Logical Foundations for a Rational BDI Agent
Programming Language (Extended Version)

Shakil M. Khan and Yves Legpance

Department of Computer Science and Engineering
York University, Toronto, ON, Canada
{skhan, lespergi@cse.yorku.ca

Abstract. To provide efficiency, current BDI agent programming languages with
declarative goals only support a limited form of rationality — they ignore other
concurrent intentions of the agent when selecting plans, and as a consequence,
the selected plans may be inconsistent with these intentions. In this paper, we
develop logical foundations for a rational BDI agent programming framework
with prioritized declarative goals that addresses this deficiency. We ensure that the
agent’s chosen declarative goals and adopted plans are consistent with each other
and with the agent’s knowledge. We show how agents specified in our language
satisfy some key rationality requirements.

1 Introduction

This paper contributes to the foundations of Belief-Desire-Intention agent programming
languages/frameworks (BDI APLSs), such as PRS [10], AgentSpeak [19], etc. Recently,
there has been much work on incorporatiteglarative goalsn these APLs [7, 28, 21,
5,27, 22]. In addition to defining a set of plans that can be executed to try to achieve
a goal, these programming languages also incorporate goals as declarative descriptions
of the states of the world which are sought. A typical BDI APL with declarative goals
(APLWDG) uses a user-specified hierarchical plan librArgontaining abstract plans,
a procedural goal-baské containing a set of plans that the agent is committed to exe-
cute, and a declarative goal-badehat has goals that the agent is committed to achieve.
In response to events in the environment and to goals,im each cycle the agent in-
terleaves selecting plans frof, adopting them td", and executing actions ifi. The
execution of some of these actions can in turn trigger the adoption of other declara-
tive goals. This process is repeated until all the goalg\iare successfully achieved.
The role of these declarative goals in an APLwWDG is essentially for monitoring goal
achievement and performing recovery when a plan has failed by decoupling plan fail-
ure/success from that of goal. Since these declarative goals capture the reason for exe-
cuting plans, they are necessary to perform rational deliberation, and react in a rational
way to changes in goals that result from communication, e.g. requests.

While current APLWDGSs have evolved over the past few years — e.g. some of them
handle restricted forms of temporally extended goals [8] — to keep them tractable

* This paper is an extended version of [16] and is also a revised version of [14].

and practical, they sacrifice some principles of rationality. In particular, while select-
ing plans to achieve a declarative goal, they ignore other concurrent intentions of the
agent. As a consequence, the selected plan may be inconsistent with the agent’s other
intentions. Thus the execution of such an intended plan can render other contemporary
intentions impossible to bring about. Also, these APLWDGs typically rely on syntactic
formalizations of declarative goals, subgoals, and their dynamics, whose properties are
often not well understood.

Apart from this, there has been work that focuses on maintaining consistency of a
set of concurrent intentions. For example, Clement et al. [3, 4] argue that agents should
be able to reason about abstract HTN plans and their interactions before they are fully
refined. They propose a method for deriving summary information (i.e. external pre-
conditions and effects) of abstract plans and discuss how this information can be used
to coordinate the interactions of plans at different levels of abstractions. Thangarajah et
al. [26] use such summary information to detect and resolve conflicts between goals at
run time. Horty and Pollack [9] propose a decision theoretic approach to compute the
utility of adopting new (non-hierarchical) plans, given a set of already adopted plans.
While some of these approaches can be integrated in APLs (e.g. [26]), they leave out
many aspects of rationality (e.g. they do not say what the agent should do if external
interference makes two of her intentions permanently incompatible), and do not deal
with declarative goals.

In this paper, we develop a logical framework for a rational BDI APL with pri-
oritized declarative goals called Simple Rational APL (SR-APL, henceforth), that ad-
dresses these deficiencies of previous APLwWDGs. Our framework combines ideas from
the situation calculus-based Golog family of APLs (e.g. [6]), our expressive semantic
formalization of prioritized goals, subgoals, and their dynamics [13, 15], and work on
BDI APLs. We ensure that the agent’s chosen declarative goals and adopted plans are
consistent with each other and with the agent’s knowledge. In doing this, we must ad-
dress two fundamental questions about rational agencyVigt does it mean for a
BDI agent to be committed to concurrently execute a set of plans next while keeping the
option of further commitments to other plans open, in a way that does not allow pro-
crastination?(2) How to ensure consistency between an agent’'s adopted declarative
goals and adopted plans, given that some of the latter might be abstract, i.e. might be
only partially instantiated in the sense that they include subgoals for which the agent
has not yet adopted a (concrete) plai® show how agents specified in our framework
satisfy some key rationality requirements. We discuss how new practical programming
languages can be developed by restricting the proposed representation and reasoning.
Our framework tries to bridge the gap between agent theories and practical APLs by
providing a model and specification of an idealized BDI agent whose behavior is closer
to what a rational agent does. As such, it allows one to understand how compromises
made during the development of a practical APLwDG affect the agent’s rationality.

The paper is organized as follows: in the next section, we discuss a motivating
example. In Sections 3 and 4, we outline our formal BDI framework. In Section 5, we
specify the semantics of SR-APL. In Section 6, we show that in the absence of external
interference, our agent behaves in ways that satisfy some key rationality principles.
Then in Section 7, we summarize our results and discuss possible future work.

2 A Motivating Example

Consider a blocks world domain, where each block is one of four possible colors: blue,
yellow, green, and red. There is only a stacking actiorek (b, b'): b can be stacked

on?d' in states if b # ', bothb andd’ areclearin s, andb is on the tablein s. There

are no unstacking actions, so the agent cannot use a block to build two different towers
at different times. Assume that there are four blocks,, By, Bg, and Br, one of

each color. the agent knows thelor of these blocks, and knows that initially all the
blocks are on the table and are clear. Now assume that the agent has the following
two goals: (1) to eventually have a 2 blocks tower that has a green block on top and
a non-yellow block underneath, and (2) to have a 2 blocks tower with a blue block on
top and a non-red block underneath; this= {OTwr{, OTwr7}, where Twf;! =

3b,b". OnTbl(b") A On(b,b") A =Cs(b’) A Cy(b). Suppose our agent’s plan librafy

has two rules:

OTwr$: [OnTbl(b) A ONThbI(b') A b # b A Cleard)
A Clea(b’) A =Y (b) A G(b')] « stack(b, b),

OTwrZ : [OnTbl(b) A ONTbI(b') A b # b’ A Clear(d)
A Clear(t’) A =R(b) A B(b')] « stack(V,b).

That is, if the agent has the goal to have a green and non-yellow tower and knows about
a green block/ and a distinct non-yellow block that are both clear and are on the
table, then she should adopt the plan of stackingn b, and similarly for the goal of
having a blue and non-red tower.

Now, consider a typical APLWDG, that (without considering the overall consistency
of the agent’s intentions) simply select plans frdimfor the agent’'s goals imd and
eventually executes them in an attempt to achieve her goals. We claim that such an APL
is not always sound and rational. For instance, according to this plan library, one way of
building a green non-yellow (and a blue non-red) tower is to construct a green-blue (a
blue-green, respectively) tower. While these two plans are individually consistent, they
are inconsistent with each other, since the agent has only one block of each color. Thus
a rational agent should not adopt these two plans. However, it can be shown that the
following would be a legal trace for our blocks world domain in such an APL:

({1, 2) = ({01}, 4) = ({o1,02}, 4) = ({02}, {OTWIT}).

The agent first moves to configurati¢fv, }, A) by adopting the plan; = stack(Bp,

Bg) in response t)TwrZ, then to({o1, 02}, A) by adoptingo, = stack(Be, Bg)

to handledTwré, and then to{{a2}, {OTwr$}) by executing the intended actien.

At this point, the agent is stuck and cannot complete successfully. Thus, in such an
APL, not only is the agent allowed to adopt two inconsistent plans, but the execution
of one of these plans makes other concurrent goals impossible (e.g. the execution of
stack(Bp, Be) makesOTwr$ impossible to achieve).

The problem arises in part because actions are not reversible in this domain; there
is no action for moving a block back to the table or for unstacking it. This is common
in real world domains, for instance, most tasks with deadlines or resources, e.g. doing
some errands before noon, a robot delivering mail without running out of battery power,

etc. While such irrational behavior could in principle be avoided by using appropriate
conditions in the antecedent of the plan-selection rules (e.g. by stating that the agent
should only adopt a given plan if she does not have certain other goals), this puts an
excessive burden on the agent programmer. Ideally, such reasoning about goals should
be delegated to the agent.

3 Preliminaries
Our base framework for modeling goal change is the situation calculus as formalized
in [17, 20]. In this framework, a possible state of the domain is represented by a situa-
tion. There is a set of initial situations corresponding to the ways the agent believes the
domain might be initially, i.e. situations in which no actions have yet occurreds)nit
means that is an initial situation. The actual initial state is represented by a special
constantSy. There is a distinguished binary function symbolwheredo(a, s) denotes
the successor situation taresulting from performing the action Thus the situations
can be viewed as a set of trees, where the root of each tree is an initial situation and
the arcs represent actions. Relations (and functions) whose truth values vary from situ-
ation to situation, are called relational (functional, respectively) fluents, and are denoted
by predicate (function, respectively) symbols taking a situation term as their last argu-
ment. There is a special predicate Rass) used to state that actianis executable in
situations. Finally, the function symbol Agefi) denotes the agent of actian

We use a theor that includes the following set of axiom€1) action precondition
axioms, one per actiom characterizing Po$s, s), (2) successor state axioms (SSA),
one per fluent, that succinctly encode both effect and frame axioms and specify exactly
when the fluent changes [20], (3) initial state axioms describing what is true initially
including the mental states of the agents, (4) axioms identifying the agent of actions,
one per actior characterizing Agerit), (5) uniqgue name axioms for actions, and (6)
domain-independent foundational axioms describing the structure of situations [17].

Following [23], we model knowledge using a possible worlds account adapted to
the situation calculusk (s’, s) is used to denote that in situatien the agent thinks
that she could be in situatiosi. Using K, the knowledge of an agent is defined as:
Know(®, s) =Vs'. K(s',s) D @(s'), i.e. the agent knows in s if ¢ holds in all of her
K-accessible situations i K is constrained to be reflexive, transitive, and Euclidean
in the initial situation to capture the fact that agents’ knowledge is true, and that agents
have positive and negative introspection. The dynamics of knowledge is specified by
providing a SSA forK that supports knowledge expansion as a result of sensing actions
[23] and soménformingcommunicative actions [12]. As shown in [23], the constraints
on K continue to hold after any sequence of actions since they are preserved by the
SSA for K. We also assume that the agent is aware of all actions.

To support modeling temporally extended goals, we introduced a new suathef
along with an axiomatization for paths in [13]. A path is essentially an infinite sequence
of situations, where each situation along the path can be reached by performing some
executablection in the preceding situation. We use (possibly sub/super-scripted) vari-
ablesp to denote paths. There is a predicate Ongatf), meaning that the situation

1 We will be quantifying over formulae, and thus assuféncludes axioms for encoding of
formulae as first order terms, as in [25]. We will also be using lists of programs, and assume
thatD includes an axiomatization of lists.

is on pathp. Also, Start$p, s) means that is the starting situation of path A pathp
starts withs iff s is the earliest situation gn

We used(s),¥(s),- -, etc. to denotestate formulaen the context of knowledge
(ando(p), ¥ (p), - - -, etc. forpath formulaen that of goals), each of which has a free
situation variable (path variable, respectively)s (andp) will be bound by the context
where the formula@(s) (and¢(p), respectively) appears. Where the intended meaning
is clear, we sometimes suppress the situation variable (path variablepftam. - | etc.
(¢, %, - -, etc. respectively). Also, we often usew to refer to a placeholder constant
that stands for the current situation.

We will use some useful constructs that are defined in [13]. A state fordnalen-
tually holdsover the pattp if @ holds in some situation that is gn i.e.: 0P(p) =
3s’. OnPatlp, s") A @(s’). Secondly, Suffikp’, p, s) means that patp’ is a suffix of
another pathp w.r.t. a situations; Suffix(p’, p, s) holds iff s is onp, andyp’ is the sub-
path ofp that starts withs. Finally, SameHidts,, s2) means that the situations ands,
share the same history of actions, but perhaps starting from different initial situations.

4 Formalization of Prioritized Goals

In [13], we proposed a logical framework for modelipgoritized goalsand their dy-
namics. In that framework, an agent can have multialsor desiresat different pri-

ority levels, possibly inconsistent with each other. We specify how these goals evolve
when actions/events occur and the agent's knowledge changes. We define the agent’s
chosen goalsr intentions i.e. the goals that the agent is actively pursuing, in terms of
this goal hierarchy. In that framework, agents constantly optimize their chosen goals. To
this end, we keep all prioritized goals in the goal-base unless they are explicitly dropped.
At every step, we compute an optimal set of chosen goals given the hierarchy of priori-
tized goals, preferring higher priority goals, such that chosen goals are consistent with
each other and with the agent’s knowledge. Thus at any given time, some goals in the
hierarchy areactive i.e. chosen, while others airgactive Some of these inactive goals
may later become active (e.qg. if a higher priority active goal that is currently blocking
an inactive goal becomes impossible or is dropped) and trigger the inactivation of other
currently active (lower priority) goals.

Goal Semantics As in [13], we specify the agent’s prioritized goals migoalsus-
ing accessibility relation/fluer®. A pathp is G-accessible at priority level in situ-
ation s if all the goals of the agent at levelare satisfied over this path and if it starts
with a situation that has the same action history.aghe latter requirement ensures
that the agent's7-accessible paths are compatible with the actions that have been per-
formed so far. We say that an agent has the p-goaldtatieveln in situations (i.e.
PGoal¢, n, s)) iff ¢ holds over all paths that a@-accessible at in s. A smallern
represents higher priority, and the highest priority levél ishus as in [13], we assume
that the set of p-goals are totally ordered according to priority. Note that, in this frame-
work one can evaluate goals over infinite paths and thus can handle arbitrary temporally
extended goals; hence, unlike some other situation calculus based accounts where goal
formulae are evaluated w.r.t. finite paths (e.g. [24]), in this framework one can handle,
for example, unbounded maintenance goals.

As in [13], we allow the agent to have infinitely many p-goals. However in many
cases, the modeler will want to specify a finite set of initial p-goals. When a finite num-

ber of p-goals is assumed, we can use the functional fiiéttroals(s) to represent the
number of prioritized goals that the agent has in situatiohhe modeler/programmer
will usually provide some specification of the agent’s initial p-goals at the various pri-
ority levels, using sommitial goal axioms For instance, the initial prioritized goals for
our blocks world example with domain thedBz - can be specified as follows:

(@) Init(s) > ((G(p,0, s) = 3s'. Startgp, s') A Init(s') A OTwre)
A (G(p,1,s) = 3. Startgp, s') Alnit(s') A OTwrE)),
(b) Vn, p, s. Init(s) An > 2D (G(p,n,s) = 3s'. Startgp, s") A Init(s")).

(a) specifies the p-goals of the agent in the initial situations (we assume that the goal
<>Twr§ has higher priority thaKbTwrg); (b) makes=(p, n, s) true for every patlp that

starts with an initial situation for. > 2. Thus at these levels, the agent has the trivial
p-goal that she be in an initial situation.

An agent’s chosen goals must be realistic. To filter out the paths that are known to
be impossible fronG, we definerealistic p-goal accessible pathg:is Gg-accessible
at leveln in s if it is G-accessible at in s and if it starts with a situation that i&-
accessible irs. In our framework, an agent has trealistic p-goalthat¢ at leveln in
situations (i.e. RPGoalg, n, s)) iff ¢ holds over allG z-accessible paths atin s.

We define chosen goals orgoalsusing realistic p-goals. Note that an agent’s real-
istic p-goals at various priority levels can be viewed as candidates for her c-goals. Given
the set of realistic p-goals, in each situation the agent’s c-goals are specified to be those
that are in the maximal consistent set of higher priority realistic p-goals. We define this
iteratively starting with a set that contains the highest priority realistic p-goal accessible
paths, i.e(G gr-accessible paths at lev&l At each iteration we obtain the intersection of
this set with the set of next highest priorifiiz-accessible paths. If the intersection is not
empty, a new chosen set of p-goal accessible paths (and p-goals defined by these paths)
at level: is obtained. We call a p-goal chosen by this procesactinep-goal. If on the
other hand the intersection is empty, then it must be the case that the p-goal represented
by this level is either in conflict with another active higher priority p-goal/a combination
of two or more active higher priority p-goals, or is known to be impossible. In that case,
that p-goal is ignored (i.e. marked isctive), and the chosen set of p-goal accessible
paths at levef is the same as at levél- 1. To get the prioritized intersection of the
set of Gg-accessible paths up to level the process is repeated uritié= n is reached.
Gn(p,n,s) is used to denote that in situatienpathp is in the prioritized intersection
of G gr-accessible paths up to level We say that a pathis G-accessible in situation
s,1.e.Gn(p, 9), if GA(p, n, s) holds for all levels:. Finally, we say that an agent has the
c-goal thatp in situations (i.e. CGoal¢, s)) if ¢ holds over allG-accessible paths in
s. We can show that initially our blocks world agent has the p-goals/c-goalémﬁg
andOTwrZ, i.e.. Dy = Vs. Init(s) D CGoalOTwre A OTwrZ, s).

To get positive and negative introspection of goals, we impose two inter-attitudinal
constraints on the< and G-accessibility relations in the initial situations. We have
shown that these constraints then continue to hold after any sequence of actions since
they are preserved by the SSAs férandG. See [11] for detalils.

Goal Dynamics An agent’s goals change when her knowledge changes as a result

of the occurrence of an action (including exogenous events), or when she adopts or
drops a goal. There are two special actions,ddopting a p-goaky) at some leveh
anddropping a p-goakp, adopt(¢, n) anddrop(¢), and a third action foadopting a
subgoaly relative to a supergoap, adopt RT (¢, ¢).

The dynamics of p-goals are specified using a SSAdas follows (the agent’s
c-goals are automatically updated when her p-goals change). Firstly, to handle the oc-
currence of a non-adopt/drop actionall p-goals are progressed to reflect the fact that
this action has occurred. Secondly, to handle adoption of a pdgatlevelm, a new
formula containing the p-goal is added to the agent’s goal hierarclhy & be precise,
in addition to progressing all p-goals at all levels, a new level containing the p-goal that
¢ is inserted ain and all current levels with priority greater or equaktoare pushed
one level down the hierarchy. Finally, to handle the dropping of a p-gpotide levels
that imply the dropped goal in the agent’s goal hierarchy are replaced by the trivial for-
mula that the history of actions in the current situation has occurred, and thus the agent
no longer has the p-goal that See [13] for details.

Handling Subgoals We also handle subgoal adoption and model the dependencies
between goals and the subgoals and plans adopted to achieve them. The latter is impor-
tant since subgoals and plans adopted to bring about a goal should be dropped when the
parent goal becomes impossible, or is dropped. We handle this as follows: adopting a
subgoak) relative to a parent goal adds a new p-goal that contaibath this subgoal

and this parent goali.e.) A ¢. This ensures that when the parent goal is dropped,
the subgoal is also dropped, since when we drop the parentigaélthe p-goals at

all G-accessibility levels that imply including+ A ¢ are also dropped. Note that the
parent goaky could be a p-goal at multiple levels. We assume that the suhgadsl
always adopted w.r.t. theighest priority supergoal levgl.e. the highest priority level
where¢ holds. Also, the subgoal is always adopted at the level immediately below

the supergoap’s level. The reason for doing this is that singds a means to the end

¢, they should have similar prioritieg. is said to be a subgoal gfin situations (i.e.
SubGoal{, ¢, s)) iff there is aG-accessibility leveh in s such thatp is a p-goal at

while ¢ is not, and for allG-accessibility levels i where is a p-goal,p is also a

p-goal. See [15, 11] for details of our formalization of subgoals.

Prioritized Goals for Committed Agents The formalization of prioritized goal dy-
namics in [13] ensures that the agent always tries to optimize her chosen goals. She
will abandon a c-goap if an opportunity to commit to a higher priority but inconsistent
with ¢ goal arises. As such, our account in [13] displays an idealized form of rational-
ity. This is in contrast to Bratman'’s [1] practical rationality that takes into consideration
the resource-boundedness of real world agents. According to Bratman, intentions limit
the agent’s reasoning as they serve &ikex for adopting new intentiongHowever, the

agent is allowed to override this filter in some cases, e.g. when adaptingreases

her utility considerably. The framework in [13] can be viewed as a theory of intention
where the filter override mechanism is always triggered.

Note that, in that framework, the agent’s c-goals are very dynamic. For instance, as
mentioned earlier, a currently inactive p-ggaiay become active at some later time,
e.g. if a higher priority active c-goal that is currently blockindas it is inconsistent
with ¢) becomes impossible. This also means that another currently active g:goal

may as a result become inactive, not becaus$mas become impossible, was achieved,
or was dropped, but due to the fact thahas lower priority than and is inconsistent
with the newly activated goat (see [13] for a concrete example).

Such very dynamic c-goals/intentions are problematic as a foundation for an APL,
as the agent spends a lot of effort in “recomputing” her intentions and plans to achieve
them, and her behavior becomes hard to predict for the programmer. To avoid this, here
we use a modified version of our formalization in [13] that eliminates the filter over-
ride mechanism altogether so that agents’ p-goals/desires are dropped as soon as they
become inactive. We can do this with the following simple changes: (1) we require
that initially the agent knows that her p-goals are all possible and consistent with each
other, (2) we don't allow the agent to adopt p-goals that are inconsistent with her cur-
rent c-goals/intentions, and (3) we modify the SSA €oiso that the agent’s p-goals
are dropped when they become impossible or inconsistent with other higher priority c-
goals. In the resulting “committed agent” framework, an agent’s p-goals are much more
dynamic than in the original framework. On the other hand, her c-goals are how much
more persistent, and are simply the consequential closure of her desires, as these must
now all be consistent with each other and with the agent’'s knowledge. The resulting
model of goals is somewhat simplistic, but is sufficient in an APL context.

5 Agent Programming with Prioritized Goals

Our proposed framework SR-APL combines elements from BDI APLs such as AgentS-
peak [19] and from the ConGolog APL [6], which is defined on top of the situation
calculus. In addition, to facilitate monitoring of goal achievement and performing plan
failure recovery, we incorporate declarative goals in SR-APL. To specify the operational
semantics of plans in SR-APL, we will use a subset of the ConGolog APL. This subset
includes programming constructs such as primitive actigngait/test action®?, se-
quence of actiong, ; 6o, nondeterministic choice of arguments. §, nondeterministic
iteration¢*, and concurrent execution of programg|d., to mention a few. Also, as

in ConGolog, we will use Trarts, s,c’, s’) to say that program in situations can
make a single step to reach situatidrwith the progranv’ remaining, and Finé, s)

to mean that the program may legally terminate in situation Finally, Do(o, s, s')
means that there is a terminating execution of progsaimat starts ins and ends iry’.

Components of SR-APL First of all, we have a&et of axioms/theor® specifying
actions that can be done, the initial knowledge and (both declarative and procedural)
goals of the agent, and their dynamics, as discussed in Section 3 and 4. Moreover, we
also have plan library 17 with rules of the formp : ¥ «— o, whereg is a goal formula,

¥ is a knowledge formula, and is a plan; a rulep : ¥ «— ¢ means that if the agent

has the c-goal thap and knows that?, then she should consider adopting the plan
thato. Theplan languagdor o is a simplified version of ConGolog and includes the
empty program nil, primitive actions, waiting for a conditiond?, sequencéo; 02),

and the special action for subgoal adoptiatdopt RT (0P, o); hereOP is a subgoal

to be adopted and is the plan relative to which it is adoptédivhile our account of

2 We use the ConGolog APL here because it has a situation calculus-based semantics that is
well specified and compatible with our agent theory. We could have used any APL with these
characteristics.

goal change is expressive enough to handle arbitrary temporally extended goals, here
we focus on achievement goals and procedural goals exclusively. We believe that ex-
tending our framework to support maintenance goals should be straightforward, since
maintenance goals behave like additional constraints on the agent behavior in contrast
to achievement goals for which the agent needs to plan for.

Semantics of SR-APL An SR-APL agent can work on multiple goals at the same
time. Thus at any time, an agent might be committed to several plans that she will exe-
cute in an interleaved fashion. We use our situation calculus domain tfemrynodel

both adopted declarative goals and plamsitially D only contains declarative goals.

As specified by the SSA faF, D is updated by adding plans or other declarative goals

to the agent’s goal hierarchy when a transition rule (see below) makes the agent perform
anadopt or adopt RT action. We ensure that an agent’s declarative goals and adopted
plans are consistent with each other and with the agent’s knowledge. In our semantics,
we specify this by ensuring that there is at least one possible course of actions (i.e. a
path) known to the agent, and if she were to follow this path, she would end up realizing
all of her declarative goals and executing all of her procedural goals.

One way of specifying an agent's commitment to execute a plaext inD is to
say that she has the intention that Stants\ 3s’. OnPatlfs’) A Do(o, s, s), i.e. that
each of her intention-accessible paths such that it starts with some situatienit
has the situatios’ on it, ands’ can be reached from by executings. However, this
does not allow for the interleaved execution of several plans, since Do requires that
be executed before any other actions/plans.

A better alternative is to represent the procedural goal as Stanss’. OnPatlis’) A
DoAL(a, s, s’), which says that the agent has the intention to exegukeastthe pro-
gramo next, and possibly more. DoAk, s, s’) holds if there is an execution of pro-
gramo, possibly interleaved with other actions by the agent herself, that starts in situa-
tion s and ends in’, which we define as:

DoAL (o, s,s") = Do(c||(ra. Agenta) = agt?;a)*, s, s’).

However, a new problem with this approach is that it allows the agent to procrastinate
in the execution of the intended plansZh For instance, suppose that the agent has
the p-goal at priority leveh, to execute the programy, and at level, to executers
next. Then, according to our definition of DoAL, the agent has the intention atrievel
to executer; and at leveln, to executess, possibly concurrently with other actions
next, since we use DoOAL to specify those goals. The “other actions” at tgvéb.,
respectively) are meant to be actions from the pfan(o;, respectively). However,
nothing requires that the additional actions that the agent might execute are indeed from
o2(01, respectively), and thus this allows her to perform actions that are unnecessary as
long as they do not perturb the executiorvgfandos.

To deal with this, we include an additional componengr@cedural intention-base
I, to an SR-APL agent’ is a list of plans that the agent is currently actively pursuing.
To avoid procrastination, we will require that any action that the agent actually performs

3 We will use this construct to specify the procedural goals of an aggniNote that, while our
theory supports exogenous actions performed by other agents, we assume that all actions in
the plans otigt that specify her behavior must be performeddgy herself.

comes froml” (as specified in the transition rule,A, below). In the following, we will
usel'!l to denote the concurrent composition of the programi:fh

rlh = if (I =[nill) then nil else First(I")||(RestI))!l.

In SR-APL, aprogram configuration(o, s) is a tuple consisting of a prograsmand
a ground situatiors. An agent configuratioron the other hand is a tupld’, s) that
consists of a list of plang” and a ground situatios. The initial agent configuration
is ([nil], Sp). Although strictly speaking an agent configuration includes the knowledge
and the goals of the agent, these can be obtained from the (fixed) theand the
situation in the configuration.

The semantics of SR-APL are defined by a two-tier transition sysBrogram-
level transition rulesspecify how a program written in our plan language may evolve.
On top of this, we usagent-level transition ruleso specify how an SR-APL agent
may evolve. Our program-level transition rules are simply a subset of the ConGolog
transition rules. We us@r, s) — (o, s’) as an abbreviation for Trafs s, o/, s').

Agent-Level Transition Rules These transition rules are given in Table 1 and are
similar to those of a typical BDI APE.First of all, we have a rule 4; for selecting
and adopting a plamsing the plan libraryT for some realistic p-goa}®. It states that
if: (@) there is a rule in the plan librarfZ which says that the agent should adopt an
instance of the plan if she has)® as her p-goal and knows that some instanc# ,of
(b) 0@ is a realistic p-goal with priority: in s for which the agent hasn’t yet adopted
any subgoal, (c) the agent knowssnhat¥’, (d) 6 unifies¥ and¥’, and (e) the agent
does not intend not to adopt DoAdd) w.r.t. 0@ next, then she can adopt the plaf
adding DoAL(c#) as a subgoal of® to her goals in the theor®, and addingr6 to I
(here Handleth, s) is defined asly. SubGoaly, ¢, s)).

We can show that if an agent does not have the c-goahiot to adopt a subgoal
w.r.t. a supergoap, then she does not have the c-goal thatnextins, i.e.:

Theorem 1.

D = —CGoal—3s’. Do(adopt RT (v, ¢), now, s'), s) D
-CGoal—-3s',p’. Startgs’) A Suffix(p’, do(adopt RT (¢, ¢), s')) Ap(p'), s).

Theorem 1 and condition (e) above imply that the agent does not have the c-goal not to
executerd concurrently with!"l and possibly other actions next, i.e.:

(i). =CGoal—3s’, s"”. Do(adopt RT (DOAL (c6), OP), now, s')
ADOAL(c || I'l, s, 5", s).

4 We will use various standard list operations, e.g. First (representing the first item of a list), Rest
(representing the sublist that contains all but the first item of a list), Cons (for constructing a
new list from an item and a list), Member (for checking membership of an item within a list),
Remove (for removing a given item from a list), Replace (for replacing a given item with
another item in a list), etc.

® We use CGodBs’. DoAL (o, now, s), s) or simply CGoalDoAL (o), s) as a shorthand for
CGoal3s’. Startgnow) A OnPatlfs’) A DoAL (o, now, s'), s).

Table 1. Agent Transition Rules

MembeX(O® : ¥ «— o,11), D E RPGoa(O®,n, s),
D E —Handled0®, s) A Know(¥’, s), mguw,¥') =6,
(Aser) D = —-CGoal—3s’. Do(adopt RT (DoAL (c0), OP), now, s'), s)
(I',s) = (Congo, I'), do(adopt RT (DOAL (66), OP), s))

Membe(o, I"), D = RPGoalDoAL(o),n,s),
(Astep) D = (o,s) — {0',do(a, s)) AN -CGoal—-3s’. Do(a, now, s'), s)
(I, s) = (Replacéo, o’, I'), do(a, s))

(Aczo) D = Exo(a) A Posga, s)
(I',s) = (I do(a, 5))

(Aciean) Membe(o, I"), D = —3In. RPGoa(DoAL (o), n, s)
(I, s) = (Removéo, I'), s)

D -3’ (I'ls) — (I, s'), D= —FinalI's),
For all o s.t. Membefo, I') we have:
D E In. RPGoalDoAL (o), n, s) A HandledDoAL (o), s),
D = ~CGoal—3s’. Do(adopt(Do(a), NPGoals(s)),now, s'), s),
(Arep) D = Agent(a) = agt ADo(a,s,s') AL, &'y — (I, s")
(I',s) = (Cong @, I'), do(adopt(Do(a), N PGoals(s)), s))

Moreover, it can be shown that in our framework, an agent acquires the c-goal that
after she adopts it as a subgoaliah s, provided that she has the realistic goal at some
leveln in s thatg, and that she does not have the c-goal that— next, i.e.:

Theorem 2.

D E 3n. RPGoa[¢, n, s) A
-CGoal—-3s',p'. Startgs’) A Suffix(p’, do(adopt RT (1, ¢), s")) A(p'), s)
D CGoaly, do(adopt RT (1, ¢), s)).

From (b),(¢), and Theorem 2, we have that:

(i1). CGoal3s’. DOAL (a6 || I' now, s, do(adopt RT (DOAL (), OP), s)).
(1) ensures that the adopted subgedlis consistent with!"!l in the sense that they
can be executed concurrently, possibly along with other actions(iid) confirms that
o6 is indeed intended after thelopt RT' action has happened. Note that this notion
of consistency is a weak one, since it does not guarantee that there is an execution of
the program(c6 || I'l) after theadopt RT action happens, but rather ensures that the
program DoALs# || I'l) is executable. In other wordsg and the programs id’
alonemight not be concurrently executable, and additional actions might be required.
We'll come back to this issue later.

Secondly, we have a transition rule;4, for single stepping the agent program by
executing an intended actidnom . It says that if: (a) a program in I" can make

a program-level transition im by performing a primitive actiom with programo’
remaining indo(a, s) afterwards, (b) DoAL{) is a realistic p-goal with priority: in s,

and (c) the transition is consistent with the agent’s goals in the sense that she does not
have the c-goal not to executdn s, then the agent can executeandl” ands can be
updated accordingly.

Once again we have a weak consistency requirement in condition (c) above. Ide-
ally, we would have added to (c) that the agent can continue &g, s) in the sense
that she does not have the c-goal not to execute the remaining pragraoncur-
rently with the other programs ifi in do(a, s), i.e. thatD = -CGoal—3s’. Do(a; (o’
| T, now, s'), s). However, note thaf" may not be complete in the sense that it may
include plans that have actions that trigger the adoption of subgoals, for which the ex-
ecution of 'l waits; but/” does not have any adopted plans yet that can achieve these
subgoals. Thug'l by itself might currently have no complete execution, and will only
become completely executable when all such subgoals have been fully expanded.

For example, consider a new agent for our blocks world domain who has a goal to
eventually build a 3 blocks tower, i.63Tower, where 3Towet 3b, b, b”. OnTbl(b) A
on(d’,b) AON(b”,). Also, in addition to the above rules, her plan librdfyincludes
the following rule:

O3Tower: [ONnTbl(b) A ONTbI(b") A ONTbI(B") Ab # b A
Clear(b) A Clear(d’) A Cleard”) A =Y (b)) AG(') AY (D)) « o1,
where oy = adopt RT(OTwr$, DoAL (02)); 02, and oo = TWr$?; stack(b”,b').

This says that, if the agent knows about a non-yellow blgakdistinct green block/,
and a yellow block” that are all clear and on the table, then her goal of building a 3
blocks tower can be fulfilled by adopting the plan that involves adopting the subgoal to
eventually build a green non-yellow tower, waiting for the achievement of this subgoal,
and then stacking” ond’. Suppose that in response(8Tower, the agent adopted
as above as a subgoal of this goal using thg Aule, and thusr, is added td". In the
next few steps, she will step through the adopted plarexecuting one action at a time
in an attempt to achieve her goal tig8Tower.

Note that, in SR-APL, the hierarchical decomposition of a subgoalgg.gbove,
is a two step process. In the first step, in response to the execution {vig &f the
adoptRT((}TWI‘% DoAL (o2)) action in her plarr, in I, the agent adoptGTwrg as
a subgoal of executing the remaining progragm possibly along with other actions,
i.e. w.r.t. DoAL(o2). Then in the second step, she uses thg Alle to select and adopt
a plan for the subgoabTwr. We assume that the subga@lwrS must always be
achieved before the supergoal. To do this, we suspend the execution of the supergoal by
waiting for the achievement of the subgoal. This can be specified by the programmer
by having the supergoal, start with the wait action Tvﬁ? that waits for the subgoal
to complete. But this means that (and thusr,) by itself, i.e. without the DoAL con-
struct, might not have a complete execution as it might get blocked when it reaches
Twrg?. Moreover, sincer, is a member of ", I'll will have a complete execution only
when all the subgoals i’ have been fully expanded. To deal with this, we use a weak
consistency check that does not perform full lookahead d¥eHowever, our seman-
tics ensures that any actienperformed by the agent must not make the concurrent

execution of all the adopted plans of the agent possibly with other actions impossible,
i.e. it must be consistent with DoA(IF“), since Ai., requires that doing must be
consistent with all her DoAL procedural goals (and other concurrent declarative goals)
in her goal hierarchy, i.e. thd? = -CGoal—-3s’. Do(a, now, s'), s).

Thirdly, we have a rule A., for accommodating exogenous actipns. actions
occurring in the agent’s environment that are not under her control. When such an action
a occurs ins, the agent must update her p-goals by progressing the situation component
of her configuration t@o(a, s).

Fourthly, we use the A... rule for dropping adopted plans from the procedural
goal-basel” that are no longer intended in the thedPy It says that if there is a program
o in I', and executingr possibly along with other actions is no longer a realistic p-
goal, theno should be dropped froni’. This might be required when the occurrence
of an exogenous action forces the agent to drop a plan by making it impossible to
execute or inconsistent with her higher priority realistic p-goals. Recall that our theory
automatically drops such plans from the agent’s goal-hierarchy specified by

Finally, we have a rule A, for repairing an agent’s plans in case she gets sfuck
i.e. when for all programs in I", the agent has the realistic p-goal that DdAlL
at some leveh (and thus all of these DoAlz) are still individually executable and
collectively consistent), but together they are not concurrently executable without some
nonwo actions in the sense thdt! has no program-level transition i This could
happen as a result of an exogenous action or as a side effect of our weak consistency
check, as discussed below. The.Arule says that if: (@'l does not have a program
level transition ins (which ensures that 4., can’t be applied), (by'!Ilis not considered
to be completed ir, (c) every program id" is currently a realistic p-goal that has been
handled (which ensures thatA.,, and A,; can’t be applied), (d) there is a sequence
of actionsa that the agent does not intend not to execute next, and (epairsI” in
the sense that there is a program level transitiol’bhfter « has been executed in
then in an attempt to repalr, the agent should adoﬁt at the lowest priority level (i.e.
at NPGoals(s)).

Why do we need this rule? One reason is because the agent could get stuck due to
the occurrence of an exogenous actipr.g. where makes the preconditions of a plan
o in I" false; note that, DoAlo) might still be executable after the occurrence .g.
if there is an action (encoded by the DoAL construct) that can be used to restore the
preconditions of.

Another reason repair may be needed is that we use partial lookahead when exe-
cuting actions via A..,. For example, assume a domain with actians, andr, all
of which are initially possible. The execution bimakes the preconditions effalse,
while that ofr restores them. Our agent has two adopted plans, Depand DoAL(b)
in the theoryD, andI" = [a, b]. Note thatb; a is not a valid execution of I, since
the execution ob breaks the preconditions af Butb; r; a is indeed a valid execution
of (DoAL (a) A DOAL(b)). Since we only do partial consistency checking, our seman-
tics allows the agent to perfortnas the first actio. That is, to executé using the
A transition rule, we only need to ensure thdias a program-level transition in

® Note that this does not mean that:4, allows the agent to perform an action that makes one
of her goals impossible, e.g. to exectt@hen such a repair actionis not available.

and that this transition is consistent with the agent’s goal,ine. with DoAL(a) and

DoAL (b), both of which hold. After the execution éfthe agent will get stuck, as there

is no action in the progression &6f that she can perform. To deal with this, we include

the repair rule that makes the agent plan for and commit to a sequence of actions that
can be used to repalr, which for our example is. Note that, we could have avoided

the need for repairing plans in this case by strengthening the conditions of the'ée

to do full lookahead by expanding all subgoals/inHowever, this requires modeling

the plan selection/goal decomposition process as part of the consistency check, which
we leave for future work. We could have also relied on plan failure recovery techniques
[28]. Finally, our repair rule does a form of conformant planning; more sophisticated
forms of planning such as synthesizing conditional plans that include sensing actions
could also be performed.

When the agent has complete information, there must be a repair plan available
to the agent (whose actions can be performed by the agent herself) if her goals are
consistent. In our framework, since the SSA &drdrops all inconsistent goals/plans,
the agent’s p-goals are always consistent, and thus if complete information is assumed,
itis always possible to repair the remaining plans. Consider our previous example: if the
agent has DoAla) and DoAL(b) as her realistic p-goal$; = [a, b], and if she has the
c-goal not to execute an action frofil (i.e. CGoal—3s’. (I'l, now) — (I",s'), s)),
then it must be the case that she does not have the c-goal not to eXécateng
with other actions (e.g:), i.e. ~CGoal—3s’. DoAL (a||b, now, s'), s). Otherwise, one
of DoAL (a) or DoAL(b) would have been dropped by the SSA f@ras an agent's
p-goals are always consistent with each other. Thus there must be a pteat can
repair I'. Since the agent has complete information, this plan must work in all her
epistemic alternatives (our repair rule does a form of conformant planning). Also, since
by definition, the agent of the “other actions” in the DoAL construct is the agent herself,
this means that she is also the agent?oflf on the other hand the agent has only
incomplete information, then a repair plan may need to perform sensing actions and
branch on the results. We leave this kind of conditional planning for future work.

Also, note that this rule allows the agent to procrastinate in the sense that in addition
to the plan that actually repairs, she is allowed to adopt and execute actions that are
unnecessary. This could be avoided by constraining the repairplarg. by requiring
it to be the shortest or the least costly plan etc. We leave this for future work.

In our operational semantics, we want to ensure that the procedural gdalara
consistent with those in the theofy before expansion of a subgoal/execution of an
action occurs; so we assume that the.4, rule has higher priority than &; and Ag.p,.

We can do this by adding appropriate preconditions to the antecedent of the latter, which
we leave out for brevity.

To summarize, in SR-APL we formalize both declarative goals and plans uniformly
in the same goal hierarchy specified By We maintain the consistency of adopted
declarative and procedural goals by ensuring that there is at least one path known to the
agent over which all of her adopted declarative goals hold and that encodes the con-
current execution of all of her adopted plans, possibly along with other actions. When-
ever the agent’s goals/plans become inconsistent due to some external interference, the
successor-state axiom I will drop some of the adopted goals/plans, respecting their

priority, and consistency of the goal-base is automatically restored. We also have a pro-
cedural goal-bas€g' containing the adopted plansih whose sole purpose is to ensure

that the agent does not procrastinate w.r.t. her adopted plans. The set of transition rules
of SR-APL allows an SR-APL agent to select, adopt, and execute plans from the plan
library and thus serves as SR-APL’s practical reasoning component. While adopting
plans and executing actions, we use a weak consistency check, and thus avoid searching
over the entire plan-space while ensuring consistency. SR-APL also includes a repair
rule that can be used to repair plans if the agent gets stuck (a) as a result of our weak
consistency check (and lack of lookahead in plan selection), (b) due to external inter-
ferences, or (c) due to the existence of an adopted declarative goal for which there is no
plan specified in the plan library.

Let us now define some useful notions of program execution in SR-ARabéled
execution tracel relative to a theoryD is a (possibly infinite) sequence of configura-
ti0n5<F0,80> g <F1, 81> g <F2, 82> g <F3, 83> g - Sty = [nl'], so = Sp is the
actual initial configuration, and for a{ll;, s;), the agent level transition rule can be
used to obtaif 11, si+1). Herel; is one of Ay, Astep, Aczor Aciean, and A..,, and
in the absence of exogenous actidnsan be one of A, Astep, Aciean, and A..,. We
sometimes suppress these labelcoiplete tracel relative to a theoryD is a finite

labeled execution trace relative T (I, sg) . l":? (I, $n), St.{Iy, s,) does
not have an agent level transition, i(&},, s,,) #-.

For our blocks world example, we can show that our SR-APL agent for this domain
will not adopt inconsistent plans as seen in Section 2 and will in fact achieve all her
goals. Note that, when arbitrary exogenous actions can occur, even the best laid plans
can fail. Here we only consider the case of where exogenous actions are absent. We
model this using the following axiom, which we cloExo: Ya. —exo(a). Given this,

we can show that:

Proposition 1 (a). There exists a complete trade relative to Dy U {NoEzo}
for our blocks world program(b). For all such complete trace$ = (Ip,so) =
(I, 1) = -+ = (I, sn), we haveDpy U{NoEzo} |= FinaI(F,U, 50) ATWIE (5,,) A
Twrg(sn). (c). There are no infinite traces relative gy U {NoExo}.

Thus when exogenous actions cannot occur, any execution of our SR-APL blocks world
agent achieves all her goals.

6 Rationality of SR-APL Agents

We next prove some rationality properties that are satisfied by SR-APL agents. We
only consider the case when exogenous actions do not occur. We could have considered
exogenous actions, but in that case we would have to complicate the framework further,
e.g. by assuming a fair environment that gives a chance to the agent to perform actions.
Moreover, it is not obvious what rational behavior means in such contexts.

First of all, in each situation, for all domair3 that are part of an SR-APL agent,
the knowledge and c-goals/intentions as specifie®byust be consisterit:

7 This follows independently from the underlying agent theory.

Theorem 3 (Consistency of Knowledge and CGoals).
D = Vs. =Know(false, s) A ~CGoal false, s).

We can also show that the procedural goalg’iand the declarative and procedural
goals in the theonyD U { NoEzo} remain consistent. Let's say thtte procedural
goals inI" are consistent with those in the thedPyin situations in a configuration
(I, s iff for all o s.t. Membefo, I'), we haveD = CGoalDoAL (o), s). Also, define
Do = DU{NoEzo}. We have that:

Theorem 4 (Consistency of” and Dy;,). If T = (I, s0) = (I1,51) = -+ =
(I, sn) is @a complete trace of an SR-APL agent w.r.t. a theéBpy, ,, then for alli s.t.
0 <i < n, we have:

(a). If s;41 = do(a, s;) for someu, then the procedural goals ifi; are consistent with
those in the theorP -, in s;,

(b). If s; = si41, then there existg s.t.0 < ¢ < j < n and the goals in; are
consistent with those in the thedB,, in s;,

(¢). The procedural goals i, are consistent with those in the thedPy, , in s,,.

(a) and ¢) are self-explanatoryb) shows that whenever there is some procedural goal
in I; that is not a goal w.r.t. the theo®;,,,, the A.;cqr, rule will remove it fromI;, and
eventually consistency is restorett.follows from Theorem 4 that in all configurations
(I, s) where the plans itfi” are consistent with those in the thedPy, , in s, the agent
intends to execute the programs fihconcurrently starting irs, possibly with other
actions, i.eDy;, = CGoal3s’. DoAL(I'l, now, s'), s).

Finally, our agents evolve in a rational way:

Theorem 5 (Rationality of Actions in a Trace).If T = (I, so) Ly (I, s1) LN
st (I, sn) is a trace of an SR-APL agent relative to a the@y.,,, then for all:

s.t.0 < i < nands; = do(a, s;—1), we have:

(a). Do = ~CGoal—3s". Do(a, now, s'), s;_1).
(b). If 1,_1 = Astep then Dy, = CGoal3s’. DoAL (a, now, s'), s;_1).
(¢). Dgao E V0,90, n. a = adopt RT (v,) V a = adopt(y,n) D
-CGoal—3s',p’. Startgs’) A Suffix(p’, do(a, s')) A (p'), si—1).

This states that SR-APL is sound in the sense that any trace produced by the APL
semantics is consistent with the agent’s chosen goals. To be predifearf SR-APL
agent performs the actiom in situations;_1, then it must be the case that she does
not have the intention not to execut@ext ins; _1. Moreover,) if a is performed via
Asiep, thena is indeed intended ig;_; in the sense that she has the intention to execute
a possibly along with some other actions next. Finalty,i{ a is the action of adopting
a subgoal) w.r.t. a supergoap or that of adopting a goal at some leveh, then the
agent does not have the c-goakin, not to bring about) next.

8 Recall that applications of A.., do not change situations.

7 Discussion and Conclusion

Based on a “committed agent” variant of our rich theory of prioritized goal/subgoal
dynamics [13], we developed a specification of an APL framework that handles priori-
tized goals and maintains the consistency of adopted declarative and procedural goals.
We also showed that an agent specified in this language satisfies some strong rationality
properties. While doing this, we addressed some fundamental questions about rational
agency. We model an agent’s concurrent commitments by incorporating the DoAL con-
struct in her adopted plans, which allows her to be open towards future commitments to
plans, using a procedural goal-bdséo prevent procrastination. We formalized a weak
notion of consistency between goals and plans that does not require the agent to expand
all adopted goals while checking for consistency.

While SR-APL agents rely on a user-specified plan library, they can achieve a goal
even if such plans are not specified. Indeed thg, Aule can be used as afirst principles
planner for goals that can be achieved using sequential plans. Thus, given{adgoal
all the programmer needs to do to trigger the planner is to add a plan of the form
(0P : true — P7) to the plan librarylI. Since the progrand? is neither executable
nor final, it will eventually trigger the A, rule, which will make the agent adopt a
sequence of actions to achiete

Here, we focused on developing an expressive agent programming framework that
yields a rational/robust agent without worrying about tractability. Thus our framework
is a specification and model of an ideal APL rather than a practical APL. In the future,
we would like to investigate restricted versions of SR-APL that are practical, with an
understanding of how they compromise rationality. We think this can be done. For in-
stance if we assume a finite domain, then reasoning with the underlying theory should
be decidable. We could adapt techniques from partial order planning such as summary
information/causal links to support consistency maintenance. We could also simply find
a global linear plan and cache it, using summary information to revise it when necessary.
There are some controller synthesis techniques that can deal with temporally extended
goals [18, 2].

Also, it would be desirable to study a version where the agent fully expands an ab-
stract plan and checks its executability before adopting it. Finally, while our underlying
agent theory supports arbitrary temporally extended goals, in SR-APL we only consider
achievement goals. We would like to relax this in the future.

References

1. M. E. Bratman.Intentions, Plans, and Practical ReasohRlarvard University Press, Cam-
bridge, MA, USA, 1987.

2. D. Calvanese, G. De Giacomo, and M. Y. Vardi. Reasoning about Actions and Planning in
LTL Action Theories. InProc. KR'02 pages 593-602, 2002.

3. B.J. Clement and E. H. Durfee. Theory for Coordinating Concurrent Hierarchical Planning
Agents Using Summary Information. Proc. AAAI'99 pages 495-502, 1999.

4. B. J. Clement, E. H. Durfee, and A. C. Barrett. Abstract Reasoning for Planning and Coor-
dination. J. of Artificial Intelligence Researc28:453-515, 2007.

5. M. Dastani. 2APL: A Practical Agent Programming Languagef AAMAS16(3):214-248,
2008.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

G. De Giacomo, Y. Leggance, and H. J. Levesque. ConGolog, a Concurrent Programming
Language Based on the Situation Calculdsificial Intelligence 121:109-169, 2000.

. K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. Ch. Meyer. Agent Programming with

Declarative Goals. lintelligent Agents VIl : Agent Theories, Architecture, and Languages
vol. 1986 of LNAI, pages 228-243. Springer-Verlag, 2000.

. K. V. Hindriks, W. van der Hoek, and M. B. van Riemsdijk. Agent Programming with

Temporally Extended Goals. Proc. AAMAS’'09pages 137-144, 2009.

. J. F. Horty and M. E. Pollack. Evaluating New Options in the Context of Existing Plans.

Artificial Intelligence 127:199-220, 2001.

F. F. Ingrand, M. P. Georgeff, and A. S. Rao. An Architecture for Real-Time Reasoning and
System ControllEEE Expert 7(6):34—44, 1992.

S. M. Khan.Rational Agents : Prioritized Goals, Goal Dynamics, and Agent Programming
Languages with Declarative Goals (in preparatiomh.D. thesis, York University, Canada,
2011.

S. M. Khan and Y. Lesggance. ECASL: A Model of Rational Agency for Communicating
Agents. InProc. AAMAS’05pages 762—769, 2005.

S. M. Khan and Y. Legggance. A Logical Framework for Prioritized Goal ChangePtac.
AAMAS’1Q pages 283-290, 2010.

S. M. Khan and Y. Lesggance. Towards a Rational Agent Programming Language with
Prioritized Goals. InWorking Notes of DALT Vl]lpages 18-33, 2010.

S. M. Khan and Y. Leggance. Prioritized Goals and Subgoals in a Logical Account of Goal
Change — A Preliminary Report. IRroc. DALT VI| vol. 5948 of LNAI, pages 119-136,
Springer-Verlag, 2010.

S.M.Khanand Y. Leggance. SR-APL: A Model for a Programming Language for Rational
BDI Agents with Prioritized Goals (Extended Abstract). To appeaPiioc. AAMAS'11
2011.

H. J. Levesque, F. Pirri, and R. Reiter. Foundations for a Calculus of Situak@etronic
Transactions of Al (ETAJ)2(3-4):159-178, 1998.

M. Pistore and P. Traverso. Planning as Model Checking for Extended Goals in Non-
Deterministic Domains. IProc. IJCAI'0], pages 479-484, 2001.

A. S. Rao. AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Language. In
Agents Breaking Awayol. 1038 of LNAI, pages 42-55. Springer-Verlag, 1996.

R. Reiter.Knowledge in Action. Logical Foundations for Specifying and Implementing Dy-
namical SystemsMIT Press, 2001.

S. Sardia, L. de Silva, and L. Padgham. Hierarchical Planning in BDI Agent Programming
Languages: A Formal Approach. Rroc. AAMAS’06pages 1001-1008, 2006.

S. Sardia and L. Padgham. A BDI Agent Programming Language with Failure Recovery,
Declarative Goals, and Planning.of AAMASto appear), 2010.

R. Scherl and H. J. Levesque. Knowledge, Action, and the Frame ProAlgificial Intel-
ligence 144(1-2):1-39, 2003.

S. Shapiro and G. Brewka. Dynamic Interactions Between Goals and BeliefBrodn
IJCAI'07, pages 2625-2630, 2007.

S. Shapiro, Y. Legpance, and H. J. Levesque. Goal Change in the Situation Caldulof.
Logic and Computationl7(5):983-1018, 2007.

J. Thangarajah, L. Padgham, and M. Winikoff. Detecting and Avoiding Interference between
Goals in Intelligent Agents. IRroc. IJCAI'03 pages 721-726, 2003.

M. B. van Riemsdijk, M. Dastani, and J.-J. Ch. Meyer. Goals in Conflict: Semantic Founda-
tions of Goals in Agent Programming. of AAMAS 18(3):471-500, 2009.

M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah. Declarative and Procedural Goals
in Intelligent Agent Systems. IRroc. KR'02 pages 470-481, 2002.

