
Modeling Multiagent Systems with CASL—
A Feature Interaction Resolution Application?

Steven Shapiroa Yves Lespéranceb

a Department of Computer Science, University of Toronto
Toronto, ON M5S 3G4, Canada
steven@ai.toronto.edu

b Department of Computer Science, York University
Toronto, ON M3J 1P3, Canada
lesperan@cs.yorku.ca

Abstract. In this paper, we describe the Cognitive Agents Specification Lan-
guage (CASL), and exhibit its characteristics by using it to model the multiagent
feature interaction resolution system described by Griffeth and Velthuijsen [7]. We
discuss the main features of CASL that make it a useful language for specifying
and verifying multiagent systems. CASL has a nice mix of declarative and proce-
dural elements with a formal semantics to facilitate the verification of properties
of CASL specifications.

1 Introduction

The use of proper design methods is just as important for multiagent systems as for non-
agent-based software. In this paper, we present a formal specification language for multi-
agent systems called the CognitiveAgents Specification Language (CASL). CASL com-
bines a theory of action [13] and mental states [14, 15] based on the situation calculus
[11] with ConGolog [6], a concurrent, nondeterministic programming language that has
a formal semantics. The result is a specification language that contains a rich set of oper-
ators to facilitate the specification of complex multiagent systems. Specifications in this
language can exploit the higher level of abstraction that comes from expressing con-
straints in terms of mental attitudes.

An earlier version of CASL was described in [16], where the use of the formalism
was illustrated with a simple meeting scheduling multiagent system example. The moti-
vation for our approach was discussed in further detail there. In this paper, we extend the
formalism to support communication with encrypted speech acts and incorporate a sim-
pler account of goals. But foremost, we use the formalism to model a somewhat more
complex multiagent system taken from the literature. In [7], Griffeth and Velthuijsen

? This research was funded by Communications and Information Technology Ontario and the
Natural Science and Engineering Research Council of Canada. We thank Fawzi Daoud for sug-
gesting that we look at feature interaction applications and Griffeth and Velthuijsen’s work in
particular.

present a feature interaction resolution system for telecommunication applications that
involves negotiating, autonomous agents with explicit goals. This is an attractive ap-
proach in the context of rapidly expanding telecommunication services, open environ-
ments, and the need for client customization. In CASL, agents’ goals (and knowledge)
can be represented explicitly, making CASL an ideal formalism for specifying systems
such as the one described by Griffeth and Velthuijsen. They informally state a property of
their system and (also informally) show that the property holds for their system. Since
CASL is a formal language, it is possible to formally state and prove such properties.
We use Griffeth and Velthuijsen’s system as an example of the modeling capabilities of
CASL, and give a formal statement of the property discussed by Griffeth and Velthui-
jsen.

2 The Model of Domain Dynamics

In CASL, a dynamic domain is represented using an action theory [13] formulated in
the situation calculus [11], a predicate calculus language for representing dynamically
changing worlds. A situation represents a snapshot of the domain. There is a set of initial
situations corresponding to the ways the agents believe the domain might be initially.
The actual initial state of the domain is represented by the initial situation constant, S0.
The term do(a; s) denotes the unique situation that results from the agent performing
action a in situation s. Thus, the situations can be structured into a set of trees, where
the root of each tree is an initial situation and the arcs are actions. The initial situations
are defined as those situations that do not have a predecessor: Init(s)

def
= :9a; s0:s =

do(a; s0):

Predicates and functions whose value may change from situation to situation (and
whose last argument is a situation) are called fluents. For instance, in our model of Grif-
feth and Velthuijsen’s system, we use the fluent TWOWAYIP(x; y; s) to represent the
property that a two-way phone connection is in progress between agents x and y. The
effects of actions on fluents are defined using successor state axioms [13], which provide
a solution to the frame problem; see below for an example.

There is a distinguished predicate Poss(a; s), denoting that action a is executable in
situation s. s � s0 means that s0 results from performing a (possibly empty) executable
sequence of actions in s. We use a theory containing the following kinds of axioms [13]
to specify a dynamic domain:

– Action precondition axioms, one for each action, which characterize Poss.
– Successor state axioms, one for each fluent.
– Initial state axioms, which describe the initial state of the domain and the initial men-

tal states of the agents. These are axioms that only describe initial situations.
– Unique names axioms for the actions.
– Domain-independent foundational axioms (similar to the ones given by Lakemeyer

and Levesque [9]).

2.1 Modeling the Environment

In the feature interaction resolution system, the agents are negotiating to establish tele-
phone connections on behalf their human users. We consider two types of connections:
a regular two-way telephone connection and a recording connection, during which one
person leaves a message for another. These two types of connections are established by
the actions TWOWAY(x; y) (x sets up a two-way connection with y) and RECORD(x; y)
(x records a message for y), resp. In addition, once a connection is established, the agent
initiatingthe connection may identify its user to the other agent. The initiatingagent may
send its user’s name or telephone number. The corresponding actions are: NAME(x; y)
and NUMBER(x; y), resp. There is also the DISCONNECT(x; y) action, which terminates
a connection between x and y.

Once a connection of a certain type is established, we say that the connection is
in progress until the connection is terminated. For each of the connection and identi-
fication actions, we have a corresponding fluent that becomes true when the action is
executed. An example of this is the TWOWAYIP(x; y; s) fluent discussed above. Sim-
ilarly, we have the fluent RECORDINGIP(x; y; s), which means that a recording is in
progress between x and y in situation s. For the identification actions, we have the flu-
ents NAMEIP(x; y; s) and NUMBERIP(x; y; s) whose intuitive meanings are that x’s
owner’s name (number, resp.) is being displayed for y’s owner in situation s. Any of
these fluents that are true become false when the DISCONNECT(x; y) action is executed.

We must give precondition axioms and successor state axioms for these actions and
fluents. For example, the precondition axiom for TWOWAY is:

Poss(TWOWAY(x; y); s) � :TWOWAYIP(x; y; s) ^ :RECORDINGIP(x; y; s):

The successor state axiom for TWOWAYIP is:

TWOWAYIP(x; y; do(a; s)) �
a = TWOWAY(x; y) _ (TWOWAYIP(x; y; s) ^ a 6= DISCONNECT(x; y)):

As mentioned earlier, successor state axioms provide a solution to the frame problem.
The other precondition and successor state axioms are similar to these, so we omit them.

2.2 Modeling Agents’ Mental States

We model two aspects of the mental states of agents: knowledge and goals. These are
represented with a possible worlds semantics in the situation calculus using situations
as possible worlds, following Scherl and Levesque [14]. The accessibility relation for
knowledge, K(agt ; s0; s)1, holds if situation s0 is compatible with what agt knows in
situation s. An agent knows a formula �, if � is true in all the K-accessible worlds:

Know(agt ; �; s)
def
= 8s0(K(agt ; s0; s) � �[s0]):

1 Scherl and Levesque only consider a single agent; we [16] generalize the framework to handle
multiple agents by adding an agent argument to the accessibility relations.

Here � is a formula that may contain a free variable now . This variable is used as the
situation argument of the fluents in �. �[s] denotes the formula that results from substi-
tuting s for now in�. We also say that an agent knows whether � holds if it either knows
� or its negation: KWhether(agt ; �; s) def

= Know(agt; �; s) _Know(agt;:�; s):

Scherl and Levesque formulated a successor state axiom for K that describes
how an agent’s knowledge is affected by actions, including expansion due to sens-
ing actions. We [16] adapted the axiom to handle the INFORM(informer ; agt; �)2 ac-
tion, i.e., informer informs agt that � holds. A limitation of the formalization is
that all agents are aware of all actions, as in a broadcast model of communication.
Here, we modify the representation of speech acts to accommodate encrypted mes-
sages. We model the encryption and decryption of messages using the functional flu-
ents ENCODE and DECODE, resp. The value of ENCODE(sender ; rec; �; s) is a code,
and the value of DECODE(sender ; rec; c; s)—where c is a code— is a formula. These
functions have to be fluents in order to be able to model the fact that only rec

knows the value of DECODE(sender ; rec; c; s) and only sender knows the value of
ENCODE(sender ; rec; �; s). That is the only reason these functions are fluents as their
values are unchanged by actions as shown in the following successor state axioms:

ENCODE(sender ; rec; �; do(a; s)) = ENCODE(sender ; rec; �; s)
DECODE(sender ; rec; c; do(a; s)) = DECODE(sender ; rec; c; s)

The content of messages will be codes instead of formulae, e.g., we will use
INFORM(informer ; agt; c) instead of INFORM(informer ; agt ; �).

We modify the successor state axiom for K to handle encrypted messages:

K(agt ; s00; do(a; s)) �
9s0(K(agt ; s0; s) ^ s00 = do(a; s0) ^ Poss(a; s0) ^

8informer; �; c(a = INFORM(informer; agt ; c) ^
Know(agt; � = DECODE(informer ; agt; c); s) � �(s0))):

This axiom states the conditions under which a situation s00 will be K-accessible from
do(a; s). If a is not an INFORM action, then the predecessor of s00 (i.e., s0) must be K-
accessible from s and the action that takes s0 to s00 must be a and executable in s0. If a
is the action of informer informing agt that c, where c is a code, and agt knows that �
is the decoding of c, then, in addition to the previous conditions, it must be the case that
� holds in s0. Thus, this axiom ensures that after any action, the agents know that the
action has occurred and that it was executable, and if the action is an INFORM action,
and the recipient of the message can decode the message, then the recipient knows that
the decrypted content of the message holds. This axiom defines the K relation at non-
initial situations. The K relation at initial situations is specified by the axiomatizer of
the domain using initial state axioms, subject to the constraint that initial situations can
only be K-related to other initial situations. This framework only handles knowledge

2 Since we have functions and relations that take formulae as arguments, we need to encode for-
mulae as first-order terms. For example, we could use the encoding given by De Giacomo et
al. [6]. For notational simplicity, we suppress this encoding and use formulae as terms directly.

expansion. In [17], we give an account of belief revision that is compatible with this
framework.

We model the goals of an agent using another accessibility relation on situations,
W (agt ; s0; s). This relation holds if s0 is compatible with what the agent wants in s. Un-
like with the K relation, we allow the W relation to relate situations that have different
histories. The reason for this is that an agent may want things that do not currently hold,
but that it wants to hold in the future. Therefore, we allow future situations to be among
the W -accessible situations.

An agent may want something that it knows to be impossible to obtain, but we want
the goals of the agent to be consistent with what the agent knows. Therefore, we define
the goals of an agent to be those formulae that are true in allW -accessible situations that
have a K-accessible situation in their past:

Goal(agt ; ; s) def
=

8now ; then(K(agt ; now ; s) ^W (agt ; then; s) ^ now � then � [now ; then]):

Here is a formula that has two free variables, now and then. then can be thought of
as defining a finite path of situations, namely, the sequence of situations up to situation
then. now corresponds to the current situation along that path. In the definition of Goal,
the K relation is used to pick out the current situation (now) along the path defined by
theW -related situation (then) as well as to filter out the situations that are incompatible
with what the agent knows to be the case. [s0; s00] denotes the formula that results from
substituting s0 for now and s00 for then in .

The successor state axiom for W is similar to the one for K:

W (agt ; then; do(a; s)) � [W (agt ; then; s) ^
8requester ; ; c; now(a = REQUEST(requester; agt ; c) ^

Know(agt; = DECODE(requester ; agt; c); s) ^K(agt; now ; s) ^
now � then ^ :Goal(agt ;: ; s) � [do(a; now); then)]]:

A situation then is W -accessible from do(a; s) iff it is W -accessible from s and if a is
the action of requester requesting agt that the decoding of c obtain, and agt knows that
 is the decoding of c, and now is the current situation along the path defined by then ,
and the agent does not have the goal that : in s then holds at (do(a; now); then).
If the agent gets a request for and it already has the goal that : , then it does not
adopt the goal that , otherwise its goal state would become inconsistent and it would
want everything. This is a simple way of handling goal conflicts. It should be possible to
cancel requests. A more sophisticated handling of conflicting requests will be presented
in [15].

In order to execute an INFORM action, an agent must know how to encode the mes-
sage and also know that the content of the message is true. Therefore, after receiving the
message, the recipient of the message knows that the sender knew that the content of the
message was true. Similarly, in order to execute a REQUEST action, an agent must know
how to encode the message and not have any goals that conflict with the request. This is
a somewhat simplistic model for these communicative acts, and we plan to refine it in
the future. Here are the precondition axioms for INFORM and REQUEST:

Poss(INFORM(informer ; agt; c); s) �
9�:Know(informer ; (ENCODE(informer ; agt; �) = c ^ �); s):

Poss(REQUEST(reqr ; agt ; c); s) �
9 :Know(reqr; ENCODE(reqr; agt ;) = c; s) ^ :Goal(reqr;: ; s):

We also use the following definitions adapted from Lakemeyer and Levesque [9]. A
formula � describes all that agt knows initially:

OKnow0(agt ; �)
def
= 8s0(K(agt ; s0; S0) � Init(s0) ^ �(s0)):

A formula describes all the paths that are consistent with agt’s initial goals:

OGoal0(agt ;)
def
= 8now ; then:(K(agt ; now ; S0) ^ now � then �

(W (agt; then ; S0) � [now ; then])):

We need to put constraints on the accessibility relations in order to yield mental atti-
tudes with desirable properties. For example, we want positive and negative introspec-
tion of knowledge and of goals. Due to lack of space, we will not discuss the constraints
that need to be placed on the K and W in order to yield these properties. Let us simply
assume that these properties hold.

In our formalization of goals, goals are evaluated relative to finite paths. Thus, we
cannot represent that an agent wants that always be true because the path relative
to which the proposition is evaluated ends, so there is no way of knowing whether
holds “after” the end of the path. However, we can model maintenance goals that are
time bounded: is true until time T. If T is chosen suitably far in the the future, time-
bounded maintenance goals can replace unbounded maintenance goals. However, this
requires adding a notion of time. We formalize time in the situation calculus as we did
in [16]. That is, we add a functional fluent time(s) whose value is a natural number that
represents the time at situation s. To simplify the formalization of time, here, we assume
that all actions have duration of 1 and that the time at all initial situations is 1.

We will express maintenance goals using the predicate Always(; now ; then),
which says that always holds, from now until the end of time, denoted by the constant
T: Always(; now ; then)

def
= TIME(then) = T ^ 8s:now � s � then � [s; then]:

3 The Behavior Specification

We specify the behavior of agents with the notation of the process specification language
ConGolog [6], the concurrent version of Golog [10]. We take a ConGolog program3 to
be composed of a sequence of procedure declarations, followed by a complex action.
Complex actions are composed using the following constructs:

a, primitive action
�?, wait for a condition
�1; �2, sequence
�1 j �2, nondeterministic choice between actions
��, nondeterministic iteration

3 We retain the term program even though it is not our intention to execute the programs directly.

if � then �1 else �2 endIf, conditional
for x 2 � do � endFor, for loop
while � do � endWhile, while loop
�1 k �2, concurrency with equal priority
�1 ii �2, concurrency with �1 at a higher priority
h x : �! � i, interrupt
�(p), procedure call.

a denotes a situation calculus primitive action, as described earlier. The ConGolog spec-
ification can be for a single agent or multiple agents, depending on whether the primitive
actions contain an argument for the agent of the action. � denotes a situation calculus for-
mula with the situation argument of its fluents suppressed. �, �1, and �2 stand for com-
plex actions, � is a set, x is a set of variables, � is a procedure name, and p denotes the
actual parameters to the procedure. These constructs are mostly self-explanatory. Intu-
itively, the interrupts work as follows. Whenever 9x:� becomes true, then � is executed
with the bindings of x that satisfied �; once � terminates, the interrupt can trigger again.

Procedures are defined with the following syntax: proc �(y) � endProc, where �
is the procedure name, y denotes the formal parameters to the procedure, and � is the
procedure body, a complex action. The semantics of ConGolog programs are defined
using the Do predicate (see [6] for details). Informally, Do(�; s; s0) holds if situation s0

is a legal terminating situation of program � starting in situation s.

4 Modeling the Feature Interaction Resolution System

In the feature interaction resolution system, there are two types of agents: those that rep-
resent the interests of humans, which we call personal agents and the negotiator, which
coordinates the negotiation of a solution for the personal agents. The personal agents ne-
gotiate to create telephone connections. One personal agent is the initiating agent. The
initiating agent has an aim for the negotiation. Any solution to the negotiation will be
a specialization of this aim. The negotiator receives proposals from the personal agents
and forwards them to the other personal agents and waits for their responses. If every-
one agrees to a proposal (or if there are no more proposals to try) then the negotiator
terminates the negotiation successfully (unsuccessfully, resp.). When a personal agent
receives a proposal it answers whether it agrees to it. If it does not agree to the proposal
then it can make a counterproposal.

We implement proposals as complex actions in our system. For this example, the
possible proposals will be any of the primitive actions listed earlier or any of the fol-
lowing complex actions:

CONNECT(x; y)
def
= TWOWAY(x; y) j RECORD(x; y)

ANONYMOUSCALL(x; y)
def
= CONNECT(x; y); DISCONNECT(x; y)

IDENTITY(x; y)
def
= NAME(x; y) j NUMBER(x; y):

IDENTIFIEDCALL(x; y)
def
= CONNECT(x; y); IDENTITY(x; y); DISCONNECT(x; y)

CALL(x; y)
def
= ANONYMOUSCALL(x; y) j IDENTIFIEDCALL(x; y)

Note that these complex actions represent the simplest possible sequence of events
that can occur for each proposal. Normally, one would expect that, for example, in an
anonymous call other actions would occur between the connect and a disconnect ac-
tion, namely the agents (or, rather, the humans the agents represent) would speak to each
other. However, for the purposes of negotiation, these simpler specifications suffice be-
cause they include the actions of each proposal that are relevant to the negotiations.

In order to simplify the presentation of the system, we have a fixed initiating agent
with a fixed aim and a fixed initial proposal. The initiator may not accept all specializa-
tions of its aim, so it initially suggests a specialization of its aim that it accepts, which
is its initial proposal. We have a functional fluent, AIM, to represent the initiator’s aim
in order to allow other agents to be ignorant of the initial aim. The aim remains fixed
over time, therefore, only one negotiation will take place. It would not be difficult to
generalize the system to handle multiple negotiations.

We now list some definitions that will be used in the remainder of the paper:

SENDREC(x; y; a)
def
= SENDEROF(a) = x ^ RECIPIENTOF(s) = y

The sender in the action a is x and the recipient in a is y. The definitions of
SENDEROF(a) and RECIPIENTOF(a) are straightforward and we omit them.

Eventually(�; now ; then)
def
= 9s0:now � s0 � then ^ �(s0)

Eventually � holds in the path defined by (now ; then).
Next(seq ; now ; then)

def
= now � do(seq ; now) � then

The sequence of actions seq occurs next in the path defined by (now ; then). For
this definition, the do function is overloaded to handle sequences of actions, but we
leave out the new definition here.

Previously(�; s) def
= 9s0; s00:s0 � s00 � s ^Do(�; s0; s00)

The complex action � occurred in the history of s.
PROPOSAL(�)

def
=

9x; y(� = TWOWAY(x; y); DISCONNECT(x; y)) _
9x; y(� = RECORD(x; y); DISCONNECT(x; y)) _
9x; y(� = TWOWAY(x; y); IDENTITY(x; y); DISCONNECT(x; y)) _
9x; y(� = RECORD(x; y); IDENTITY(x; y); DISCONNECT(x; y)) _
9x; y(� = TWOWAY(x; y); NAME(x; y); DISCONNECT(x; y)) _
9x; y(� = TWOWAY(x; y); NUMBER(x; y); DISCONNECT(x; y)) _
9x; y(� = RECORD(x; y); NAME(x; y); DISCONNECT(x; y)) _
9x; y(� = RECORD(x; y); NUMBER(x; y); DISCONNECT(x; y)) _
9x; y(� = ANONYMOUSCALL(x; y)) _ 9x; y(� = IDENTIFIEDCALL(x; y)) _
9x; y(� = CALL(x; y))
� is a complex action that can be used as a proposal.

SPECIALIZATION(�; �)
def
=

(8s; s0:Do(�; s; s0) � Do(�; s; s0)) ^ PROPOSAL(�) ^ PROPOSAL(�) ^ � 6= �

The proposal � is a (strict) specialization of the proposal �.
COUSIN(�; �)

def
= 9�(SPECIALIZATION(�; �) ^ SPECIALIZATION(�; �))

The proposal � is a cousin of the proposal �, if both � and � are specializations of
another proposal � (i.e., � is a common ancestor of � and � in the specialization tree
of proposals). When a non-initiatingagent does not accept any of the specializations

of a proposal (e.g. �), it will try to find an acceptable proposal by generalizing � and
finding a specialization of the generalization that it accepts. In other words, it will
suggest an acceptable cousin of � .

ACCEPTABLE(agt ; �; s)
def
=

8seq [Know(agt ;Do(�; now ; do(seq; now)); s) � :Goal(agt;:Next(seq); s)] ^
8�[Know(agt ; AIM = �; s) � Know(agt ; SPECIALIZATION(�; �); s)]
The proposal � is acceptable to agt in s. This holds if every sequence of actions that
agt thinks is a legal execution of � is compatible with agt’s goals, and if agt knows
the initial aim (�) of the negotiation (i.e., agt is the initiator) then agt also knows
that � is a specialization of �.

NIAACCEPT(�; s)
def
= 8agt 2 AGENTS(�)� finitiatorg:ACCEPTABLE(agt ; �; s)

All the non-initiatingagents accept the proposal � . AGENTS(�) is a function, whose
definition we omit, that returns the set of agents involved in proposal � . initiator is
a free variable in this definition and will be bound by an outer construct.

ALLACCEPT(�; s)
def
= 8agt 2 AGENTS(�):ACCEPTABLE(agt ; �; s)

All the agents accept � .
POSSIBLESOLUTION(�; agt ; s)

def
=

Know(self ;ACCEPTABLE(agt ; �); s) ^ :Know(self ;:ALLACCEPT(�); s)
This definition is used by the negotiator to select possible solutions to propose to
the agents. A proposal � is a possible solution for agt if the negotiator knows that �
is acceptable to agt , i.e., � has already been suggested to the negotiator by agt , and
the negotiator does not know that � is not acceptable to another agent.

INFORM(informer ; agt; �)
def
=

INFORM(informer; agt ; ENCODE(informer ; agt; �; now))

REQUEST(requester ; agt ;)
def
=

REQUEST(requester ; agt; ENCODE(requester; agt ; ; now))
All messages are encrypted. To simplify the notation, we will have formulae as ar-
guments to INFORM and REQUEST actions, but the formulae are replaced by their
encodings according to these definitions.

4.1 Agent Behaviors and Example Scenario

In Griffeth and Velthuijsen’s example scenario, there are two personal agents, UN and
CND, and the negotiator, N. UN is the initiatorand its AIM is to initiatea call with CND,
i.e., CALL(UN;CND). UN’s owner has an unlisted number, so UN has the constraint
that it never wants to send its number to another agent. CND’s owner always wants to
know who is calling, so CND never wants to accept an unidentified connection. Here is
the axiom that specifies CND’s initial goals:

OGoal0(CND; 8x(Always(8a1; a2; s2fdo(a1; now) � then ^
Do(CONNECT(x;CND); now ; do(a1; now)) ^ SENDREC(x;CND; a2) ^
do(a1; now) � do(a2; s2) � then ^
[8a�; s�:do(a1; now) � do(a�; s�) � do(a2; s2) � :SENDREC(x;CND; a�)] �

Do(IDENTITY(x;CND); s2; do(a2; s2))g))):

In all paths consistent with CND’s goals, whenever an agent x initiates a connection
with CND, the next action performed by x towards CND identifies x to CND.

If an agent has any other initial goals, they will have to be included in the OGoal0
axiom for that agent. In our example, UN is the initiator agent, so we take it to want to
know the result of the negotiation, i.e. whether some proposal is acceptable to all, and if
so what that proposal is. Since UN’s owner has an unlisted number, UN also wants it to
be the case that it never divulges its owner’s phone number. We state UN’s initial goals
with the following axiom:

OGoal0(UN; [8y:Always(:NUMBERIP(UN; y)) ^Eventually(
9� Know(UN;ALLACCEPT(�)) _Know(UN;:9� ALLACCEPT(�)))]):

We also need to specify what the agents know initially. We want to assert that initially,
all agents only know how to encode and decode messages addressed to them. In order to
do this, we need functions to represent the actual encoding and decoding of messages.
Therefore, we introduce ENC(sender ; rec; �), whose value is the encoding of �, and
DEC(sender ; rec; c), whose value is the decoding of c, i.e., a formula. We need an axiom
to ensure that DEC is the inverse of ENC:

DEC(sender ; rec; ENC(sender ; rec; �)) = �:

Here is the axiom that defines the non-initiating agents’ initial knowledge:

8agt :agt 6= UN �
OKnow0(agt ; [(8rec; �:ENCODE(agt ; rec; �) = ENC(agt ; rec; �)) ^

(8sender ; c:DECODE(sender ; agt ; c) = DEC(sender ; agt ; c))]):

The initiator also needs to know the value of AIM, which in this example is
CALL(UN;CND), as stated in the following axiom:

OKnow0(UN; [(8rec; �:ENCODE(UN; rec; �) = ENC(UN; rec; �)) ^
(8sender ; c:DECODE(sender ;UN; c) = DEC(sender ;UN; c)) ^
AIM = CALL(UN;CND)]):

The procedures that specify the behavior of the agents are shown in Figures 1 and
2. A system with an initiator whose initial proposal is initProp, one other negotiating
agent agt , and a negotiator negot can be specified with the following complex action,
which we will call FIR(initiator ; agt; negot ; initProp):

INITIATE(initiator ; negot ; initProp) k PERSONAL(agt ; negot) k
NEGOTIATOR(negot)

For example, we can specify the scenario given in Griffeth and Velthuijsen,
where UN initiates a negotiation with CND with N as the negotiator, and with
TWOWAY(UN;CND); DISCONNECT(UN;CND) as UN’s initial proposal, as follows:

FIR(UN;CND;N; TWOWAY(UN;CND); DISCONNECT(UN;CND)):

We will now go through a trace of this scenario, in order to explain how the agent pro-
cedures work. UN is running the INITIATE procedure. UN’s first action is to request the
negotiator to ensure that UN eventually knows a proposal that is acceptable to all:

REQUEST(UN;N;Eventually(9� (Know(UN;ALLACCEPT(�))))):

Then UN informs the negotiator that it accepts its own initial proposal:

proc INITIATE(self ; negotiator ; initProp)
REQUEST(self ; negotiator;Eventually(9�:Know(self ;ALLACCEPT(�))));
INFORM(self ; negotiator ;ACCEPTABLE(self ; initProp));
[hKnow(self ;:9�:ALLACCEPT(�)) ^
:Previously(INFORM(self ; negotiator ;:9�:ALLACCEPT(�))) !

INFORM(self ; negotiator ;:9�:ALLACCEPT(�))i
ii

PERSONAL(self ; negotiator)]
endProc

proc PERSONAL(self ; negotiator)
h� : Goal(self ;Eventually(KWhether(negotiator ;ACCEPTABLE(self ; �)))) ^

Know(self ;:Previously(INFORMWHETHER(self ; negotiator ;
ACCEPTABLE(self ; �)))) !

if Know(self ;ACCEPTABLE(self ; �)) then
INFORM(self ; negotiator ;ACCEPTABLE(self ; �))

else
INFORM(self ; negotiator ;:ACCEPTABLE(self ; �)) ;
COUNTERPROPOSE(self ; �; negotiator)

endIfi
endProc

proc COUNTERPROPOSE(self ; �; negotiator)
if 9� 0:Know(self ; SPECIALIZATION(� 0; �) ^ACCEPTABLE(self ; � 0) ^

:PREVIOUSLY(INFORM(self ; negotiator ;ACCEPTABLE(self ; � 0)))) then
�� 0:Know(self ; SPECIALIZATION(� 0; �)^ ACCEPTABLE(self ; � 0) ^

:PREVIOUSLY(INFORM(self ; negotiator ;ACCEPTABLE(self ; � 0))))?;
INFORM(self ; negotiator ;ACCEPTABLE(self ; � 0))

elsif 9� 0:Know(self ;COUSIN(� 0; �) ^ ACCEPTABLE(self ; � 0) ^
:Previously(INFORM(self ; negotiator ;ACCEPTABLE(self ; � 0)))) then

�� 0:Know(self ;COUSIN(� 0; �) ^ ACCEPTABLE(self ; � 0) ^
:Previously(INFORM(self ; negotiator ;ACCEPTABLE(self ; � 0))))?;

INFORM(self ; negotiator ;ACCEPTABLE(self ; � 0))
endIf

endProc

Fig. 1. Procedures run by the initiator and other personal agents.

proc NEGOTIATOR(self)
hinitiator : Goal(self ;Eventually(9�:Know(initiator;ALLACCEPT(�)))) !

while (:9�:Know(self ;ALLACCEPT(�)) ^
:Know(self ;:9�:ALLACCEPT(�))) do

if 9�; agent :POSSIBLESOLUTION(�; agent) then
��; agent :POSSIBLESOLUTION(�; agent)?;

if agent 6= initiator ^
:KWhether(self ;ACCEPTABLE(initiator ; �)) then
REQUEST(self ; initiator;Eventually(

KWhether(self ;ACCEPTABLE(initiator ; �))));
KWhether(self ;ACCEPTABLE(initiator ; �))?;
if Know(self ;:ACCEPT(initiator; �)) then

INFORMALL(self ; AGENTS(�);:ALLACCEPT(�))
endIf

else
for agt 2 AGENTS(�)� finitiator; agentg do

REQUEST(self ; agt ;Eventually(
KWhether(self ;ACCEPTABLE(agt ; �))))

endFor;
KWhether(self ;NIAACCEPT(�))?;
if Know(self ;NIAACCEPT(�)) then

TERMINATESUCCESSFULLY(self ; �)
else

INFORMALL(self ; AGENTS(�);:ALLACCEPT(�))
endIf

endIf
endIf

endWhile;
if :9�:Know(self ;ALLACCEPT(�)) then

TERMINATEUNSUCCESSFULLY(self)
endIfi

endProc

proc INFORMALL(self ; agts; �)
for agt 2 agts do INFORM(self ; agt ; �) endFor

endProc

proc TERMINATESUCCESSFULLY(self ; �)
INFORMALL(self ; AGENTS(�);ALLACCEPT(�));
INFORMALL(self ;ALLAGENTS � AGENTS(�); FINISHEDNEGOTIATION)

endProc

proc TERMINATEUNSUCCESSFULLY(self)
INFORMALL(self ;ALLAGENTS;:9�:ALLACCEPT(�))

endProc

Fig. 2. Procedures run by the negotiator agent.

INFORM(UN;N;ACCEPTABLE(UN; TWOWAY(UN;CND);
DISCONNECT(UN;CND))):

In order to satisfy UN’s request, the negotiator—whose behavior is described by the
NEGOTIATOR procedure—will start a negotiation process between UN and CND and
then inform them of the results of this process. CND is running the PERSONAL proce-
dure, in which it waits for and responds to proposals from the negotiator. After executing
the two actions above, UN also runs the PERSONAL procedure, but at a higher priority
it executes an interrupt. In the interrupt, if UN comes to know that there are no untried
proposals that it accepts, then it informs the negotiator of this and the negotiation termi-
nates unsuccessfully.

UN’s request described above causes the negotiator to have the appropriate goal and
its interrupt fires. The first action in the interrupt is a while-loop to try possible solutions.
Since the negotiator has not yet found a proposal that everyone accepts, and it does not
know that there are no acceptable proposals, and UN has suggested a proposal to the
negotiator, and the negotiator does not know that anyone rejects this proposal, the ne-
gotiator enters its while-loop with UN’s proposal as a possible solution. Since UN is
the initiator, the negotiator will ask the non-initiating agents whether they accept UN’s
proposal. In this case, the only non-initiating agent is CND:

REQUEST(N;CND;Eventually(KWhether(N;
ACCEPTABLE(CND; TWOWAY(UN;CND); DISCONNECT(UN;CND))))):

Then, the negotiator waits to find out if CND accepts the proposal. The negotiator’s
request causes CND’s interrupt to fire. The proposal is not acceptable to CND be-
cause TWOWAY(UN;CND) is an implementation of CONNECT(UN;CND) and the
next action whose agent is UN and whose recipient is CND (which happens to be the
next action in the proposal, i.e., DISCONNECT(UN;CND)) is not a specialization of
IDENTITY(UN;CND). Therefore, CND informs the negotiator that UN’s proposal is
not acceptable:

INFORM(CND;N;:ACCEPTABLE(CND; TWOWAY(UN;CND);
DISCONNECT(UN;CND))):

Next, CND enters the COUNTERPROPOSE procedure. There are no specializations of
the proposal, so CND seeks an acceptable cousin. For example, suppose CND chooses
IDENTIFIEDCALL(UN;CND). CND then suggests its choice as a proposal to the ne-
gotiator:

INFORM(CND;N;ACCEPTABLE(CND; IDENTIFIEDCALL(UN;CND))):

CND exits COUNTERPROPOSE and then exits the body of the interrupt and waits for
further proposals from the negotiator.

The negotiator now has its answer from CND. CND did not accept UN’s proposal,
so it informs UN and CND that not everyone accepted the proposal and goes back to
the top of the while-loop. Now, CND’s proposal is a possible solution. Since CND is
not the initiator and the negotiator does not know whether UN accepts CND’s proposal,
the negotiator asks UN whether it accepts the proposal and awaits UN’s answer:

REQUEST(N;UN;Eventually(KWhether(N;
ACCEPTABLE(UN; IDENTIFIEDCALL(UN;CND))))):

This request causes the interrupt in UN’s instantiation of the PERSONAL

procedure to fire. CND’s proposal is not acceptable to UN because
TWOWAY(UN;CND); NUMBER(UN;CND); DISCONNECT(UN;CND) is a spe-
cialization of the proposal that clashes with UN’s goals. So, UN indicates to the
negotiator that it does not accept CND’s proposal:

INFORM(UN;N;:ACCEPTABLE(UN; IDENTIFIEDCALL(UN;CND))):

TWOWAY(UN;CND); NAME(UN;CND); DISCONNECT(UN;CND) is a specializa-
tion of the proposal that UN accepts, so UN counterproposes it to the negotiator:

INFORM(UN;N;ACCEPTABLE(UN; TWOWAY(UN;CND); NAME(UN;CND);
DISCONNECT(UN;CND))):

The execution then continues in a similar way, with the negotiator suggesting UN’s
latest proposal to CND, who responds by informing the negotiator that it accepts the
proposal. The negotiator then knows that all the agents accepted this last proposal, so
it enters the TERMINATESUCCESSFULLY procedure where it informs UN and CND of
the successful proposal. At this point, no interrupts fire for any agent, so the program
terminates.

4.2 Verification

Griffeth and Velthuijsen informally state and show that their system has the property that
if there is a proposal to which all the agents involved agree, it will eventually be found.
Since our system is defined formally, we can also formally state and verify its properties.
Here is a formal statement of the property suggested by Griffeth and Velthuijsen:

Do(FIR(initiator; agt ; negot; initProp); S0; s) �
(9�:ALLACCEPT(�; S0)) �
9�:8agt 2 AGENTS(�):Know(agt ;ALLACCEPT(�); s)):

That is, for any legal execution of FIR(initiator ; agt; negot ; initProp) that ends in s, if
there is a proposal that is acceptable to all agents, then in s, there will be a proposal that
is known by all agents concerned to be acceptable to all.

Conversely, we might want to show that if there is no proposal that is acceptable to
all, then this fact becomes known to all:

Do(FIR(initiator ; agt; negot ; initProp); S0; s) �
(:9�:ALLACCEPT(�; S0)) �
8agt 2 ALLAGENTS:Know(agt ;:9�:ALLACCEPT(�); s):

We [15] are currently developing an environment to facilitate the verification of
properties of CASL specifications using the PVS verification system [12]. The environ-
ment has been used to prove properties of simpler multiagent systems. We plan to use it
to verify properties of this example as well.

5 Conclusions and Future Work

We feel that using a formal specification language, such as CASL, to model multiagent
systems such as this feature interaction resolution system is advantageous for several
reasons. Firstly, since the language has a formal semantics, it is possible to formally state
and verify properties of the system. The use of a theory of action with complex actions
allows us great flexibility in defining agents’ preferences. Also, modeling agents’ pref-
erences with mental state operators (i.e., knowledge and goals) allows us to abstract over
the representation of these preferences. Moreover, it also allows us to model the com-
munication between agents as speech acts (i.e., informs and requests), which abstracts
over the messaging mechanism.

There has been a lot of work in the past on formal specification languages for soft-
ware engineering [1, 18]. But these formalisms did not include any notions of agents
and mental attitudes. Only recently have such notions started to be incorporated into re-
quirements engineering frameworks such as KAOS [4], Albert-II [2], and i� [20]. But
the general view has been that goals and other mentalistic notions must be operational-
ized away by the time requirements are produced.

Within the agents community, there has been some recent work on agent-oriented
software design methodologies [3, 8, 19]. In [5], a formal specification language for mul-
tiagent systems based on temporal epistemic logic is described, and techniques for spec-
ifying and verifying such systems in a compositional manner are proposed. While com-
positionality is clearly an important issue for verification, the specification language in
[5] is less expressive than CASL; there is no goal modality and the specification of com-
plex behaviors appears to be more difficult. In future work, we hope to address the con-
nection between our specification language and methodologies for designing multiagent
systems.

We would also like to verify the properties discussed in Sec. 4.2 as well as other
properties of the system using the verification environment that we are developing. As
mentioned in Sec. 2.2, we want to develop a more sophisticated method for handling
conflicting requests. We would like to expand the example presented here and our model
of communicative interaction to make them more realistic.

References

1. D. Bjorner and C. B. Jones. The Vienna DevelopmentMethod: The Metalanguage, volume 61
of LNCS. Springer-Verlag, 1978.

2. Ph. Du Bois. The Albert II Language – On the design and the Use of a Formal Specification
language for Requirements Analysis. PhD thesis, Department of Computer Science, Univer-
sity of Namur, 1995.

3. F. Brazier, B. Dunin-Keplicz, N. R. Jennings, and Jan Treur. Formal specifications of multi-
agents systems: A real-world case study. In Proceedingsof the First International Conference
on Multi-Agent Systems (ICMAS’95), pages 25–32, San Francisco, CA, June 1995. Springer-
Verlag.

4. A. Dardenne, S. Fickas, and A. van Lamsweerde. Goal-directed requirements acquisition.
Science of Computer Programming, 20:3–50, 1993.

5. Joeri Engelfriet, Catholijn M. Jonker, and Jan Treur. Compositional verification of multi-
agent systems in temporal multi-epistemic logic. In J. P. Müller, M. P. Singh, and A. S.
Rao, editors, Intelligent Agents V: Proceedings of the Fifth International Workshop on Agent
Theories, Architectures and languages (ATAL’98), volume 1555 of LNAI, pages 177–194.
Springer-Verlag, 1999.

6. Giuseppe De Giacomo, Yves Lespérance, and Hector J. Levesque. ConGolog, a concurrent
programming language based on the situation calculus. To appear in Artificial Intelligence.

7. Nancy D. Griffeth and Hugo Velthuijsen. Win/win negotiation among autonomous agents. In
Proceedings of the 12th International Workshop on Distributed Artificial Intelligence, pages
187–202, Hidden Valley, PA, May 1993.

8. D. Kinny, M. Georgeff, and A. S. Rao. A methodology and modelling technique for systems
of BDI agents. In W. Van der Velde and J. W. Perram, editors, Agents Breaking Away, pages
56–71. LNAI 1038, Springer-Verlag, 1996.

9. Gerhard Lakemeyer and Hector J. Levesque. AOL: a logic of acting, sensing, knowing, and
only knowing. In Proceedings of Knowledge Representation and Reasoning (KR-98), pages
316–327, 1998.

10. Hector J. Levesque,Raymond Reiter, Yves Lespérance,FangzhenLin, and Richard B. Scherl.
GOLOG: A logic programming language for dynamic domains. Journal of Logic Program-
ming, 31:59–84, 1997.

11. John McCarthy and Patrick J. Hayes. Some philosophical problems from the standpoint of
artificial intelligence. In Bernard Meltzer and Donald Michie, editors, Machine Intelligence
4. Edinburgh University Press, 1969.

12. S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M. K. Srivas. PVS: Combining specifica-
tion, proof checking, and model checking. In Rajeev Alur and Thomas A. Henzinger, editors,
Computer-Aided Verification, CAV ’96, volume 1102 of Lecture Notes in Computer Science,
pages 411–414, New Brunswick, NJ, July/August 1996. Springer-Verlag.

13. Raymond Reiter. The frame problem in the situation calculus: A simple solution (sometimes)
and a completeness result for goal regression. In Vladimir Lifschitz, editor, Artificial Intelli-
gence and Mathematical Theory of Computation: Papers in Honor of John McCarthy, pages
359–380. Academic Press, San Diego, CA, 1991.

14. Richard B. Scherl and Hector J. Levesque. The frame problem and knowledge-producing
actions. In Proceedings of the Eleventh National Conference on Artificial Intelligence, pages
689–695, Washington, DC, July 1993. AAAI Press/The MIT Press.

15. Steven Shapiro. PhD thesis. In preparation.
16. Steven Shapiro, Yves Lespérance, and Hector J. Levesque. Specifying communicative multi-

agent systems. In Wayne Wobcke, Maurice Pagnucco, and Chengqi Zhang, editors, Agents
and Multi-Agent Systems — Formalisms, Methodologies, and Applications, volume 1441 of
LNAI, pages 1–14. Springer-Verlag, Berlin, 1998.

17. Steven Shapiro, Maurice Pagnucco, Yves Lespérance, and Hector J. Levesque. Iterated be-
lief change in the situation calculus. In A. G. Cohn, F. Giunchiglia, and B.Selman, editors,
Principles of Knowledge Representation and Reasoning: Proceedingsof the Seventh Interna-
tional Conference (KR2000), pages 527–538, San Francisco, CA, 2000. Morgan Kaufmann
Publishers.

18. J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 1989.
19. M. Wooldridge, N. R. Jennings, and D. Kinny. A methodology for agent-oriented analysis

and design. In O. Etzioni, J. P. Müller, and J. Bradshaw, editors, Agents ’99: Proceedings of
the Third International Conference on Autonomous Agents, Seattle, WA, May 1999.

20. Eric S. K. Yu. Modelling Strategic Relationships for Process Reengineering. PhD thesis,
Dept. of Computer Science, University of Toronto, 1995.

