
Experiments in Infinite States Verification in Game-Theoretic Logics

Slawomir Kmiec and Yves Lespérance
Dept. of Computer Science and Engineering,

York University, Toronto, Canada
skmiec@cse.yorku.ca and lesperan@cse.yorku.ca

Abstract

Many practical problems where the environment is
not in the system’s control such as service orches-
tration and contingent and multi-agent planning can
be modelled in game-theoretic logics (e.g. ATL).
But most work on verification methods for such
logics is restricted to finite state cases. [De Gia-
como et al., 2010] develops a situation calculus-
based logical framework for representing such infi-
nite state game-type problems together with a veri-
fication method based on fixpoint approximates and
regression. In this paper, we describe some case
studies we have done to evaluate this method. We
specify some example domains and show that the
verification method does allow us to verify vari-
ous properties. We also find some examples where
the method must be extended to exploit informa-
tion about the initial state and state constraints in
order to work. Our example domains can be used
to evaluate other infinite state verification methods.

1 Introduction
Many practical problems where the environment is not com-
pletely under the system’s control, such as service orchestra-
tion and contingent and multi-agent planning, can be mod-
eled as games and specified in game-theoretic logics. There
has been much work to define such logics (e.g. ATL) and de-
velop verification methods for them, mainly model checking
techniques [Alur et al., 2002]. However, most such work is
restricted to finite state settings. [De Giacomo et al., 2010]
develops an expressive logical framework for specifying such
problems within the situation calculus [McCarthy and Hayes,
1969]. In their approach, a game-like problem/setting is rep-
resented as a situation calculus game structure, a special kind
of action theory that specifies who are the players, what the
legal moves are, etc. They also define a logic that combines
the µ-calculus, game-theoretic path quantifiers as in ATL, and
first-order quantification, for specifying properties about such
game settings. As well, they propose a procedural language
for defining game settings, GameGolog, which is based on
ConGolog [De Giacomo et al., 2000]. Finally, they propose
a method for verifying temporal properties over infinite state

game structures that is based on fixpoint approximates and re-
gression. The method is also adapted for GameGolog-defined
settings to exploit a compact “characteristic graph” [Claßen
and Lakemeyer, 2008] representation of the program’s con-
figuration space.

While [De Giacomo et al., 2010] give examples to illustrate
the expressiveness and convenience of their formalism, they
recognize that their work is essentially theoretical and call for
experimental studies to understand whether these techniques
actually work in practice. This is what we begin to address in
this paper. We develop several example problems involving
infinite state domains and represent them as situation calculus
game structures. We then examine whether the [De Giacomo
et al., 2010] fixpoint approximates verification method works
to verify common temporal properties. In many cases, it does
indeed work. So to some extent, our work validates the [De
Giacomo et al., 2010] proposal.

We do however find other examples where the [De Gia-
como et al., 2010] method does not converge in a finite num-
ber of steps. We note that the method uses only the simplest
part of the action theory, the unique name and domain clo-
sure axioms, to try to show that successive approximates are
equivalent (after performing regression). Clearly, using the
whole action theory is problematic as it includes a second or-
der axiom to specify the domain of situations. We show that
in some cases, adding a few key facts that are entailed by
the entire theory (from simple axioms about the initial state
to state constraints proven by induction) is sufficient to get
convergence in a finite number of steps. This means that the
method can be used successfully in a wider range of problems
if we can rely on the modeler to identify such facts. Thus, our
case studies show that the methods introduced in [De Gia-
como et al., 2010] often do work for infinite domains, where
very few verification methods are available, and allow rea-
soning about a range of game problems. Note that in our case
studies, the fixpoint approximation method was performed
manually. We discuss implementation in the conclusion.

2 Situation Calculus Game Structures
2.1 Situation Calculus and Basic Action Theories
The Situation Calculus (SitCalc) is a many sorted predicate
logic language for representing dynamically changing worlds
in which all changes are the result of named actions [Mc-

Carthy and Hayes, 1969; Reiter, 2001]. Actions are terms
in the language, e.g. pickup(R,X) could represent an action
where a robot R picks up an object X . Action terms are de-
noted by α possibly with subscripts to differentiate different
action terms. Action variables are denoted by lower case let-
ters a possibly with subscripts. Action types, i.e. actions func-
tions, which may require parameters, are denoted by upper
case letters A possibly with subscripts. Situations represent
possible world histories and are terms in the language. The
distinguished constant S0 denotes the initial situation where
no action has yet been performed. The distinguished func-
tion symbol do is used to build sequences of actions such that
do(a, s) denotes the successor situation that results from per-
forming action a in situation s. Fluents are predicates or func-
tions whose values may vary from situation to situation. They
are denoted by symbols that take a situation term as their last
argument. A distinguished predicate symbol Poss(a,s) is used
to state that an action a is executable in a situation s.

Given this language, one can specify action theories that
describe how the world changes as the result of the available
actions. We focus on basic action theories as proposed in
[Reiter, 2001]. We assume that there is a finite number of ac-
tion types in the domains we consider. Thus a basic action
theory D is the union of the following disjoint sets: the foun-
dational, domain independent axioms of the situation calculus
(Σ); precondition axioms stating when actions can be legally
performed (Dposs); successor state axioms describing how
fluents change between situations (Dssa); unique name ax-
ioms for actions and domain closure on action types (Dca);
and axioms describing the initial configuration of the world
(DS0). Successor state axioms specify the value of fluents in
situation do(a, s) in terms of the action a and the value of flu-
ents in situation s; they encode the causal laws of the world
and provide a solution to the frame problem.

2.2 Situation Calculus Game Structure Definitions
Situation calculus game structures, proposed by [De Gia-
como et al., 2010], are a specialization of basic action theories
that allow multi-agent game-like settings to be modeled. In
SitCalc game structures, every action a has an agent parame-
ter and the distinguished function agent(a) returns the agent
of the action. Axioms for the agent function are specified for
every action type and by convention the agent parameter is
the first argument of any action type. It is assumed that there
is a finite set Agents of agents who are denoted by unique
names. Actions are divided into two groups: choice actions
and standard actions. Choice actions model the decisions of
agents and they are assumed to have no effect on any fluent
other than Poss, Legal, and Control. Poss(a, s) specifies
that an action a is physically possible (i.e. executable) in situ-
ation s. Choice actions are always physically possible. Stan-
dard actions are the other non-choice actions. There is also
a distinguished predicate Legal(s) that is a stronger version
of possibility/legality and models the game structure of inter-
est. It specifies what actions an agent may execute and what
choices can be made according to the rules of the game. The
axioms provided for Legal specify the game of interest. It is
required that the axioms for Legal entail 3 properties:

1. Legal implies physically possible

Legal(s) ⊃ s = S0∨∃a, s′.s = do(a, s′)∧Poss(a, s′)
2. legal situations are result of an action performed in legal

situations
Legal(s) ⊃ s = S0 ∨ ∃a, s′.s = do(a, s′) ∧ Legal(s′)

3. only one agent can act in a legal situation
Legal(do(a, s)) ∧ Legal(do(a′, s)) ⊃ agent(a) =
agent(a′)

Control(agt, s) holds if agent agt is the one that is in control
and can act in a legal situation s; it is defined as follows:

Control(agt, s)
.
= ∃a.Legal(do(a, s)) ∧ agent(a) = agt

As a result of the above constraints on Legal, it follows
that the predicate Control holds for only one agent in a
any given legal situation. As explained in [De Giacomo et
al., 2010], games where several agents act simultaneously
can be modeled using a round-robin of choice actions; if the
result of such simultaneous choices is non-deterministic, a
“game master” agent that makes the decision can be intro-
duced. It is worth noting that the state of the game in situa-
tion s is captured by the fluents. Finally, [De Giacomo et al.,
2010] define a SitCalc game structure to be an action theory
DGS = Σ∪Dposs∪Dssa∪Dca∪DS0

∪Dlegal whereDlegal

contains the axioms for Legal and Control and for the func-
tion agent(), and the other components are as for standard
basic action theories. Note that here, a game structure is a
type of situation calculus theory and not a single game model
as is often the case.

2.3 Property Language
[De Giacomo et al., 2010] introduces a logical language L
for expressing temporal properties of game structures. It is
inspired by ATL [Alur et al., 2002] and based on the µ-
calculus [Park, 1976], as used over game structures as in
[Bradfield and Stirling, 2007]. The key element of the L-
logic is the 〈〈G〉〉 © ϕ operator defined as follows:

〈〈G〉〉 © ϕ
.
=

(∃agt ∈ G. Control(agt, now) ∧
∃a. agent(a) = agt ∧
Legal(do(a, now)) ∧ ϕ[do(a, now)]) ∨

(∃agt /∈ G. Control(agt, now) ∧
∀a. agent(a) = agt ∧
Legal(do(a, now)) ⊃ ϕ[do(a, now)])

This operator, in essence, specifies that a coalition G of agents
can ensure that φ holds next, i.e. after one more action, as
follows. If an agent from the coalition G is in control in the
current situation, then all we need is that there be some legal
action that this agent can perform to make the formula φ hold.
If the agent in control is not in coalition G, then what we need
is that regardless of the action taken by the in-control agent
(for all) the formula φ holds after the action. The whole logic
L is defined as follows:
Ψ← ϕ | Z(~x) | Ψ1 ∧Ψ2 | Ψ1 ∨Ψ2 | ∃x.Ψ | ∀x.Ψ |
〈〈G〉〉 ©Ψ | [[G]]©Ψ | µZ(~x).Ψ(Z(~x)) | νZ(~x).Ψ(Z(~x)).

In the above ϕ is an arbitrary, possibly open, situation-
suppressed situation calculus uniform formula, Z is a pred-
icate variable of a given arity, 〈〈G〉〉©Ψ is as defined above,

[[G]] © Ψ is the dual of 〈〈G〉〉 © Ψ (i.e., [[G]] © Ψ ≡
¬〈〈G〉〉 © ¬Ψ1), and µ (resp. ν) is the least (resp. greatest)
fixpoint operator from the µ-calculus, where the argument is
written as Ψ(Z(~x)) to emphasize that Z(~x) may occur free,
i.e., not quantified by µ or ν in Ψ.

The language L allows one to express arbitrary tempo-
ral/dynamic properties. For example, the property that group
G can ensure that eventuallyϕ(~x) (or has a strategy to achieve
ϕ(~x)), where ϕ(~x) is a situation suppressed formula with free
variables ~x, may be expressed by the following least fixpoint
construction:

〈〈G〉〉♦ϕ(~x)
.
= µZ(~x). ϕ(~x) ∨ 〈〈G〉〉 © Z(~x)

Similarly, group G’s ability to maintain a property ϕ(~x) can
be expressed by the following greatest fixpoint construction:

〈〈G〉〉�ϕ(~x)
.
= νZ(~x).ϕ(~x) ∧ 〈〈G〉〉 © Z(~x)

We say that there is a path where ϕ(~x) holds next if the set
of all agents can ensure that ϕ(~x) holds next: ∃ © ϕ(~x)

.
=

〈〈Agents〉〉 © ϕ(~x). Similarly there is a path where ϕ(~x)
eventually holds if the set of all agents has a strategy to
achieve ϕ(~x): ∃♦ϕ(~x)

.
= 〈〈Agents〉〉♦ϕ(~x).

2.4 Fixpoint Iteration Verification Method
[De Giacomo et al., 2010] propose a procedure based on
regression and fixpoint approximation to verify formulas of
logic L given a SitCalc game structure theory. This recur-
sive procedure τ(Ψ) tries to compute a first-order formula
uniform in current situation now that is equivalent to Ψ:

τ(ϕ) = ϕ
τ(Z) = Z
τ(Ψ1 ∧Ψ2) = τ(Ψ1) ∧ τ(Ψ2)
τ(Ψ1 ∨Ψ2) = τ(Ψ1) ∨ τ(Ψ2)
τ(∃x.Ψ) = ∃x.τ(Ψ)
τ(∀x.Ψ) = ∀x.τ(Ψ)
τ(〈〈G〉〉 ©Ψ) = R(〈〈G〉〉 © τ(Ψ))
τ([[G]]©Ψ) = ¬R(〈〈G〉〉 © τ(NNF(¬Ψ)))
τ(µZ.Ψ) = lfpZ.τ(Ψ)
τ(νZ.Ψ) = gfpZ.τ(Ψ)

In the above, R represents the regression operator and
〈〈G〉〉 © Ψ is regressable if Ψ is regressable, NNF(¬Ψ) de-
notes the negation normal form of ¬Ψ, and
• lfpZ.Ψ is the formula R resulting from the least fixpoint

procedure
R := False;
Rnew := Ψ(False);
while (Dca 6|= R ≡ Rnew){

R := Rnew;
Rnew := Ψ(R) }

• gfpZ.Ψ is the formula R resulting from the greatest fix-
point procedure

R := True;
Rnew := Ψ(True)];
while (Dca 6|= R ≡ Rnew){

R := Rnew;
Rnew := Ψ(R) }

1Although ¬〈〈G〉〉©¬Ψ is not in L according to the syntax, the
equivalent formula in negation normal form is.

The fixpoint procedures test if R ≡ Rnew is entailed given
only the unique name and domain closure for actions ax-
ioms Dca. In general, there is no guarantee that such pro-
cedures will ever terminate i.e. that for some i Dca |= Ri ≡
Ri+1. But if the lfp procedure does terminate, then DGS |=
Ri[S] ≡ µZ.Ψ(Z)[S] and Ri is first-order and uniform in
S (and similarly gfp). In such cases, the task of verifying a
fixpoint formula in the situation calculus is reduced to that of
verifying a first-order formula. We have the following result:
Theorem 1. [De Giacomo et al., 2010] Let DGS be a sit-
uation calculus game structure and let Ψ be an L-formula.
If the algorithm above terminates, then DGS |= Ψ[S0] iff
DSo
∪ Dca |= τ(Ψ)[S0].

3 Case Studies
3.1 Light World (LW)
Our first example domain is the Light World (LW), a simple
game we designed that involves an infinite row of lights, one
for each integer. A light can be on or off. Each light has a
switch that can be flipped, which will turn the light on (off
resp.) if it was off (on resp.). There are 2 players, X and
O. Players take turns and initially it is X’s turn. The goal of
player X is to have lights 1 and 2 on in which case player X
wins the game. Initially, only light 5 is on. Note that this is
clearly an infinite state domain as the set of lights that can be
turned on or off is infinite. Note also that the game may go
on forever without the goal being reached (e.g., if player O
keeps turning light 1 or 2 off whenever X turns them on).

We will show that the fixpoint approximation method of
[De Giacomo et al., 2010] can be used to verify some inter-
esting properties in this domain. We apply the method with
one small modification: when checking whether the two suc-
cessive approximates are equivalent, we use a suitable axiom-
atization of the integers DZ in addition to the unique names
and domain closure axioms for actions DLW

ca , as our game
domain involves one light for every integer. 2

The game structure axiomatization for this domain is:
DLW

GS = Σ∪DLW
poss ∪DLW

ssa ∪DLW
ca ∪DLW

S0
∪DLW

Legal ∪DZ .

We have only one action flip(p, t), meaning that player p
flips light t, with the precondition axiom (in DLW

poss):
Poss(flip(p, t), s) ≡ Agent(p)

We have the fluents On(t, s), meaning that light t is on in
situation s, and turn(s), a function that denotes the agent
whose turn it is in s. The successor state axioms (in DLW

ssa)
are as follows:

On(t, do(a, s)) ≡ ∃p a = flip(p, t) ∧ ¬On(t, s) ∨
On(t, s) ∧ ∀p.a 6= flip(p, t)

turn(do(a, s)) = p ≡
p = O ∧ turn(s) = X ∨ p = X ∧ turn(s) = O

2Our axioms and the properties we attempt to verify only use a
very simple part of integer arithmetic. It should be possible to gen-
erate the proofs using the decidable theory of Presburger arithmetic
[Enderton, 1972] after encoding integers as pairs of natural num-
bers in the standard way [Hamilton, 1982]. Most theorem proving
systems include sophisticated solvers for dealing with formulas in-
volving integer constraints and it should be possible to use these to
perform the reasoning about integers that we require.

The rules of the game are specified using the Legal predicate.
We have the following axioms in DLW

legal:

Legal(do(a, s)) ≡ Legal(s) ∧
∃p, t. Agent(p) ∧ turn(s) = p ∧ a = flip(p, t)

agent(flip(p, t)) = p
Control(p, s)

.
= ∃a.Legal(do(a, s)) ∧ agent(a) = p

∀p.{Agent(p) ≡ (p = X ∨ p = O)}, X 6= O

Thus legal moves involve the player whose turn it is flipping
any switch. We have the following unique name and domain
closure axioms for actions in DLW

ca :

∀a. { ∃p, t. a = flip(p, t)}
∀p, p′, t, t′. { flip(p, t) = flip(p′, t′) ⊃ p = p′ ∧ t = t′ }

Finally, the initial state axioms in DLW
S0

are: turn(S0) = X ,
¬On(1, S0), ¬On(2, S0), On(5, S0), and Legal(S0).

For our first verification example, we consider the property
that it is possible for X to eventually win (assuming O coop-
erates), which can be represented by the following formula:

∃♦Wins(X)
.
= µZ.Wins(X) ∨ ∃© Z,

where Wins(X, s)
.
= Legal(s) ∧ On(1, s) ∧ On(2, s). We

apply the [De Giacomo et al., 2010] fixpoint iteration ver-
ification method to this example. We can show that the
regressed approximations simplify as follows (see [Kmiec,
2013] for a more detailed version of all proofs in this paper):

DLW
ca |= R0(s)

.
= Wins(X, s) ∨R(∃© False) ≡

Legal(s) ∧On(1, s) ∧On(2, s)
This approximation evaluates to true if s is such that X is
winning in s already (in no steps), i.e., if light 1 and light 2
are on in s.

DLW
ca ∪DZ |= R1(s)

.
= Wins(X, s) ∨R(∃©R0) ≡

Legal(s) ∧On(1, s) ∧On(2, s) ∨
Legal(s)∧(turn(s) = X∨turn(s) = O)∧On(1, s)∨
Legal(s) ∧ (turn(s) = X ∨ turn(s) = O) ∧On(2, s)

This approximation evaluates to true if s is such that X can
win in at most 1 step; these are legal situations where player
X is already winning or where one of lights 1 or 2 is on, as
X or O can turn the other light on at the next step.

DLW
ca ∪DZ |= R2(s)

.
= Wins(X, s) ∨R(∃©R1) ≡

Legal(s) ∧On(1, s) ∧On(2, s) ∨
Legal(s) ∧ (turn(s) = X ∨ turn(s) = O)

This approximation evaluates to true if s is such that X can
win in at most 2 steps; this is the case if X is winning already
or if s is any legal situation where it is one of the players’ turn,
as the controlling player can turn light 1 on at the next step
and the other player can and light 2 on at the second step).

DLW
ca ∪DZ |= R3(s) ≡Wins(X, s) ∨R(∃©R2) ≡
Legal(s) ∧On(1, s) ∧On(2, s) ∨
Legal(s) ∧ (turn(s) = X ∨ turn(s) = O)

The fixpoint iteration procedure converges at the 4th step as
we have: DLW

ca ∪ DZ |= R2(s) ≡ R3(s). By the way,
note that it can be shown using the entire theory (by induction
on situations) that DLW

GS |= R2(s) ≡ Legal(s), as it is
always either X’s or O’s turn. In essence, it is possible for
X to eventually win in any legal situation. It then follows

by Theorem 1 of [De Giacomo et al., 2010] that: DLW
GS |=

∃♦Wins(X)[S0] iff DLW
GS |= Legal(S0) ∧ {On(1, S0) ∧

On(2, S0)∨ turn(S0) = X ∨ turn(S0) = O}. By the initial
state axioms, the latter holds so DLW

GS |= ∃♦Wins(X)[S0],
i.e., player X can eventually win in the initial situation.

For our second verification example, we look at the prop-
erty that X can ensure that he/she eventually wins no mat-
ter what O does, i.e., the existence of a strategy that ensures
Wins(X). This can be represented by the following formula:

〈〈{X}〉〉♦Wins(X)
.
= µZ. Wins(X) ∨ 〈〈{X}〉〉 © Z

We apply the [De Giacomo et al., 2010] method to try verify
this property. We can show that the regressed approximations
simplify as follows:

DLW
ca ∪ DZ |= R0(s)

.
= Wins(X, s) ∨R(〈〈{X}〉〉 © False)

≡ Legal(s) ∧On(1, s) ∧On(2, s)
This approximation evaluates to true if s is such that X is
already winning in s (in no steps); these are situations where
lights 1 and 2 are already on.

DLW
ca ∪ DZ |= R1(s)

.
= Wins(X, s) ∨R(〈〈{X}〉〉 ©R0)

≡ Legal(s) ∧On(1, s) ∧On(2, s) ∨
Legal(s) ∧ turn(s) = X ∧On(1, s) ∨
Legal(s) ∧ turn(s) = X ∧On(2, s)

This approximation evaluates to true if s is such that X can
ensure it wins in at most 1 step. This holds if lights 1 and 2
are already on or if either light 1 or 2 is on and it is playerX’s
turn, as X can then turn the other light on at the next step.

DLW
ca ∪ DZ |= R2(s) ≡Wins(X, s) ∨R(〈〈{X}〉〉 ©R1)
≡ Legal(s) ∧On(1, s) ∧On(2, s) ∨

Legal(s) ∧ turn(s) = X ∧On(1, s)∨
Legal(s) ∧ turn(s) = X ∧On(2, s)

Thus the fixpoint iteration procedure converges in the 3rd

step as we have: DLW
ca ∪ DZ |= R1(s) ≡ R2(s). There-

fore by Theorem 1 of [De Giacomo et al., 2010]: DLW
GS |=

〈〈{X}〉〉♦Wins(X)[S0] ≡ R1(S0) Since both lights 1
and 2 are off initially, it follows by the initial state ax-
ioms that DLW

GS |= ¬〈〈{X}〉〉♦Wins(X)[S0], i.e., there
is no winning strategy for X in S0. However, we also
have that DLW

GS |= 〈〈{X}〉〉♦Wins(X)[S1], where S1 =
do(flip(O, 3), do(flip(X, 1), S0)), i.e., X has a winning
strategy in the situation S1 where X first turned light 1 on
and then O flipped light 3, as X can turn on light 2 next.

Note that when the fixpoint approximation method is able
to show that a coalition can ensure that a property holds even-
tually, and the theory is complete and we have domain clo-
sure, we can always extract a strategy that the coalition can
follow to achieve the property: a strategy works if it always
selects actions for the coalition that get it from one approxi-
mate to a lower approximate (Ri to Ri−1).

3.2 Oil Lamp World (OLW)
The [De Giacomo et al., 2010] fixpoint approximation
method tries to detect convergence by checking if the i-th ap-
proximate is equivalent to the (i + 1)-th approximate using
only the unique name and domain closure axioms for actions
Dca (to which we have added the axiomatization of the inte-
gers). We now give an example where this method does not
converge in a finite number of steps. However, we also show

that if we use some additional facts that are entailed by the
entire theory DOLW

GS , including the initial state axioms, when
checking if successive approximates are equivalent, then we
do get convergence in a finite number of steps.

Consider the Oil Lamp World (OLW), a variant of the Light
World (LW) domain discussed earlier. It also involves an in-
finite row of lamps one for each integer, which can be on or
off. A lamp has an igniter that can be flipped. When this hap-
pens, the lamp will go on provided that the lamp immediately
to the right is already on, i.e., flipping the igniter for lamp t
will turn it on if lamp t + 1 is already on. There is only one
agent, X . The goal of X is to have lamp 1 on, in which case
X wins. Observe that the game may go on indefinitely with-
out the goal being reached, e.g., if X keeps flipping a lamp
other than lamp 1 repeatedly.

The game structure axiomatization for this domain is:
DOLW

GS = Σ∪DOLW
poss ∪DOLW

ssa ∪DOLW
ca ∪DOLW

S0
∪DLW

Legal∪
DZ . As in the previous example, we have only one action,
flip(p, t), meaning that p flips the igniter on light t, with the
following precondition axiom (in DLW

poss):

Poss(flip(p, t), s) ≡ Agent(p)

But there is no turn taking in this game as there is only one
agent X . We have the successor state axiom (in DLW

ssa):

On(t, do(a, s)) ≡
∃p a = flip(p, t) ∧On(t+ 1, s) ∨On(t, s)

Note that once a lamp is turned on it remains on. The rules of
the game are specified by the axioms in DLW

legal as follows:

Legal(do(a, s)) ≡
Legal(s) ∧ ∃p, t. Agent(p) ∧ a = flip(p, t)

agent(flip(p, t)) = p
Control(p, s)

.
= ∃a.Legal(do(a, s)) ∧ agent(a) = p

∀p.{Agent(p) ≡ p = X}

Thus legal moves involve X flipping any igniter. The unique
name and domain closure axioms for actions and the initial
state axioms are exactly as in the Light World example.

We are interested in verifying the property that it is possible
for X to eventually win ∃♦Wins(X), where Wins(X, s)

.
=

Legal(s)∧On(1, s). We begin by applying the [De Giacomo
et al., 2010] method and try to show that successive approxi-
mates are equivalent using only the unique name and domain
closure axioms for actions DOLW

ca and the axiomatization of
the integers DZ . We can show that the regressed approxima-
tions simplify as follows:

DOLW
ca ∪ DZ |= R0(s)

.
= Wins(X, s) ∨R(∃© False) ≡

Legal(s) ∧On(1, s)
This approximation evaluates to true if s is such that X is
already winning (in no steps); these are situations where lamp
1 is on.

DOLW
ca ∪ DZ |= R1(s)

.
= Wins(X, s) ∨R(∃©R0) ≡

Legal(s) ∧ (On(1, s) ∨On(2, s))
This approximation evaluates to true if s is such that X can
win in at most 1 step; these are legal situations where either
lamp 1 is on or where lamp 2 is on, and then X can turn lamp
1 on at the next step.

DOLW
ca ∪ DZ |= R2(s)

.
= Wins(X, s) ∨R(∃©R1) ≡

Legal(s) ∧ (On(1, s) ∨On(2, s) ∨On(3, s))
This approximation evaluates to true if s is such that X can
win in at most 2 steps; these are legal situations where either
lamp 1 is on, or where lamp 2 is on (and thenX can turn lamp
1 on at the next step), or where lamp 3 is on (and then X can
turn on lamps 2 and 1 at the next steps).

We can generalize and show that for all natural numbers i

DOLW
ca ∪DZ |= Ri ≡ Legal(s) ∧

∨
1≤j≤i+1

On(j, s)

That is, X can win in at most i steps if some lamp between 1
and i+1 is on. It follows that for all i, DOLW

ca ∪DZ 6|= Ri ≡
Ri+1, since one can always construct a model ofDOLW

ca ∪DZ

where every light except i + 2 is off . Thus, the plain [De
Giacomo et al., 2010] method fails to converge in a finite
number of steps.

Nonetheless, there is a way to beef up the [De Giacomo
et al., 2010] method to get convergence in a finite number of
steps. The idea is to use some facts that are entailed by the en-
tire theory in addition to the the unique name and domain clo-
sure axioms for actions DOLW

ca and the integer axioms DZ .
First, we can show by induction on situations that any lamp
that is on in the initial situation will remain on forever:

DOLW
GS |= φop

where φop
.
= ∀k{On(k, S0) ⊃ ∀sOn(k, s)}

Then, it follows that for any natural numbers i, j, i ≤ j,

DOLW
ca ∪ DZ ∪ {On(i+ 1, S0), φop} |= Rj ≡ Legal(s)

In essence, X can eventually win in any legal situation where
some lamp n is known to be on. It follows that:

DOLW
ca ∪ DZ ∪ {On(i+ 1, S0), φop} |= Ri ≡ Ri+1

Thus the fixpoint approximation method converges in a finite
number of steps if we use the facts that some lamp n is known
to be on initially and that a lamp that is on initially remains on
forever. Moreover, our initial state axioms includeOn(5, S0).
Thus, DOLW

GS |= ∃♦Wins(X)[S0], i.e., X can eventually
win in the initial situation, as it is legal and lamp 5 is on.

We can also show by induction on situations that if all
lamps are off initially, they will remain so forever:

DOLW
GS −DOLW

S0
|= (∀k¬On(k, S0)) ⊃ (∀s∀k¬On(k, s))

Then, we can show by a similar argument as above that the
fixpoint approximation method converges in a finite number
of steps if we use the facts that all lamp are off initially and
that if all lamps are off initially, they remain off forever.

3.3 In-Line Tic-Tac-Toe (TTT1D)
Our final example domain is more like a traditional game.
It involves a one-dimensional version of the well known tic-
tac-toe game that is played on an infinite vector of cells,
one for each integer. We show that the [De Giacomo et al.,
2010] fixpoint approximation method does work to verify
both winnability and the existence of a winning strategy in
this game, although in the former case the proof is long and
tedious. There are two players, X and O, that take turns,

with X playing first. All cells are initially blank, i.e. marked
B. Players can only put their mark at the left or right edge
of the already marked area. The functional fluent curn de-
notes the marking position on the left (negative) side of the
marked area and similarly curp denotes the marking position
on the right (positive) side of the marked area. Initially, curn
refers to cell 0 and curp to cell 1. Player p can put its mark
in the cell on the left (negative) side of the marked area, i.e.
the cell referred to by curn, by doing the action markn(p).
This also decreases the value curn by 1 so that afterwards, it
points to the next cell on the left. There is an analogous action
markp(p) for marking the the cell on the right (positive) side
of the marked area denoted by curp. A player wins if it suc-
ceeds in putting its mark in 3 consecutive cells. For example,
if initially we have the following sequence of moves:

[markp(X),markn(O),markp(X),markn(O),markp(X)],

then in the resulting situation the board is as follows:

. . . , B−3, B−2, O−1, O0, X1, X2, X3, B4, B5, . . .

(with the subscript indicating the cell number) and X wins.
Note that the game may go on indefinitely without either
player winning, for instance if player O always mimics the
last move of player X .
The game structure axiomatization for this domain is:
DT 31D

GS = Σ∪DT 31D
poss ∪DT 31D

ssa ∪DT 31D
ca ∪DT 31D

S0
∪DT 31D

Legal∪
DZ . The precondition axioms (in DT 31D

poss) state that the ac-
tions markn(p) and markp(p) are always possible if p is an
agent. The successor state axioms (in DLW

ssa) are as follows:

curn(do(a, s)) = k ≡
∃p.{a = markn(p)} ∧ curn(s) = k + 1
∨ curn(s) = k ∧ ∀p.{a 6= markn(p)}

curp(do(a, s)) = k ≡
∃p.{a = markp(p)} ∧ curp(s) = k − 1
∨ curp(s) = k ∧ ∀p.{a 6= markn(p)}

cell(k, do(a, s)) = p ≡
a = markp(p) ∧ curp(s) = k ∨
a = markn(p) ∧ curn(s) = k ∨
cell(k, s) = p

∧ ¬∃p′.{a = markp(p′) ∧ curp(s) = k}
∧ ¬∃p′.{a = markn(p′) ∧ curn(s) = k}

turn(do(a, s)) = p ≡
agent(a) = X ∧ p = O ∧ turn(s) = X
∨ agent(a) = O ∧ p = X ∧ turn(s) = O

The rules of the game are specified (in DT 31D
legal) as follows:

Legal(do(a, s)) ≡ Legal(s) ∧
∃p.{ turn(s) = p ∧ agent(a) = p

∧ (a = markn(p) ∨ a = markp(p)) }
agent(markn(p)) = p, agent(markp(p)) = p
Control(p, s)

.
= ∃a.Legal(do(a, s)) ∧ agent(a) = p

∀p. { Agent(p) ≡ (p = X ∨ p = O)}, X 6= O

The unique name and domain closure axioms for actions are
specified in the usual way. Finally, we have the following

initial state axioms in DT 31D
S0

: curn(S0) = 0, curp(S0) = 1,
turn(S0) = X , and Legal(S0).

We first consider the property that it is possible for X to
eventually win ∃♦Wins(X), where

Wins(p, s)
.
= ∃k(Legal(s) ∧

((curn(s) = k − 2 ∧ cell(k − 1, s) = p ∧
cell(k, s) = p ∧ cell(k + 1, s) = p) ∨

(curp(s) = k + 2 ∧ cell(k + 1, s) = p ∧
cell(k, s) = p ∧ cell(k − 1, s) = p)))

(Note that this simple definition allows both players to win.)
If we apply the original [De Giacomo et al., 2010] method
to this property (using only the unique name and domain
closure axioms for actions DT 31D

ca and the axiomatization
of the integers DZ to show that successive approximates
are equivalent), the fixpoint approximation procedure does
eventually converge, but only after 11 steps. The proof is
very long and tedious and there are numerous cases to deal
with. The reason for this is that we cannot use the fact that
curn is always less than curp and that the cells that are
between them are non-blank and that the other cells are
blank, which are consequences of the initial state axioms.
So our proof has to deal with numerous cases where there
are non-blank cells to the left of curn or to the right of curp
(if we can rule these out, the proof becomes much simpler).
Let us sketch the proof. We can show that the regressed
approximations simplify as follows:

DT31D
ca ∪ DZ |= R0(s)

.
= Wins(X, s) ∨R(∃© False) ≡

Wins(X, s)
This approximation evaluates to true if s is such that X is
winning in s already (in no steps); these are legal situations
where there are 3 X marks in a row on either side.

DT31D
ca ∪ DZ |= R1(s)

.
= Wins(X, s) ∨R(∃©R0) ≡

R0(s) ∨XCanPlayToWinNext(s)

where XCanPlayToWinNext(s)
.
=

Legal(s) ∧ turn(s) = X ∧ ∃k{
(curn(s) = k− 1∧ cell(k, s) = X ∧ cell(k+ 1, s) = X)∨
(cell(k− 1, s) = X ∧ cell(k, s) = X ∧ curp(s) = k+ 1)∨
(cell(k − 1, s) = X ∧ curn(s) = k ∧

cell(k + 1, s) = X ∧ curp(s) = k + 2) ∨
(cell(k − 1, s) = X ∧ cell(k, s) = X ∧

curn(s) = k + 1 ∧ curp(s) = k + 2) ∨
(curn(s) = k − 2 ∧ curp(s) = k − 1 ∧

cell(k, s) = X ∧ cell(k + 1, s) = X) ∨
(curn(s) = k − 2 ∧ cell(k − 1, s) = X ∧

curp(s) = k ∧ cell(k + 1, s) = X)}
This approximation evaluates to true if s is such that it is pos-
sible for X to win in at most 1 step. These are legal situa-
tions where there are 3 X marks in a row on either side, i.e.
↑nXXX or XXX ↑p (↑n representing the position of curn
and similarly for ↑p and curp), or where it is X’s turn and
there are 2 X marks already and X can fill in the missing
cell to get 3 in a row, i.e. ↑nXX or XX ↑p or ↑n↑pXX or
XX ↑n↑p or ↑n X ↑p X or X ↑nX ↑p.

DT31D
ca ∪ DZ |= R2(s)

.
= Wins(X, s) ∨R(∃©R1) ≡

R1(s) ∨
Legal(s) ∧ turn(s) = O ∧ ∃k{

(curp(s) < k − 1 ∧ curn(s) = k − 1 ∧
cell(k, s) = X ∧ cell(k + 1, s) = X) ∨

(cell(k − 1, s) = X ∧ cell(k, s) = X ∧
curp(s) = k + 1 ∧ k + 1 < curn(s)) ∨

(curn(s) < k − 1 ∧ cell(k − 1, s) = X ∧
cell(k, s) = X ∧ curp(s) = k + 1) ∨

(curn(s) = k − 1 ∧ cell(k, s) = X ∧
cell(k + 1, s) = X ∧ k + 1 < curp(s)) ∨

cell(k − 1, s) = X ∧ cell(k, s) = X ∧
k + 1 = curn(s) ∧ curp(s) = k + 1) ∨

(cell(k − 1, s) = X ∧ cell(k, s) = X ∧
curn(s) = k + 2 ∧ curp(s) = k + 2) ∨

(curn(s) = k − 1 ∧ curp(s) = k − 1 ∧
cell(k, s) = X ∧ cell(k + 1, s) = X) ∨

(curn(s) = k − 2 ∧ curp(s) = k − 2 ∧
cell(k, s) = X ∧ cell(k + 1, s) = X)}

This approximation evaluates to true if s is such that it is pos-
sible forX to win in at most 2 steps. These are legal situations
whereX can win in at most 1 step as above, or where it isO’s
turn, andO can do a move that doesn’t interfere and the result
is a situation where X can win in at most 1 step; for this we
have 8 cases: ↑n XX with ↑p<↑n or XX ↑p with ↑n>↑p or
XkX ↑p with ↑n< k or ↑n XXk with ↑p> k or XX ↑n,p or
XX ↑n,p or ↑n,p XX or ↑n,p XX .

We can keep going in this way. As we allow more steps,
we have more and more classes of configurations where X
can win. We can show that:
DT31D

ca ∪ DZ |= R10(s)
.
= Wins(X, s) ∨R(∃©R9) ≡

Legal(s)

Thus, it is possible forX to win in at most 10 steps in all legal
situations. And we also have that:

DT31D
ca ∪ DZ |= R11(s)

.
= Wins(X, s) ∨R(∃©R10) ≡

Legal(s)

i.e., it is possible for X to win in at most 11 steps in all legal
situations. Thus, the fixpoint approximation procedure con-
verges in the 11th step as we have: DT 31D

ca ∪DZ |= R10(s) ≡
R11(s). There are situations where it does take at least 10
steps/moves for X to win, for instance if we have ↑p<↑n
with two blank cells in between, i.e., ↑p BB ↑n, and it is O’s
turn. The fact that ↑p<↑n means that the initial marks that are
made will later be overwritten. It is straightforward to check
that it takes at least 10 moves for X to have 3 X’s in a row and
win (O wins as well), for instance if O keeps playing markn
and X keeps playing markp. It follows from our conver-
gence result by Theorem 1 of [De Giacomo et al., 2010] that:
DT 31D

GS |= ∃♦Wins(X)[S0] ≡ R10(S0) ≡ Legal(S0).
Since we have Legal(S0) in the initial state axioms, it fol-
lows that DT 31D

GS |= ∃♦Wins(X)[S0], i.e., it is possible for
X to win in the initial situation.

Finally, we consider the property that X can ensure that
it eventually wins 〈〈{X}〉〉♦Wins(X). We can apply the
original [De Giacomo et al., 2010] method to this property
(using only the unique name and domain closure axioms for
actions DT 31D

ca and the axiomatization of the integers DZ to
show that successive approximates are equivalent), and the
fixpoint iteration converges after only 3 steps. We can show
that the regressed approximations simplify as follows:

DT31D
ca ∪ DZ |= R0(s)

.
=Wins(X, s)∨R(〈〈{X}〉〉 ©False)

≡Wins(X, s)
This approximation evaluates to true if s is such that X is
winning in s already (in no steps); these are situations where
there are 3 X marks in a row on either side.

DT31D
ca ∪ DZ |= R1(s)

.
= Wins(X, s) ∨R(〈〈{X}〉〉 ©R0)

≡ R0(s) ∨XCanPlayToWinNext(s)
This approximation evaluates to true if s is such that X can
ensure to win in at most 1 step. These are legal situations
where there are 3 X marks in a row on either side, or where
it is X’s turn and there are 2 X marks already and X can fill
in the missing cell to get 3 in a row next as discussed in the
possibility of winning case.

DT31D
ca ∪ DZ |= R2(s)

.
= Wins(X, s) ∨R(〈〈{X}〉〉 ©R1)

≡ R1(s) ∨
Legal(s) ∧ turn(s) = O ∧
∃m.(curn(s) < m− 2 ∧ cell(m− 2, s) = X ∧

cell(m− 1, s) = X ∧ curp(s) = m) ∧
∃n.(curn(s) = n− 1 ∧ cell(n, s) = X ∧

cell(n+ 1, s) = X ∧ n+ 1 < curp(s))
This approximation evaluates to true if s is such that X can
ensure to win in at most 2 steps. These are legal situations
where X can ensure to win in at most 1 step as above, or
where it is O’s turn and we have both XkX ↑p with ↑n< k
and ↑n XXk with ↑p> k; then if O plays markn then X
can play markp to win afterwards, and if O plays markp
then X can play markn to win afterwards.

DT31D
ca ∪ DZ |= R3(s)

.
= Wins(X, s) ∨R(〈〈{X}〉〉 ©R2)

≡ R1(s) ∨
Legal(s) ∧ turn(s) = O ∧
∃m.(curn(s) < m− 2 ∧ cell(m− 2, s) = X ∧

cell(m− 1, s) = X ∧ curp(s) = m) ∧
∃n.(curn(s) = n− 1 ∧ cell(n, s) = X ∧

cell(n+ 1, s) = X ∧ n+ 1 < curp(s))
This approximation evaluates to true if s is such that X
can ensure to win in at most 3 steps. It simplifies to ex-
actly the same formula as R2(s). Thus the fixpoint it-
eration procedure converges in the 3rd step as we have:
DT 31D

GS ∪ DZ |= R2(s) ≡ R3(s). Therefore by
Theorem 1 of [De Giacomo et al., 2010]: DT 31D

GS |=
〈〈{X}〉〉♦Wins(X)[S0] ≡ R2(S0). It follows by the ini-
tial state axioms that DT 31D

GS |= ¬〈〈{X}〉〉♦Wins(X)[S0]
i.e., there is no winning strategy for X in S0. But
DT 31D

GS |= 〈〈{X}〉〉♦Wins(X)[S1] where S1 = do(
[markp(X),markn(O),markp(X),markn(O)], S0) i.e.,
there is a winning strategy for X in a situation where X has
marked twice on the right andO has marked twice on the left.

4 Discussion
In this paper, we described the results of some case studies to
evaluate whether the [De Giacomo et al., 2010] verification
method actually works. We developed various infinite state
game-type domains and applied the method to them. Our ex-
ample domains are rather simple, but have features present in
practical examples (e.g., the TTT1D domain is 1D version of
tic-tac-toe on an infinite board). Our experiments do confirm

that the method does work on several non-trivial verification
problems with infinite state space. We also identify some ex-
amples where the method, which only uses the simplest part
of the domain theory, the unique names and domain closure
for action axioms, fails to converge in a finite number of steps.
We show that in some of these cases, extending the method
to use some selected facts about the initial situation and some
state constraints does allow us to get convergence in a finite
number of steps. Finally, our example domains and proper-
ties should be useful for evaluating other approaches to infi-
nite state verification and synthesis. See [Kmiec, 2013] for
more details about our verification experiments and proofs. It
also develops an evaluation-based Prolog implementation of
a version of the method for complete initial state theories with
the closed world assumption. It generates successive approx-
imates and checks if they hold in the situation of interest, but
does not check if the sequence of approximates converges.

Among related work that deals with verification in infinite-
states domains, let us mention [Claßen and Lakemeyer, 2008;
2010], which also uses methods based on fixpoint approxi-
mation. There, characteristic graphs are introduced to finitely
represent the possible configurations that a Golog program
representing a multi-agent interaction may visit. However
their specification language is not a game structure logic.
Also closely related is [Sardina and De Giacomo, 2009],
which uses a fixpoint approximation method to compose a
target process expressed as a ConGolog program out of a li-
brary of available ConGolog programs. Earlier, [Kelly and
Pearce, 2007] proposed a fixpoint approximation method to
verify a class of temporal properties in the situation calculus
called property persistence formulas. [Shapiro et al., 2002]
show how a theorem proving tool can be used to verify prop-
erties of multi-agent systems specified in ConGolog and an
extended situation calculus with mental states. A leading ex-
ample of a symbolic model checker for multi-agent systems is
MCMAS [Lomuscio et al., 2009]. [Belardinelli et al., 2012]
show that model checking of an expressive temporal language
on infinite state systems is decidable if the active domain in all
states remains bounded. As well, [De Giacomo et al., 2012]
show that verification of temporal properties in bounded situ-
ation calculus theories where there is a bound on the number
of fluent atoms that are true in any situation is decidable.

In future work, we would like to automate the symbolic
fixpoint approximation method that we performed manually,
perhaps by writing proof tactics in a theorem proving envi-
ronment. This would require some symbolic manipulation
procedures for regression, FOL simplification of the resulting
formulas, and checking if two successive approximations are
equivalent. It would also be desirable to develop techniques
for identifying initial state properties and state constraints that
can be used to show finite convergence in cases where these
are needed. More generally, we need a better characteriza-
tion of when this kind of method can be used successfully.
Note that the [De Giacomo et al., 2010] framework assumes
that every agent has access to all the information specified
in the theory. The framework should be generalized to deal
with private knowledge and partial observability. Finally, the
approach should be evaluated on real practical problems.

References
[Alur et al., 2002] Rajeev Alur, Thomas A. Henzinger, and Orna

Kupferman. Alternating-time temporal logic. J. ACM,
49(5):672–713, 2002.

[Belardinelli et al., 2012] Francesco Belardinelli, Alessio Lomus-
cio, and Fabio Patrizi. An abstraction technique for the verifi-
cation of artifact-centric systems. In KR, 2012.

[Bradfield and Stirling, 2007] Julien Bradfield and Colin Stirling.
Modal mu-calculi. In Handbook of Modal Logic, volume 3, pages
721–756. Elsevier, 2007.

[Claßen and Lakemeyer, 2008] Jens Claßen and Gerhard Lake-
meyer. A logic for non-terminating Golog programs. In Proc.
of KR’08, pages 589–599, 2008.

[Claßen and Lakemeyer, 2010] Jens Claßen and Gerhard Lake-
meyer. On the verification of very expressive temporal properties
of non-terminating Golog programs. In Proc. of ECAI’10, pages
887–892, 2010.

[De Giacomo et al., 2000] Giuseppe De Giacomo, Yves
Lespérance, and Hector J. Levesque. ConGolog, a concur-
rent programming language based on the situation calculus. AIJ,
121(1–2):109–169, 2000.

[De Giacomo et al., 2010] G. De Giacomo, Y. Lesperance, and
A. R. Pearce. Situation calculus-based programs for representing
and reasoning about game structures. In Proc. KR 2010, pages
445–455, 2010.

[De Giacomo et al., 2012] Giuseppe De Giacomo, Yves
Lespérance, and Fabio Patrizi. Bounded Situation Calculus
Action Theories and Decidable Verification. In KR, 2012.

[Enderton, 1972] Herbert B. Enderton. A mathematical introduc-
tion to logic. Academic Press, 1972.

[Hamilton, 1982] A.G. Hamilton. Numbers, Sets and Axioms: The
Apparatus of Mathematics. Cambridge University Press, 1982.

[Kelly and Pearce, 2007] Ryan F. Kelly and Adrian R. Pearce.
Property persistence in the situation calculus. In Proc. IJCAI’07,
pages 1948–1953, 2007.

[Kmiec, 2013] Slawomir Kmiec. Infinite states verification in
game-theoretic logics. Master’s thesis, Dept. of Computer Sci-
ence and Engineering, York University, 2013. To appear.

[Lomuscio et al., 2009] Alessio Lomuscio, Hongyang Qu, and
Franco Raimondi. MCMAS: A model checker for the verifica-
tion of multi-agent systems. In Proc. CAV’09, pages 682–688,
2009.

[McCarthy and Hayes, 1969] John McCarthy and Patrick Hayes.
Some philosophical problems from the standpoint of artificial in-
telligence. In Machine Intelligence, volume 4, pages 463–502.
1969.

[Park, 1976] David Park. Finiteness is mu-ineffable. Theor. Com-
put. Sci., 3(2):173–181, 1976.

[Reiter, 2001] Ray Reiter. Knowledge in Action. Logical Founda-
tions for Specifying and Implementing Dynamical Systems. MIT
Press, 2001.

[Sardina and De Giacomo, 2009] Sebastian Sardina and Giuseppe
De Giacomo. Composition of ConGolog programs. In Proc.
IJCAI’09, pages 904–910, 2009.

[Shapiro et al., 2002] Steven Shapiro, Yves Lespérance, and Hec-
tor J. Levesque. The cognitive agents specification language and
verification environment for multiagent systems. In Proc. AA-
MAS, pages 19–26. Bologna, Italy, 2002.

