the agents in a MAS.  

Ordinary ConGolog does not support the specification of the intentional features of 
i* models, that is, the mental states of the agents in the system/organization modeled; 
these must be operationalized before they are mapped into ConGolog. But there is an 
extension of ConGolog called the Cognitive Agents Specification Language (CASL) 
[22, 23, 24] that supports formal modeling of agent mental states, incomplete agent 
knowledge, etc. Mapping i* models into CASL gives the modeler the flexibility and 
intuitiveness of the i* notation as well as the powerful formal analysis capabilities of 
CASL. So we will extend the i*-ConGolog approach to combine i* with CASL and 
accommodate formal models of agents’ mental states. Our intermediate notation will 
be generalized to support the intentional/mental state modeling features of CASL [11, 
12], in what we will call intentional annotated SR (iASR) diagrams. With our i*-
CASL-based approach, a CASL model can be used both as a requirements analysis 
tool and as a formal high-level specification for a multiagent system that satisfies the 
requirements. This model can be formally analyzed using the CASLve [22, 24] verifi-
cation tool or other tools and the results can be fed back into the requirements model.  

One of the main features of this approach is that goals (and knowledge) are as-
signed to particular agents thus becoming their subjective attributes as opposed to 
being objective system properties as in many other approaches, e.g., Tropos [2] and 
KAOS [4]. This allows for the modeling of conflicting goals, agent negotiation, in-
formation exchange, complex agent interaction protocols, etc. 

The rest of the chapter is organized as follows. Section 2 briefly introduces i* and a 
case study that we will refer to throughout the chapter, and gives an overview of the 
ConGolog framework. Section 3 presents our approach to map i* diagrams into Con-
Golog formal specifications and discusses the use of simulation to validate the mod-
els. Section 4 discusses our second approach where i* models are mapped into CASL, 
to preserve the intentional features of the models in the formal specifications; we also 
discuss verification. We conclude in Section 5 by summarizing our results, comparing 
our approach to related work, and discussing possible extensions. 

2   Background 

2.1   The i* Framework and a Case Study 

i* [29] is an agent-oriented modeling framework that can be used for requirements 
engineering, business process reengineering, etc. i* centers on the notion of inten-
tional actor and intentional dependency. In the approaches described here, we use i* 
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as a graphical requirements modeling notation. We will assume a basic knowledge of 
i* in the remainder; to learn about i* see [30] or the chapter by Yu in this book. We 
will add various new notational elements to SR diagrams to produce our ASR and 
iASR diagrams; we will discuss these in detail in later sections.  Note also that we do 
not use softgoals or resource dependencies in ASR and iASR (we will explain why 
later). 

To illustrate the approach that we propose, we will use a variant of the meeting 
scheduling problem, which has become a popular exemplar in RE [9]. In the context 
of the i* modeling framework a meeting scheduling process was first analyzed in 
[30]. We introduce a number of modifications to the meeting scheduling process to 
make our models easier to understand. For instance, we take the length of meetings to 
be the whole day. We also assume that in the environment of the system-to-be there is 
a legacy software system called the Meeting Room Booking System (MRBS) that handles 
the booking of meeting rooms. Complete case studies are presented in [11, 12]. 
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Fig. 1. The Meeting Scheduler in its environment 
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Fig. 2. SR model for the meeting initiator 

Fig. 1 is a Strategic Dependency diagram showing the computerized Meeting 
Scheduler (MS) agent in its environment. Here, the role Meeting Initiator (MI) depends on 
the MS for scheduling meetings and for being informed about the meeting details. The 
MS, in turn, depends on the Meeting Participant (MP) role for attending meetings and for 
providing his/her available dates to it. The MS uses the booking system to book rooms 
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for meetings. The Disruptor actor represents outside actors that cause changes in par-
ticipants’ schedules, thus modeling the environment dynamics.  

Fig. 2 is a simple SR models showing some details of the MI process. To schedule 
meetings, the MI can either do it manually, or delegate it to the scheduler. Softgoal 
contribution links specify how process alternatives affect quality requirements (soft-
goals), and so softgoals such as MinimizeEffort in Fig. 2 are used to evaluate these 
alternatives. 

2.2   The Formal Foundations: The Situation Calculus and ConGolog 

ConGolog [5] is a framework for process modeling and agent programming. It is 
based on the situation calculus [15], a language of predicate logic for representing 
dynamically changing worlds. The ConGolog framework can be used to model com-
plex processes involving loops, concurrency, multiple agents, etc. Because it is logic-
based, the framework can accommodate incompletely specified models, either in the 
sense that the initial state of the system is not completely specified, or that the proc-
esses involved are non-deterministic and may evolve in any number of ways. 

A ConGolog specification includes two components. First, to support reasoning 
about the processes executing in a certain domain, that domain must be formally 
specified: what predicates describe the domain, what primitive actions are available to 
agents, what the preconditions and effects of these actions are, and what is known 
about the initial state of the system. The other component of a ConGolog specification 
is the model of the process of interest, i.e. the behaviour of the agents in the domain. 

In ConGolog and in the situation calculus, a dynamic domain is modeled in terms 
of the following entities: 

 Primitive actions: all changes to the world are assumed to be the result of named 
primitive actions that are performed by some agent; primitive actions are repre-
sented by terms, e.g. acceptAgreementReq(participant,MS,reqID, date), i.e. the 
participant agent accepts the request reqID from the MS agent to attend a meeting 
on date. 

 Situations: these correspond to possible world histories viewed as sequences of 
actions. The actual initial situation (where no actions have yet been executed) is 
represented by the constant S0. There is a distinguished binary function symbol do 
and a term do(a,s) denotes the situation that results from action a being performed 
in situation s. For example, do(a3,do(a2,do(a1,S0))) represents the situation where 
first a1, then a2, and then a3 have been performed starting in the initial situation S0. 
Thus, situations are organized in tree structures rooted in some initial situation; the 
situations are nodes in the tree and the edges correspond to primitive actions. 

 Fluents: these are properties, relations, or functions of interest whose value may 
change from situation to situation; they are represented by predicate and function 
symbols that take a situation term as their last argument, e.g. agreementReqRcvd( 
participant,MS,reqID, date,s), i.e. participant has received a request reqID from 
MS to agree to hold a meeting on date in situation s. Non-fluent predi-
cates/functions may also be used to represent static features of the domain. 
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The dynamics of a domain are specified using four kinds of axioms: 
 

 Action precondition axioms: these state the conditions under which an action can 
be performed; they use the predicate Poss(a,s), meaning that action a is possible in 
situation s. E.g., in our meeting scheduling domain, we have:  
 

Poss(acceptAgreementReq(participant,MS,reqID,date),s) ≡ 
       agreementReqRcvd(participant,MS,reqID,date,s) ∧ 

dateFree(participant,date,s) 
 

This says that in situation s, participant may perform the action of accepting a 
request reqID from MS to hold a meeting on date if and only if he has received a 
request to that effect and the date is free for him. 

 

 Successor state axioms (SSA): these specify how the fluents are affected by the 
actions in the domain. E.g., in our meeting scheduling domain, we have: 

 

agreementReqRcvd(participant,MS,reqID,date,do(a,s)) ≡ 
a = requestAgreement(MS,participant,date) ∧ 

requestCounter(s) = reqID ∨ 
agreementReqRcvd(participant,MS,reqID,date,s) 

 

This says that participant has received a request reqID from MS to agree to hold 
a meeting on date in situation do(a,s) if and only if the action a is such a request 
and the value of the request counter is reqID or if she had already received such a 
request in situation s. 

Successor state axioms were introduced by Reiter [19] and provide a solution 
to the frame problem. They can be generated automatically from a specification 
of the effects of primitive actions if we assume that the specification is complete. 
Lespérance et al. [13] described a convenient high-level notation for specifying 
the effects (and preconditions) of actions and a tool that compiles such specifica-
tions into successor state axioms. 

 

 Initial situation axioms: these specify the initial state of the modeled system. E.g., 
in our meeting scheduling domain, we might have the following initial situation 
axiom: participantTimeSchedule( Yves,S0) = [10,12], representing the fact that 
agent Yves is busy on the 10th and 12th in the initial situation. 

 Other axioms: these include unique name axioms for actions, axioms specifying 
the agent of each type of action, and domain independent foundational axioms as 
described in [19]. 

 
The process of a system is specified procedurally in the ConGolog framework. We 
define a main procedure that specifies the behaviour of the whole system. Every agent 
has an associated ConGolog procedure to represent its behaviour in the system. The 
behaviour of agents is specified using a rich high-level programming language with 
recursive procedures, while loops, conditionals, non-determinism, concurrency, and 
interrupts [5]. The available constructs include: 
 



 Using the ConGolog and CASL Formal Agent Specification Languages 489 

a, primitive action 
φ?, wait for condition 
δ1;δ2, sequence 
δ1|δ2, nondeterministic branch 
δ*, nondeterministic iteration 
πv.δ, nondeterministic choice of argument 
if φ then δ1 else δ2 endIf, conditional 
while φ do δ endWhile, while loop 
δ1||δ2, concurrency with equal priority 
δ1»δ2, concurrency with δ1 at higher priority  
guard φ do δ endGuard guard 
<v: φ → δ until α> interrupt 
β(p), procedure call 

 
Note the presence of several non-deterministic constructs. For instance, δ1|δ2 nonde-
terministically chooses between executing δ1 or δ2. πv.δ non-deterministically picks a 
binding for the variable v and performs the program δ for that binding. δ* performs δ 
zero or more times. A test/wait action φ? blocks until the condition φ becomes true. 
<v: φ → δ until α> represents an interrupt; when the trigger condition φ becomes true 
for some value of v, the interrupt triggers and the body, δ, is executed; the interrupt 
may trigger repeatedly as long as its cancellation condition α does not hold. The guard 
construct blocks the execution of a program δ until the condition φ becomes true. 

A formal semantics based on transition systems (structural operational semantics) 
has been specified for ConGolog [5]. It defines a special predicate Do(program,s,s′) 
that holds if there is a successful execution of program that ends in situation s′ after 
starting in s. Communication between agents can be represented by actions performed 
by the sender agent, which affect certain fluents that the recipient agent has access to. 

A process simulation and validation tool for ConGolog has been implemented [5]. 
It uses an interpreter for ConGolog implemented in Prolog. This implementation 
requires that the precondition axioms, successor state axioms, and axioms about the 
initial situation be expressed as Prolog clauses, and relies on Prolog’s closed world 
assumption and negation as failure. Thus with this tool, simulation can only be per-
formed for completely specified initial states. 

A verification tool has also been developed [22, 24]. We discuss verification in 
Section 4.3. De Giacomo et al. [5] describe applications of ConGolog in different 
areas, such as robot programming, personal assistants, etc. Lespérance et al. [13] 
discuss the use of ConGolog (without combining it with i*) for process modeling and 
requirements engineering. 

3   Using ConGolog for the Analysis, Simulation, and Verification 
of i* Models 

While the informal i* notation can be successfully used for modeling and analysing 
relatively small systems, formal analysis is very helpful with larger systems. Thus, 
formal analysis of i* models is one of the goals of the approaches presented here.  
Another aim is to allow for a smooth transition from requirements specifications to 
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high-level design for agent-based systems. While the i* SR diagram notation allows 
many aspects of processes to be represented, it is somewhat imprecise and the models 
produced are often incomplete. For instance, it is not specified whether the subtask in a 
task decomposition link has to be performed once or several times. In a ConGolog 
model, on the other hand, the process must be completely and precisely specified (al-
though non-deterministic processes are allowed). We need to bridge this gap. To do 
this, we will introduce a set of annotations to SR diagrams that allow the missing in-
formation to be specified. We also want to have a tight mapping between this Anno-
tated SR (ASR) diagram and the associated ConGolog model, one that specifies which 
parts of each model are related. This allows us to identify which parts of the ConGolog 
model need to be changed when the SR/ASR diagram is modified and vice versa. The 
i*-ConGolog approach that we describe in this section is largely based on [26, 27]. 

3.1   Annotated SR Diagrams 

The main tool that we use for disambiguating SR diagrams is annotations. Annota-
tions allow analysts to model the domain more precisely and capture data/control 
dependencies among goals and other details. Annotations, introduced in [26, 27] and 
extended in [11, 12], are textual constraints on ASR diagrams and can be of three 
types: composition, link, and applicability conditions. Composition annotations 
(specified by σ in Fig. 3) are applied to task and means-ends decompositions and 
specify how the subtasks/subgoals are to be combined to execute the supertask and 
achieve the goal respectively. Four types of composition are allowed: sequence (“;”), 
which is the default for task decompositions, concurrency (“||”), prioritized concur-
rency (“»”), and alternative (“|”), which is the default for means-ends decompositions. 
These annotations are applied to subtasks/subgoals from left to right. E.g., in Fig. 3, if 
the ”»” annotation is applied, n1 has the highest priority, while nk has the lowest. The 
choice of composition annotations is based on the ways actions and procedures can be 
composed in ConGolog. 

Link annotations (γi in Fig. 3) are applied to subtasks/subgoals (ni) and specify 
how/under which condition they are supposed to be achieved/executed. There are six 
types of link annotations (corresponding to ConGolog operators): while loop, for loop 
(introduced in [22]), the if condition, the pick, the interrupt, and the guard (introduced 
in [11, 12]). The difference between the if annotation and the guard is that the guard 
blocks execution until its condition becomes true while the task with the if link anno-
tation is skipped if the condition is not true. The pick annotation 
(π(VariableList,Condition)) non-deterministically picks values for variables in the  
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Fig. 3. Composition and link annotations 
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subtask that satisfy the condition. The interrupt (whenever(varList, Condition, Can-
celCondition)) fires and executes the subtask whenever there is a binding for the vari-
ables that satisfies the condition until the cancellation condition becomes true. Guards 
(guard(Condition)) block the subtask’s execution until the condition becomes true. 
The absence of a link annotation on a particular decomposition link indicates the 
absence of any conditions on the subgoal/subtask. 

If alternative means of achieving a certain goal exist, the designer can specify  
under which circumstances it makes sense to try each alternative. We call these appli-
cability conditions and introduce a new annotation ac(condition) to be used with 
means-ends links to specify them. The presence of an applicability condition (AC) 
annotation specifies that only when the condition is true may the agent select the 
associated alternative in attempting to achieve the parent goal. E.g., one may specify 
that phoning participants to notify them of the meeting details is applicable only for 
important participants, while the email option is applicable for everyone (see Fig. 6). 
When there is no applicability condition, an alternative can always be selected. 

3.2   Increasing Precision with ASR Models 

The starting point for developing an ASR diagram for an actor is the regular SR dia-
gram for that actor (e.g., see Fig. 2). It then can be appropriately transformed to be-
come an ASR diagram every element of which can easily be mapped into ConGolog. 
The steps for producing ASR diagrams from SR ones include the addition of model 
annotations, the removal of softgoals, the deidealization of goals [9], and the addition 
of details of agent interaction to the model. Since an ASR diagram is going to be 
mapped into a ConGolog specification consisting of parameterized procedures, pa-
rameters for annotations/goals/tasks capturing the details of events as well as what 
data or resources are needed for goal achievement or task execution can be specified 
in ASR diagrams (see Fig. 6) to simplify the generation of ConGolog code. However, 
we sometimes omit the parameters in ASR diagrams for brevity.  

Softgoals. Softgoals represent non-functional requirements [3] and are imprecise 
and difficult to handle in a formal specifications language such as ConGolog. There-
fore in this approach, we use softgoals to choose the best process alternatives and then 
remove them before ASR diagrams are produced. Alternatively, softgoals can be 
operationalized or metricized, thus becoming hard goals. The removal of softgoals in 
ASR diagrams is a significant deviation from the standard i* framework. 

Deidealization of goals. Goals in ASR diagrams that cannot always be achieved 
are replaced by weaker goals that can. This involves identifying various possible 
failure conditions and guarding against them. 

Providing agent interaction details. i* usually abstracts from modeling any details 
of agent interactions. In ASR diagrams, we specify the interactions through which 
intentional dependencies are realized by the actors involved. Interactions are specified 
as processes involving various “communication” primitive actions that change the 
state of the system. The effects of these actions are modeled using ordinary flu-
ents/properties. This supports simulation, but does not capture the fact that these ac-
tions operate on the mental states of the communicating agents. We address this in 
Section 4. Agent interaction details include tasks such as requests for services or  
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information from agents in the system, tasks that supply information or communicate 
about success or failure in providing services, etc. Arbitrarily complex interaction 
protocols can be specified. We assume that the communication links are reliable. 

In ASR diagrams, all resource dependencies are modeled more precisely using ei-
ther goal or task dependencies according to the level of freedom that the dependee has 
in supplying the resource.  
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Fig. 4. A fragment of the ASR diagram for the MS agent 

Fig. 4 shows a small fragment of the ASR diagram for the Meeting Scheduler agent. 
This model shows a very high-level view of the achievement of the goal TryToSched-
uleMeeting. Here, the MS must get the suggested meeting dates from the MI, get the 
available dates from the participants, find agreeable dates (potential dates for the 
meeting), and try to arrange the meeting on one of those days. Various annotations 
have been added to the model. The absence of a composition annotation for the Try-
ToScheduleMeeting task indicates that it is sequentially decomposed. There are inter-
rupt/guard annotations that let the MS agent monitor for incoming requests and for 
replies to its queries about the meeting date range and available dates for participants. 
The for annotation indicates that the querying for the available dates is iterated for all 
the participants. Note that the goal TryToScheduleMeeting in Fig. 4 is a deidealized 
(weakened) goal. 
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3.3   Mapping ASR Diagrams into ConGolog 

Once all necessary details have been introduced into an ASR diagram, it can be 
mapped into a corresponding formal ConGolog model, thus making the model ame-
nable to formal analysis. The modeler must define a mapping m that maps every ele-
ment (except for intentional dependencies) of an ASR diagram into ConGolog. This 
mapping associates ASR diagram elements with ConGolog procedures, primitive 
actions, and formulas so that a ConGolog program can be generated from an ASR 
diagram. Specifically, agents are mapped into constants that serve as their names and 
ConGolog procedures that specify their behaviour; roles and positions are mapped 
into similar procedures with an agent parameter so that they can be instantiated by 
individual agents. So, when an agent plays several roles or occupies several positions, 
it executes the procedures that correspond to these roles/positions concurrently. Leaf-
level task nodes are mapped into ConGolog procedures or primitive actions. Compo-
sition and link annotations are mapped into the corresponding ConGolog operators, 
and conditions present in the annotations map into ConGolog formulas. 

Mapping Task Nodes. A non-leaf task node with its decomposition is automatically 
mapped into a ConGolog procedure that reflects the structure of the decomposition 
and all the annotations. 

Consider the shaded part of Fig. 4, where the task TryToScheduleMeeting is decom-
posed into a number of subtasks/subgoals. This task will be mapped into the follow-
ing ConGolog procedure (it contains parts still to be mapped into ConGolog; they are 
the parameters of the mapping m). Here, the parameter mid stands for “meeting ID”, a 
unique meeting identifier: 

proc TryToScheduleMeeting(mid,mi) 
    requestEnterDateRange(MS,mi,mid); 
    guard m(DateRangeEntered) do 
       m(AvailableDatesKnown).achieve; 
    endGuard; 
    guard m(AllAvailDatesReceived) do 
       mergeAvailDates(MS,mid); 
    endGuard; 
    TryToGetAgreementOnDate(MS,mid); 
endProc 

Notice that the mapping of tasks into ConGolog procedures is compositional. We have 
defined a set of mapping rules that formally specify this part of the mapping process. 

Mapping Goal Nodes. In the i*-ConGolog approach, goal nodes are mapped into a 
ConGolog formula that represents the desired state of affairs associated with the goal 
and a procedure that encodes means for achieving the goal. The achievement proce-
dure is generated from the decomposition of the goal into means for achieving it, 
which is modeled in the ASR diagram through means-ends links. This is similar to the 
mapping of task decompositions as seen above and can be performed automatically. 
The achievement procedure for a goal G can be referenced as m(G).achieve (e.g., see 
the code fragment above). Fig. 5 shows a generic goal decomposition together with 
the generated achievement procedure. At the end of the achievement procedure, there 
is typically a test that makes sure that the goal is achieved: m(G).formula)?. 
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       endGuard
    m(σ)
     …
    m(σ)
       guard m (φn) do
            m (αn)(m(Meansn))
       endGuard );

(m(G).formula)?
endProc

G
m

 

Fig. 5. Generating a goal achievement procedure 

The default composition annotation for means-ends decompositions (represented 
by σ in Fig. 5) is alternative (“|”). This indicates that the means for achieving the goal 
is selected non-deterministically. As shown in Fig. 5, each goal achievement alterna-
tive is wrapped in a guard operator with the guard condition being the result of  
mapping the corresponding applicability condition annotation. This ensures that an 
alternative will only be selected when it can begin execution and its applicability 
condition holds. Other composition annotations (e.g. concurrency or sequence) can 
also be used. Note that neither ConGolog nor CASL currently provides built-in  
language constructs for sophisticated handling of alternative selection, execution 
monitoring, failure handling, retries, etc.; this is an area for future work. 

Since in this approach, softgoals are removed from ASR diagrams, applicability 
conditions can be used to capture in a formal way the fitness of the alternatives with 
respect to softgoals (this fitness is normally encoded by the softgoal contribution links 
in SR diagrams). For example, one can specify that phoning participants to notify 
them of the meeting details is applicable only in cases with few participants, while the 
email option is applicable for any number of participants (see Fig. 6). This may be 
due to the softgoal Minimize Effort that has been removed from the model before the 
ASR diagram was produced. 

In addition to applicability conditions, other link annotations can be used with 
means-ends decompositions to specify extra control information. These are repre-
sented by αi in Fig. 5 and are exemplified by the for loop annotations in Fig. 6. Note 
that these annotations are applied after applicability conditions. 

 

for(p,Participant (mid,p))

ac(NoOfPtcpts(mid) < 4)

Phone 
Participant 

(mid,p)

Email 
Participant 

(mid,p)

 proc NotifyAchieve
   guard 

NoOfPtcpts(mid) < 4 do
     for p:Participant (mid,p) do

m(PhoneParticipant (mid,p))
endFor

   endGuard
   |
   for p:Participant (mid,p) do

m(EmailParticipant (mid,p))
endFor

endProc

Notify 
Participants 

(mid)

m

for(p,Participant (mid,p))

 

Fig. 6. Goal achievement procedure example 
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Specifying Domain Dynamics. To obtain a complete ConGolog specification, one 
needs to provide the declarative part of the specification, namely an action precondi-
tion axiom for every primitive action, a successor state axiom for every fluent, and 
initial state axioms, as described in Section 2.2. 

3.4   Simulation 

ConGolog models can be executed to run process simulation experiments. To do this, 
the modeler must first specify an instance of the overall system. We do this by defin-
ing a main procedure. Here is how this looks in the ConGolog simulation tool nota-
tion (#= is the concurrent execution operator): 

 
     proc(main,[ 
          initiator_behavior(mi,ms)#= 
          meetingScheduler_behavior(ms,mi)#=  
          participant_behaviour(yves,ms)#= 
          participant_behaviour(alexei,ms)#=  
     ]). 
 

Here, there are the Meeting Initiator agent, mi, the Meeting Scheduler ms, and two 
participants, yves and alexei. The modeler must also provide a complete specifi-
cation of the initial state of the system. Here, the possible meeting dates are repre-
sented as integers in order to simplify the explanation. Initially the schedule for the 
participant alexei is [11,12,14], i.e., alexei is busy on the 11th, 12th, and 14th 
of some month. The schedule for the participant yves is [10,12], i.e. yves is 
busy on the 10th and 12th. The Meeting Initiator mi wants to schedule a meeting with 
alexei and yves on the 12th or 14th. Then the modeler can execute the main pro-
cedure to obtain a simulation trace. The simulation obtained from this instance of the 
system is as follows: 

 
// start interrupts in initial situation 
startInterrupts 
// mi requests ms to schedule a meeting with alexei and yves 
requestScheduleMeeting(mi,ms,[alexei,yves]) 
// ms requests mi to enter the possible date range for meeting with id = 1 
requestEnterDateRange(ms,mi,1) 
// mi enters 12, 14 as possible meeting dates 
enterDateRange(mi,ms,1,[12,14])  
// ms requests available dates from all participants 
obtainAvailDatesFromParticipant(ms,yves,1) 
obtainAvailDatesFromParticipant(ms,alexei,1)  
// yves sends his available dates 
sendAvailDates(yves,ms,1,[…]) 
// alexei sends his available dates 
sendAvailDates(alexei,ms,1,[…]) 
mergeAvailableDates(ms,1) 
// ms finds the list of common available dates empty 
setAllMergedlist(ms,1,[]) 
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// ms notifies both participants and the initiator that it failed to schedule  
// meeting 1 
notifyFail(ms,mi,1,[alexei,yves]) 
notifyFail(ms,alexei,1,[alexei,yves]) 
notifyFail(ms,yves,1,[alexei,yves]) 
 

Generally, this validation step of the process involves finding gaps or errors in the 
specification by simulating the processes. The ConGolog code can be instrumented 
with tests (using the “?” operator) to verify that desired properties hold, e.g., during 
or at the end of the execution of the program. Alternative specifications can be also 
compared. A graphical user interface tool for conducting such simulation experiments 
is available, see [13]. As mentioned, the simulation tool requires a complete specifica-
tion of the initial state. This limitation comes from the fact that the tool uses Prolog 
and its closed world assumption to reason about how the state changes. The tool (like 
ConGolog itself) does not provide support for modeling agent mental states and how 
they are affected by communication and other actions. As we saw in the examples, it 
is possible to model limited aspects of this using ordinary actions and fluent predi-
cates, but this does not capture the full logic of mental states and communication. 
Work is underway to relax these limitations and develop techniques for efficient rea-
soning about limited types of incomplete knowledge and knowledge-producing ac-
tions in ConGolog [20]. ConGolog models can also be verified using the CASLve 
tool discussed in Section 4.3. 

4   Modeling Mental States in Requirements Engineering 

4.1   Motivation 

Suppose that we are employing an approach like Tropos [2, 6] to model a simple goal 
delegation involving two agents. Fig. 7 shows a goal dependency where the Meeting 
Scheduler depends on the Meeting Participant for attending a meeting. We would like to  

 

AtMeeting(MP)

1. Before delegation
Goal(MS,AtMeeting(MP)) .
Know(MS,Goal(MS,AtMeeting(MP)))

2. Delegation through
request(MS,MP,AtMeeting(MP))

3. After Delegation
¬Goal(MP,¬AtMeeting(MP)) 
Know(MS,Goal(MP,AtMeeting(MP))) 
Know(MS,Know(MP,

Goal(MP,AtMeeting(MP))))
Know(MS,Know(MP,

Goal(MS,AtMeeting(MP))))

1. Before delegation
?

2. Delegation through
request(MS,MP,AtMeeting(MP))

3. After Delegation
¬Goal(MP,¬AtMeeting(MP)) 
Goal(MP,AtMeeting(MP)) 
Know(MP,Goal(MP,AtMeeting(MP))) 
Know(MP,Goal(MS,AtMeeting(MP))) 
Know(MP,Know(MS,

Goal(MP,AtMeeting(MP))))

MS MP

Meeting 
Participant 

Meeting 
Scheduler

 

Fig. 7. A motivating example 
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be able to analyze this interaction and predict how it will affect the agents’ goals and 
knowledge. Using the i*-CASL approach presented in this section [11, 12], one can 
create a formal model based on the diagram, analyze it, and conclude that, e.g., before 
the goal delegation, the MS has the goal AtMeeting(MP) and knows about this fact. 
After the delegation (and provided that the MP did not have a conflicting goal), the MS 
knows that the MP has acquired the goal, that the MP knows that it has the goal, and 
that the MP knows that the MS has the same goal, etc. Similar questions can be asked 
about MP. 

Note that the change in the mental state of the requestee agent is the core of goal 
delegation. One of the main features of the i*-CASL approach is that goals (and 
knowledge) are assigned to particular agents thus becoming their subjective attributes 
as opposed to being objective system properties as in many other approaches (e.g., 
[4]). This allows for the modeling of conflicting goals, agent negotiation, information 
exchange, complex agent interaction protocols, etc. In CASL, the full logic of these 
mental states and how they change is formalized. The i*-CASL approach thus allows 
for creating richer, more expressive specifications with precise modeling of agents’ 
mental states. However, the more complex CASL models currently require the use of 
a theorem-prover-based verification tool such as CASLve and cannot be used with the 
ConGolog simulation tool. 

4.2   The Cognitive Agents Specification Language 

The Cognitive Agents Specification Language (CASL) [22, 23] is a formal specifica-
tion language that extends ConGolog to incorporate models of mental states expressed 
in the situation calculus [21]. CASL uses modal operators to formally represent 
agents’ knowledge and goals; communication actions are provided to update these 
mental states and ConGolog is then employed to specify the behaviour of agents. The 
logical foundations of CASL allow it to be used to specify and analyze a wide variety 
of MAS as shown in [22, 23]. For instance, it can model non-deterministic behaviours 
and systems with an incompletely specified initial state. Similar to ConGolog (see 
Section 2.2), CASL specifications consist of two parts: the model of the domain and 
its dynamics (the declarative part) and the specification of the agents’ behaviour (the 
procedural part).  

The formal representation for both goals and knowledge in CASL is based on a 
possible worlds semantics incorporated into the situation calculus, where situations 
are viewed as possible worlds [16, 21]. CASL uses accessibility relations K and W to 
model what an agent knows and what it wants respectively. K(agt,s′,s) holds if the 
situation s′ is compatible with what the agent agt knows in situation s. In this case, the 
situation s′ is called K-accessible. When an agent does not know the truth value of 
some formula φ, it considers possible (formally, K-accessible) some situations where 
φ is true and some where it is false. An agent knows that φ in situation s if φ is true in 
all its K-accessible situations in s: Know(agt,φ,s)=∀s′(K(agt,s′,s)⊃ φ[s′]). Constraints 
on the K relation ensure that agents have positive and negative introspection (i.e., 
agents know whether they know/don’t know something) and guarantee that what is 
known is true. Built-in communication actions such as inform are used for exchanging 
information among agents. The precondition for the inform action ensures that no 
 



498 A. Lapouchnian and Y. Lespérance 

false information is transmitted. The changes to agents’ knowledge due to communi-
cation and other actions are specified by the successor state axiom for the K relation. 
The specification ensures that agents are aware of the execution of all actions. En-
hanced accounts of knowledge change and communication in the situation calculus 
have also been proposed to handle, for instance, encrypted messages [23] or belief 
revision [25]. 

The accessibility relation W(agt,s′,s) holds if in situation s an agent considers that 
everything that it wants to be true actually holds in s′, which is called W-accessible. 
We use the formula Goal(agt,ψ,s) to indicate that in situation s the agent agt has the 
goal that ψ holds. The definition of Goal says that ψ must be true in all W-accessible 
situations that have a K-accessible situation in their past. This ensures that while 
agents may want something they know is impossible to achieve, the goals of agents 
must be consistent with what they currently know. There are constraints on the W and 
K relations that ensure that agent’s goals are consistent and that agents introspect their 
goals. In our approach, we mostly use achievement goals that specify the desired 
states of the world. We use the formula Goal(agt,Eventually(ψ),s) to state that agt has 
the goal that ψ is eventually true. The built-in communication actions request and 
cancelRequest are used by agents to request services from other agents and to cancel 
such requests respectively. Requests are used to establish intentional dependencies 
among actors and lead to changes in goals of the requested agent. The dynamics of 
the W relation are specified, as usual, by a successor state axiom that guarantees that 
no inconsistent goals are adopted. 

4.3   The i*-CASL Notation and Process 

Increasing Precision with Intentional Annotated Strategic Rationale Models. Our 
aim in this approach is to tightly associate i* models with formal specifications in 
CASL. As was the case with the i*-ConGolog approach presented in Section 3, we 
use an intermediate notation, Intentional Annotated SR (iASR) diagrams, to bridge the 
gap between SR diagrams and CASL specifications. 

When developing an iASR diagram, one starts with the corresponding SR diagram 
(e.g., see Fig. 2). The steps for producing iASR diagrams from the corresponding SR 
ones are similar to the ones presented in Section 3.  

Agent Goals in iASR Models. A CASL agent has procedural (behaviour) and declara-
tive (mental state) components. iASR diagrams only model agent processes and thus 
are used to represent the procedural component of CASL agents. A goal node in an 
iASR diagram indicates that the agent knows that the goal is in its mental state and is 
prepared to deliberate about if and how to achieve it. For the agent to modify its be-
haviour in response to the changes to its mental state, it must synchronize its proce-
dural and declarative components (see Fig. 8A). Agent mental states usually change 
as a result of communication acts that realize goal delegation and information ex-
change. So, the procedural component of the agent must monitor for these changes. 
The way to do this is to use interrupts or guards with their conditions being the pres-
ence of certain goals or knowledge in the mental state of the agent (Fig. 8B). Proce-
durally, the goal node is interpreted as invoking the means to achieve it. 
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commit
guard,

interrupt

Declarative 
Component

Procedural 
Component

request,
inform, etc.

CASL 
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guard(Goal(agt,Goal1))

Task1

Goal1A B
 

Fig. 8. Synchronizing declarative and procedural components of CASL specifications 

In CASL, only communication actions have effects on the mental state of the 
agents. However, we also would like the agents to be able to change their mental state 
on their own by executing the action commit(agent,φ), where φ is a formula that the 
agent (or the modeler) wants to hold. Thus, in iASR diagrams all agent goals must be 
acquired either from intentional dependencies or by using the commit action. By in-
troducing goals into the models of agent processes, the modeler captures the fact that 
multiple existing or potential alternatives exist in these processes and makes sure the 
mental state of agents reflect this. This allows agents to reason about their goals and 
ways to attain them at runtime.  
Modeling agent interactions. We take an intentional stance towards modeling agent 
interactions. We are modeling them with built-in generic communication actions (e.g., 
request, inform) that modify the mental states of the agents. In iASR models, these 
generic communication actions are used to request services, provide information, etc. 
Also, the conditions in annotations and communication actions (as well as the commit 
action) may refer to the agents’ mental states, knowledge and goals. Because of the 
importance of agent interactions in MAS, in order to formally verify multiagent sys-
tem specifications in CASL, all high-level aspects of agent interaction must be pro-
vided in the corresponding iASR models. 

Fig. 9A and Fig. 9B illustrate how an intentional goal dependency RoomBooked 
(see Fig. 1) can be modeled in SR and iASR models respectively. It is established by 
the MS’s execution of the request action (with that goal as the argument) towards the 
MRBS agent. This will cause the MRBS to acquire the goal RoomBooked (if it is consis-
tent with its existing goals). The interrupt in the iASR model for the MRBS monitors 

 

whenever(Goal(MRBS, 
RoomBooked(mid,d)),

systemTerminated)

guard(KWhether(MS, 
RoomBooked(mid,d)))
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ReserveRoom 
forDate(mid,d))
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Fig. 9. Adding iASR-level agent interaction details 
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its mental state for the goal and triggers the behaviour for achieving it (i.e. booking a 
room, which is not shown) when the goal is acquired. Also, once the MS’s knowledge 
state is updated and it knows whether (formally, KWhether) the room has been 
booked (note the guard condition), the task for notifying participants will be triggered. 

From iASR Models to CASL Specifications. Once an iASR model has been 
produced, it can be mapped into a CASL specification for formal analysis. 

As previously, the modeler defines a mapping m that associates iASR model ele-
ments (except for dependencies) with CASL procedures, primitive actions, and for-
mulas, so that a CASL program can be generated from an iASR model. Specifically, 
actors are mapped into CASL procedures, leaf-level tasks are mapped into procedures 
or primitive actions, while annotations are mapped into CASL operators. Conditions 
in the annotations map into CASL formulas that can refer to agents’ mental states.  

Mapping Goal Nodes. An iASR goal node is mapped into a CASL formula (the  
formal definition for the goal) and an achievement procedure that is based on the 
means-ends decomposition for the goal in the iASR diagram (see Fig. 5). E.g., a for-
mal definition for MeetingScheduled(mid,s) could be: ∃d[AgreeableDate(mid, date,s) 
∧ AllAccepted(mid,date,s) ∧ RoomBooked(mid,date, s)]. This says that there must be 
a date agreeable for everybody on which a room was booked and all participants  
accepted to meet. Often, an initial goal definition is too ideal and needs to be  
deidealized [9] or weakened. See [12] for an example. 

CASL’s support for reasoning about agents’ goals gave us the ability not to main-
tain meeting participants’ schedules explicitly. Rather, we relied on the presence of 
goals AtMeeting(participant,mid,date,s) in their mental states together with an axiom 
that made sure that they could only attend one meeting per time slot (see [12]).  

The achievement procedures for goals are automatically constructed based on the 
modeled means for achieving them as described in Section 3. 

Modeling Dependencies. Intentional dependencies are not mapped into CASL per se 
— they are established by the associated agent interactions. iASR tasks requesting 
help from agents will generally be mapped into actions of the type re-
quest(FromAgt,ToAgt,Eventually(φ)) for an achievement goal φ. For task dependen-
cies, we use request(FromAgt, ToAgt, DoAL(SomeProcedure)) to request that a 
known procedure be executed while allowing other actions to occur (DoAL stands for 
“do at least”).  

In order for a dependency to be established, we also need a commitment from a de-
pendee agent to act on the request from the depender. It must monitor its mental state 
for the newly acquired goals, which is done using interrupts that trigger whenever un-
achieved goals of certain types are in their mental states. The bodies of interrupts spec-
ify appropriate responses to the messages. Also, cancellation conditions in interrupts 
allow the agents to monitor for certain requests/informs only in particular contexts (e.g., 
while some interaction protocol is being enacted). For details, see [11, 12]. 

Analysis and Verification. Once an iASR model is mapped into the corresponding 
CASL specification, it is ready to be formally analyzed. One tool that can be used is 
CASLve [24, 22], a theorem-prover-based verification environment for CASL. 
CASLve provides a library of theories for representing CASL specifications and 
lemmas that facilitate various types of verification proofs. In addition to physical 
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executability of agent programs, one can also check for the epistemic feasibility of 
agent plans [14], i.e., whether agents have enough knowledge to successfully execute 
their processes. Alternative verification approaches based, for instance, on simulation 
or model checking can be used. However, they require much less expressive 
languages, so CASL specifications need to be simplified for these approaches. 

If expected properties of the system are not entailed by the CASL model, it means 
that the model is incorrect and needs to be fixed. The source of an error found during 
verification can usually be traced to a portion of the CASL code, and to a part of its 
iASR model, since our systematic mapping supports traceability.  

5   Discussion and Future Work 

In this chapter, we have presented an approach to requirements engineering that in-
volves the combined use of i* and some multiagent system specification formalisms, 
ConGolog and its extension CASL. This allows the requirements engineer to exploit 
the complementary features of the frameworks. The i* framework can be used to 
model social dependencies between agents, perform an analysis of opportunities and 
vulnerabilities, explore alternatives and trade-offs. These models are then gradually 
made more precise with the use of annotated models. ConGolog or CASL can then be 
used to model complex processes formally with subsequent verification or simulation 
(for ConGolog only). Additionally, CASL supports the explicit modeling of agent 
mental states and reasoning about them. In our approach, both graphical/informal and 
textual/formal notations are used, which supports a progressive specification process 
and helps in communicating with the clients, while providing traceability. 

There have been a few other proposals for using i* with formal specification lan-
guages for RE. The Trust-Confidence-Distrust (TCD) approach combining i* and Con-
Golog to model/analyze trust in social networks was proposed in [7]. TCD is focused on 
a specific type of applications and has an extended SR notation that is quite different 
from our proposal in terms sequencing of elements, explicit preconditions, etc. 

Formal Tropos (FT) [6] is another approach that supports formal analysis of i* 
models though model checking. Its specifications use temporal logic and it can be 
used at the SD level, unlike our approaches, which use procedural notations that are 
more suitable for SR models. Unlike CASL, the formal components of FT and the i*-
ConGolog approach do not support reasoning about goals and knowledge and thus 
require that goals be abstracted out of the specifications. However, most agent inter-
actions involve knowledge exchange and goal delegation. The ability of CASL to 
formally model and reason about mental states as properties of agents is important 
and supports new types of analysis (e.g., of conflicting goals). 

In future work, we would like to develop tool support for representing ASR/iASR 
diagrams and mapping them into ConGolog/CASL and for supporting the co-
evolution of the two representations. We expect that our RE toolkit will be able to 
significantly simplify the specification of the declarative component of Con-
Golog/CASL models. We plan to explore how different types of agent goals (e.g., 
maintenance) as well as privacy, security, and trust can be handled in CASL. There 
are also a number of limitations of CASL’s formalization of mental state change and 
communication that should be addressed in future work. One such limitation is that 
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agents cannot send false information. Removing this limitation requires modeling 
belief revision, which adds a lot of complexity (see [25]). However, this will support 
modeling of, e.g., malicious and untruthful agents. 

We also note that CASL assumes that all agents are aware of all actions being exe-
cuted in the system. Often, it would be useful to lift this restriction, but dealing with 
the resulting lack of knowledge about agents’ mental states can be challenging.  

Finally, there is also ongoing work on supporting limited forms of incomplete 
knowledge and information acquisition actions in a logic programming-based Con-
Golog implementation [20]. This may eventually lead to an executable version of 
CASL where simulation can be performed on models of agents with mental states. 
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