Modeling Multiagent Systemswith CASL—
A Featurelnteraction Resolution Application*

Steven Shapiro® Yves Lespérance?

¢ Department of Computer Science, University of Toronto
Toronto, ON M5S 3G4, Canada
steven@i . toronto. edu

® Department of Computer Science, York University
Toronto, ON M3J 1P3, Canada
| esperan@s. yor ku. ca

Abstract. In this paper, we describe the Cognitive Agents Specification Lan-
guage (CASL), and exhibit its characteristics by using it to model the multiagent
featureinteraction resolution system described by Griffeth and Velthuijsen[7]. We
discuss the main features of CASL that make it a useful language for specifying
and verifying multiagent systems. CASL hasanice mix of declarative and proce-
dural elements with a formal semantics to facilitate the verification of properties
of CASL specifications.

1 Introduction

The use of proper design methodsisjust asimportant for multiagent systems asfor non-
agent-based software. Inthis paper, wepresent aformal specification languagefor multi-
agent systemscalled the Cognitive Agents Specification Language (CASL). CASL com-
bines a theory of action [13] and mental states [14, 15] based on the situation calculus
[11] with ConGolog [6], a concurrent, nondeterministic programming language that has
aformal semantics. Theresult isa specification language that containsarich set of oper-
atorsto facilitate the specification of complex multiagent systems. Specificationsin this
language can exploit the higher level of abstraction that comes from expressing con-
straintsin terms of mental attitudes.

An earlier version of CASL was described in [16], where the use of the formalism
wasillustrated with asimple meeting scheduling multiagent system example. The moti-
vationfor our approach was discussed in further detail there. Inthispaper, we extend the
formalism to support communication with encrypted speech acts and incorporate asim-
pler account of goas. But foremost, we use the formalism to model a somewhat more
complex multiagent system taken from the literature. In [7], Griffeth and Velthuijsen

* This research was funded by Communications and Information Technology Ontario and the
Natural Scienceand Engineering Research Council of Canada. We thank Fawzi Daoud for sug-
gesting that we look at feature interaction applications and Griffeth and Velthuijsen'swork in
particular.

present a feature interaction resolution system for telecommunication applications that
involves negotiating, autonomous agents with explicit goas. Thisis an attractive ap-
proach in the context of rapidly expanding telecommunication services, open environ-
ments, and the need for client customization. In CASL, agents goals (and knowledge)
can be represented explicitly, making CASL an ideal formalism for specifying systems
such astheonedescribed by Griffethand Vel thuijsen. They informally stateaproperty of
their system and (also informally) show that the property holds for their system. Since
CASL isaformal language, it is possible to formally state and prove such properties.
We use Griffeth and Vel thuijsen’ssystem as an example of the modeling capabilities of
CASL, and give a forma statement of the property discussed by Griffeth and Velthui-
jsen.

2 TheModel of Domain Dynamics

In CASL, a dynamic domain is represented using an action theory [13] formulated in
the situation calculus [11], a predicate cal culus language for representing dynamically
changing worlds. A situation represents a snapshot of the domain. Thereisaset of initial
situations corresponding to the ways the agents believe the domain might be initially.
Theactua initia state of the domain is represented by theinitia situation constant, Sp.
The term do(a, s) denotes the unique situation that results from the agent performing
action @ in situation s. Thus, the situations can be structured into a set of trees, where
theroot of each treeisan initial situation and the arcs are actions. The initial situations
are defined as those situations that do not have a predecessor: Init(s) £ —3a,s'.s =
do(a, s').

Predicates and functions whose value may change from situation to situation (and
whoselast argument isasituation) are called fluents. For instance, in our model of Grif-
feth and Velthuijsen’s system, we use the fluent TWOWAY I P(z, v, s) to represent the
property that a two-way phone connection isin progress between agents « and y. The
effects of actionson fluents are defined using successor state axioms[13], which provide
asolution to the frame problem; see below for an example.

There isadistinguished predicate Poss(a, s), denoting that action « is executablein
situation s. s < s’ meansthat s’ results from performing a (possibly empty) executable
sequence of actionsin s. We use atheory containing the following kinds of axioms[13]
to specify a dynamic domain:

— Action precondition axioms, one for each action, which characterize Poss.

— Successor state axioms, one for each fluent.

— Initial state axioms, which describetheinitial state of thedomainand theinitial men-
tal states of the agents. These are axioms that only describe initial situations.

— Unique names axioms for the actions.

— Domain-independent foundational axioms (similar to the ones given by Lakemeyer
and Levesque [9)]).

2.1 Moddingthe Environment

In the feature interacti on resol ution system, the agents are negotiating to establish tele-
phone connections on behalf their human users. We consider two types of connections:
aregular two-way telephone connection and a recording connection, during which one
person |leaves a message for another. These two types of connections are established by
the actions TWOWAY (z, y) (¢ setsup atwo-way connection with y) and RECORD (z, y)
(= recordsamessage for y), resp. In addition, once a connectionis established, the agent
initi atingthe connection may identify itsuser tothe other agent. Theinitiating agent may
send its user’s name or telephone number. The corresponding actions are: NAME(x, y)
and NUMBER(z, y), resp. Thereisalso the DISCONNECT (x, y) action, which terminates
aconnection between = and y.

Once a connection of a certain type is established, we say that the connection is
in progress until the connection is terminated. For each of the connection and identi-
fication actions, we have a corresponding fluent that becomes true when the action is
executed. An example of thisisthe TWOWAYIP(z, y, s) fluent discussed above. Sim-
ilarly, we have the fluent RECORDINGIP(z, y, s), which means that a recording isin
progress between and y in situation s. For the identification actions, we have the flu-
ents NAMEIP(z, y, s) and NUMBERIP(z, y, s) whose intuitive meanings are that 's
owner’s name (number, resp.) is being displayed for ¢'s owner in situation s. Any of
these fluentsthat are true become fal sewhen the DISCONNECT (z, i) actionisexecuted.

We must give precondition axioms and successor state axiomsfor these actions and
fluents. For example, the precondition axiom for TWOWAY is:
Poss(TWOWAY (z, y), s) = “TWOWAYIP(z, y, s) A "RECORDINGIP(z, y, s).

The successor state axiom for TWOWAY P is:

TWOWAYIP(z,y,do(a, s)) =
a = TWOWAY (z,y) V (TWOWAYIP(z, y, s) A a # DISCONNECT(z, y)).

As mentioned earlier, successor state axioms provide a solution to the frame problem.
Theother precondition and successor state axiomsare similar to these, so we omit them.

2.2 Modding Agents Mental States

We modd two aspects of the mental states of agents. knowledge and goas. These are
represented with a possible worlds semantics in the situation calculus using situations
as possible worlds, following Scherl and Levesque [14]. The accessibility relation for
knowledge, K (agt, s’, s)!, holdsif situation s’ is compatible with what agt knowsin
situation s. An agent knowsaformulaé, if ¢ istruein al the K -accessible worlds:

Know(agt, ¢, s) « Vs'(K(agt,s',s) D ¢[s']).

! Scherl and Levesqueonly consider asingle agent; we [16] generalize the framework to handle
multiple agents by adding an agent argument to the accessibility relations.

Here ¢ isaformulathat may contain afree variable now. Thisvariable is used as the
situation argument of the fluentsin ¢. ¢[s] denotes the formulathat results from substi-
tuting s for now in ¢. We also say that an agent knowswhether ¢ holdsif it either knows
¢ or itsnegation: KWhether (agt, ¢, s) « Know(agt, ¢, s) V Know(agt, —¢, s).

Scherl and Levesque formulated a successor state axiom for K that describes
how an agent’s knowledge is affected by actions, including expansion due to sens-
ing actions. We [16] adapted the axiom to handle the INFORM (informer, agt, $)? ac-
tion, i.e, informer informs agt that ¢ holds. A limitation of the formaization is
that al agents are aware of al actions, as in a broadcast model of communication.
Here, we modify the representation of speech acts to accommodate encrypted mes-
sages. We model the encryption and decryption of messages using the functiona flu-
ents ENCODE and DECODE, resp. The value of ENCODE(sender, rec, ¢, s) is a code,
and the value of DECODE(sender, rec, ¢, s)—where ¢ is a code— is aformula These
functions have to be fluents in order to be able to mode the fact that only rec
knows the value of DECODE(sender, rec, ¢, s) and only sender knows the value of
ENCODE(sender, rec, ¢, s). That is the only reason these functions are fluents as their
values are unchanged by actions as shown in the following successor state axioms:

ENCODE(sender, rec, ¢,do(a, s)) = ENCODE(sender, rec, ¢, s)
DECODE(sender, rec, ¢, do(a, s)) = DECODE(sender, rec, ¢, s)

The content of messages will be codes instead of formulae, eg., we will use
INFORM (informer, agt, ¢) instead of INFORM (informer, agt, ¢).

We modify the successor state axiom for K™ to handle encrypted messages:

K(agt,s"” ,do(a,s)) =
s’ (K (agt,s’,s) A s’ = do(a, s') A Poss(a, s') A
Vinformer, ¢, c(a = INFORM (informer, agt, ¢) A
Know(agt, ¢ = DECODE(informer, agt, c),s) D ¢(s'))).

This axiom states the conditions under which a situation s’ will be K -accessible from
do(a, s). If @ isnot an INFORM action, then the predecessor of s” (i.e., s”) must be K -
accessible from s and the action that takes s’ to s” must be @ and executable in s’. If a
isthe action of :nformer informing agt that ¢, where ¢ isa code, and agt knowsthat ¢
isthe decoding of ¢, then, in addition to the previous conditions, it must be the case that
¢ holdsin s’. Thus, this axiom ensures that after any action, the agents know that the
action has occurred and that it was executable, and if the action is an INFORM action,
and the recipient of the message can decode the message, then the recipient knows that
the decrypted content of the message holds. This axiom defines the K relation a non-
initial situations. The K relation at initia situationsis specified by the axiomatizer of
the domain using initial state axioms, subject to the constraint that initial situationscan
only be K-related to other initia situations. This framework only handles knowledge

2 Since we have functions and relations that take formulae as arguments, we need to encodefor-
mulae as first-order terms. For example, we could use the encoding given by De Giacomo et
al. [6]. For notational simplicity, we suppressthis encoding and use formulae asterms directly.

expansion. In [17], we give an account of belief revision that is compatible with this
framework.

We model the goals of an agent using another accessibility relation on situations,
W (agt, s, s). Thisrelationholdsif s’ iscompatiblewith what the agent wantsin s. Un-
likewiththe K relation, we alow the I relation to rel ate situationsthat have different
histories. Thereason for thisisthat an agent may want thingsthat do not currently hold,
but that it wantsto hold in the future. Therefore, we allow future situationsto be among
the I/ -accessible situations.

An agent may want something that it knowsto be impossibleto obtain, but we want
the goals of the agent to be consistent with what the agent knows. Therefore, we define
thegoal sof an agent to bethoseformulaethat aretrueinall 11 -accessibl e situationsthat
have a /{-accessible situation in their past:

Goal(agt, ¢, s) “

Vnow, then(K (agt, now, s) A W (agt, then, s) A now = then D ¥[now, then]).
Here ¢ isaformulathat has two free variables, now and then. then can be thought of
as defining afinite path of situations, namely, the sequence of situations up to situation
then. now correspondsto the current situation aong that path. In the definition of Goal,
the K relationis used to pick out the current situation (now) aong the path defined by
the W -related situation (then) aswell astofilter out the situationsthat are incompatible
withwhat the agent knowsto bethecase. ¢/[s’, s”] denotestheformulathat resultsfrom
substituting s’ for now and s” for then inp.

The successor state axiom for W issimilar to theonefor K:

W (agt, then,do(a, s)) = [W(agt, then,s) A
Vrequester, ¥, ¢, now(a = REQUEST (requester, agt, c) A
Know(agt,) = DECODE(requester, agt,c), s) A K (agt, now, s) A
now = then A ~Goal(agt, —, s) D y[do(a, now), then)]].

A situation then is WW-accessible from do(a, s) iff it is W-accessible from s and if a is
theaction of requester requesting agt that the decoding of ¢ obtain, and agt knowsthat
¢ isthe decoding of ¢, and now isthe current situation along the path defined by then,
and the agent does not have the goal that =+ in s then ¢ holdsat (do(a, now), then).
If the agent gets a request for ¢ and it already has the goal that -1, then it does not
adopt the goa that «, otherwise its goa state would become inconsistent and it would
want everything. Thisisasimpleway of handling goal conflicts. It should be possibleto
cancel requests. A more sophisticated handling of conflicting requests will be presented
in[15].

In order to execute an INFORM action, an agent must know how to encode the mes-
sage and a so know that the content of the message istrue. Therefore, after receiving the
message, the recipient of the message knowsthat the sender knew that the content of the
message wastrue. Similarly, in order to execute a REQUEST action, an agent must know
how to encode the message and not have any goalsthat conflict with therequest. Thisis
a somewhat simplistic model for these communicative acts, and we plan to refine it in
the future. Here are the precondition axioms for INFORM and REQUEST :

POss(INFORM (informer, agt,), s) =
Jd¢.Know(informer, (ENCODE(informer, agt, ¢) = ¢ A ¢), s).
POSS(REQUEST (regr, agt, ¢), s) =
4y . Know(reqr, ENCODE(reqr, agt,) = ¢, s) A =Goal(regr, -, s).
We al so use the following definitions adapted from Lakemeyer and Levesque [9]. A
formula¢ describes all that agt knowsinitialy:

OKnowyg(agt, ¢) « Vs' (K (agt,s’, Sp) = Init(s') A ¢(s')).
A formula describes all the pathsthat are consistent with agé’sinitid goas:

OGoaly(agt, ¥) £ VYnow, then.(K (agt, now, Sp) A now < then D
(W agt, then, Sp) = ¢[now, then])).

We need to put constraintson the accessibility relationsin order to yield mental atti-
tudes with desirable properties. For example, we want positive and negative introspec-
tion of knowledge and of goa's. Dueto lack of space, we will not discussthe constraints
that need to be placed onthe /' and W in order to yield these properties. Let us ssmply
assume that these properties hold.

In our formalization of goals, goas are evaluated relative to finite paths. Thus, we
cannot represent that an agent wants that «» aways be true because the path relative
to which the proposition is evaluated ends, so thereis no way of knowing whether v
holds “after” the end of the path. However, we can model maintenance goals that are
time bounded: « istrue until time T. If T is chosen suitably far in the the future, time-
bounded maintenance goals can replace unbounded maintenance goas. However, this
requires adding a notion of time. We formalize time in the situation calculus as we did
in[16]. That is, we add afunctional fluent time(s) whose value isa natural number that
representsthetime at situation s. To simplify theformalization of time, here, we assume
that all actions have duration of 1 and that thetime at al initial situationsis 1.

We will express maintenance goas using the predicate Always(«, now, then),
which saysthat ¢ dways holds, from now until theend of time, denoted by the constant
T: Always(«, now, then) & TIME(then) = T AVs.now < s < then D [s, then].

3 TheBehavior Specification

We specify the behavior of agentswith the notation of the process specification language
ConGolog [6], the concurrent version of Golog [10]. We take a ConGol og program? to
be composed of a sequence of procedure declarations, followed by a complex action.
Complex actions are composed using the following constructs:

a, primitiveaction
o, wait for a condition
d1; 69, sequence
91 | 02, nondeterministic choice between actions
o, nondeterministic iteration

3 Weretain the term programeven though it is not our intention to execute the programs directly.

if ¢ then §; elsed- endlf, conditional

for x € X’ dod endFor, for loop
while ¢ dod endWhile, whileloop
91 || b2, concurrency with equal priority
d1) 0o, concurrency with é; at ahigher priority
(x 9 —0), interrupt
B(p), procedure cal.

a denotesasituation cal culus primitive action, as described earlier. The ConGol og spec-
ification can befor asingleagent or multipleagents, depending on whether theprimitive
actionscontain an argument for the agent of theaction. ¢ denotesasituation calculusfor-
mulawith the situation argument of its fluents suppressed. 4, ¢, and ¢, stand for com-
plex actions, X isaset, x isaset of variables, 3 isaprocedure name, and p denotesthe
actua parameters to the procedure. These constructs are mostly self-explanatory. Intu-
itively, theinterruptswork as follows. Whenever 3 .¢ becomes true, then ¢ is executed
withthe bindingsof « that satisfied ¢; once § terminates, theinterrupt can trigger again.

Procedures are defined with the following syntax: proc 5(y) ¢ endProc, where 3
isthe procedure name, y denotes the formal parameters to the procedure, and ¢ isthe
procedure body, a complex action. The semantics of ConGolog programs are defined
using the Do predicate (see [6] for details). Informally, Do(p, s, s') holdsif situation s/
isalega terminating situation of program p starting in situation s.

4 Modeling the Feature Interaction Resolution System

In thefeatureinteraction resol ution system, there are two types of agents: those that rep-
resent the interests of humans, which we call personal agents and the negotiator, which
coordinatesthe negotiati on of a solutionfor the persona agents. The persona agents ne-
gotiate to create telephone connections. One persond agent is theinitiating agent. The
initiating agent has an aim for the negotiation. Any solution to the negotiation will be
aspecidization of thisaim. The negotiator receives proposalsfrom the persona agents
and forwards them to the other persona agents and waits for their responses. If every-
one agrees to a proposa (or if there are no more proposals to try) then the negotiator
terminates the negotiation successfully (unsuccessfully, resp.). When a personal agent
receives aproposal it answers whether it agreestoit. If it does not agree to the proposal
then it can make a counterproposal.

We implement proposals as complex actions in our system. For this example, the
possible proposals will be any of the primitive actions listed earlier or any of the fol-
lowing complex actions:

CONNECT(z, y) £ TWOWAY (z,y) | RECORD(z, y)

ANONYMOUSCALL (x, y) « CONNECT(z, y); DISCONNECT (z, y)
IDENTITY (z, y) = NAME(z,) | NUMBER(z, y).

IDENTIFIEDCALL (2, y) « CONNECT(z, y); IDENTITY (z, y); DISCONNECT (x,)
CALL(x,y) = ANONYMOUSCALL (, y) | IDENTIFIEDCALL (2, y)

Note that these complex actions represent the simplest possible sequence of events
that can occur for each proposal. Normally, one would expect that, for example, in an
anonymous call other actions would occur between the connect and a disconnect ac-
tion, namely the agents (or, rather, the humans the agents represent) woul d speak to each
other. However, for the purposes of negotiation, these simpler specifications suffice be-
cause they include the actions of each proposal that are relevant to the negotiations.

In order to simplify the presentation of the system, we have afixed initiating agent
with afixed aim and afixed initia proposal. The initiator may not accept all speciaiza
tionsof itsaim, so it initialy suggests a specidization of itsaim that it accepts, which
isitsinitial proposa. We have a functiona fluent, AIm, to represent the initiator’'saim
in order to allow other agents to be ignorant of the initial aim. The aim remains fixed
over time, therefore, only one negotiation will take place. It would not be difficult to
generalize the system to handle multiple negotiations.

We now list some definitionsthat will be used in the remainder of the paper:

SENDREC(z, y, a) £ SENDEROF(a) = = A RECIPIENTOF(s) = y
The sender in the action « is = and the recipient in « is y. The definitions of
SENDEROF(a) and RECIPIENTOF(a) are straightforward and we omit them.
Eventually(¢, now, then) £ 35" .now < s’ < then A é(s")
Eventually ¢ holdsin the path defined by (now, then).
Next(seq, now, then) £ now < do(seq, now) =< then
The sequence of actions seq occurs next in the path defined by (now, then). For
this definition, the do functionis overloaded to handl e sequences of actions, but we
leave out the new definition here.
Previoudly(a, s) L3¢ 5" <s" <sA Do(«, s, s")
The complex action o« occurred in the history of s.
PROPOSAL () £
Jx, y(r = TWOWAY (z, y); DISCONNECT (2, ¥)) V
Jx, y(r = RECORD(x, y); DISCONNECT (2, y)) V
Jx, y(r = TWOWAY (2, y); IDENTITY (z, y); DISCONNECT (, y)) V
Jx, y(7 = RECORD(x, y); IDENTITY (&, y); DISCONNECT(, y)) V
Jx, y(r = TWOWAY (2, y); NAME(z, y); DISCONNECT (2, y)) V
Jx, y(r = TWOWAY (2, y); NUMBER(z, y); DISCONNECT (2, y)) V
Jx, y(r = RECORD(x, y); NAME(z, y); DISCONNECT (2, y)) V
Jx, y(r = RECORD(x, ¥); NUMBER(z, y); DISCONNECT(x, y)) V
Jz, y(r = ANONYMOUSCALL(z,y)) V 3z, y(T = IDENTIFIEDCALL (z,¥)) V
Jx, y(r = CcALL(z, y))
T isacomplex action that can be used as a proposal.
SPECIALIZATION(T, p) £
(Vs,s'.Do(r, s,s") D Do(p, s,s")) A PROPOSAL(T) A PROPOSAL(p) AT # p
The proposa r isa(strict) speciaization of the proposa p.
COUSIN(T, p) £ 36(SPECIALIZATION(T,§) A SPECIALIZATION (p, §))
The proposal r isa cousin of the proposa p, if both + and p are specializations of
another proposd 4 (i.e., d isacommon ancestor of 7 and p inthe specialization tree
of proposals). When anon-initiating agent doesnot accept any of the speciadizations

of aproposal (e.g. 7), it will try to find an acceptabl e proposal by generalizing = and
finding a specialization of the generalization that it accepts. In other words, it will
suggest an acceptable cousin of 7.

ACCEPTABLE(agt, 7,5) =
Vseq[Know(agt, Do(r, now, do(seq, now)), s) D —~Goal(agt, “Next(seq), s)] A
Vp[Know(agt, AIM = p, s) D Know(agt, SPECIALIZATION(T, p), s)]
The proposal T isacceptableto agt in s. Thisholdsif every sequence of actionsthat
agt thinksisalegal execution of 7 iscompatiblewith agt'sgods, and if agt knows
the initial aim (p) of the negotiation (i.e., agt istheinitiator) then agt also knows
that ~ isa speciaization of p.

NIAACCEPT (7, s) £ Yagt € AGENTS(7) — {initiator}.ACCEPTABLE(agt, T, 5)
All thenon-initiating agents accept the proposal 7. AGENTS(7) isafunction, whose
definition we omit, that returnsthe set of agentsinvolved in proposal . initiator is
afree variablein thisdefinition and will be bound by an outer construct.

ALLACCEPT(7,5) £ Vagt € AGENTS(7).ACCEPTABLE(agt, T, 5)
All the agents accept 7.

POSSIBLESOLUTION (T, agt, s) =
Know(self, ACCEPTABLE(agt, 7), s) A =Know(self, ~ALLACCEPT(T), s)
This definition is used by the negotiator to select possible solutionsto propose to
the agents. A proposal = isapossiblesolutionfor agt if the negotiator knowsthat ~
isacceptableto agt, i.e., has aready been suggested to the negotiator by agt, and
the negotiator does not know that r is not acceptable to another agent.

INFORM (informer, agt, ¢) “
INFORM (informer, agt, ENCODE(informer, agt, ¢, now))

REQUEST (requester, agt,) “
REQUEST (requester, agt, ENCODE(requester, agt, v, now))
All messages are encrypted. To simplify the notation, we will have formulae as ar-
guments to INFORM and REQUEST actions, but the formulae are replaced by their
encodings according to these definitions.

4.1 Agent Behaviorsand Example Scenario

In Griffeth and Velthuijsen’'s example scenario, there are two persona agents, UN and
CND, andthenegotiator, N. UN istheinitiatoranditsaiM istoinitiateacal with CND,
i.e, CALL(UN, CND). UN’sowner has an unlisted number, so UN has the constraint
that it never wants to send its number to another agent. CND’s owner always wantsto
know who iscalling, so CND never wantsto accept an unidentified connection. Hereis
the axiom that specifies CND’sinitial goals:

OGoaly(CND, Vz(AlwaysVay, as, s2{do(a1, now) < then A
Do(CONNECT(x, CND), now, do(a1, now)) A SENDREC(z, CND, as) A
do(ay, now) < do(az, s2) =< then A
[Va*, s*.do(ay, now) < do(a*, s*) < do(as, s2) D “"SENDREC(x, CND, ¢*)] D
DO(IDENTITY (2, CND), 52, d0o(az, s2)) }))).

In al paths consistent with CND’s goals, whenever an agent « initiates a connection
with CND, the next action performed by « towards CND identifies« to CND.

If an agent has any other initial goals, they will have to be included in the OGoal,
axiom for that agent. In our example, UN istheinitiator agent, so we take it to want to
know the result of the negotiation, i.e. whether some proposal isacceptableto all, and if
so what that proposal is. Since UN’s owner has an unlisted number, UN aso wantsit to
bethe case that it never divulgesits owner’s phone number. We state UN’sinitia goals
with the following axiom:

OGoaly(UN, [Vy.Always —NUMBERIP(UN, y)) A Eventually(
A7 Know(UN, ALLACCEPT(7)) V Know(UN, =37 ALLACCEPT(7)))]).

We also need to specify what the agents know initialy. We want to assert that initially,
all agentsonly know how to encode and decode messages addressed to them. In order to
do this, we need functionsto represent the actual encoding and decoding of messages.
Therefore, we introduce ENC(sender, rec, ¢), whose value is the encoding of ¢, and
DEC(sender, rec, ¢), whosevalueisthedecoding of ¢, i.e., aformula We need an axiom
to ensure that DEC istheinverse of ENC:

DEC(sender, rec, ENC(sender, rec, ¢)) = ¢.
Hereisthe axiom that defines the non-initiating agents’ initial knowledge:
Yagt.agt # UN D
OKnowg (agt, [(Vrec, . ENCODE(agt, rec, ¢) = ENC(agt, rec, ¢)) A
(Vsender, c.DECODE(sender, agt, ¢) = DEC(sender, agt, ¢))]).

The initiator also needs to know the vaue of AiM, which in this example is
CALL(UN, CND), as stated in the following axiom:

OKnowy(UN, [(Vrec, $.ENCODE(UN, rec, ¢) = ENC(UN, rec, ¢)) A
(Vsender, c.DECODE(sender, UN, ¢) = DEC(sender, UN, ¢)) A
AIM = CALL(UN, CND)]).
The procedures that specify the behavior of the agents are shown in Figures 1 and
2. A system with an initiator whose initia proposa is initProp, one other negotiating
agent agt, and a negotiator negot can be specified with the following complex action,
whichwewill cal FIR(initiator, agt, negot, initProp):

INITIATE(initiator, negot, initProp) || PERSONAL (agt, negot) ||
NEGOTIATOR(negot)

For example, we can specify the scenario given in Griffeth and Velthuijsen,
where UN initiates a negotiation with CND with N as the negotiator, and with
TWOWAY (UN, CND); DISCONNECT(UN, CND) as UN’sinitia proposal, asfollows:

FIR(UN, CND, N, TwoWAY (UN, CND); DISCONNECT(UN, CND)).

We will now go through atrace of thisscenario, in order to explain how the agent pro-
cedureswork. UN isrunningthe INITIATE procedure. UN’sfirst action isto request the
negotiator to ensure that UN eventually knows a proposal that is acceptableto al:

REQUEST(UN, N, Eventually(37(Know(UN, ALLACCEPT(7))))).

Then UN informsthe negotiator that it accepts its own initia proposal:

proc INITIATE(self, negotiator, initProp)
REQUEST (self , negotiator, Eventually(3r.Know(self, ALLACCEPT(1))));
INFORM (self , negotiator, ACCEPTABLE(self , initProp));
[(Know(self, =37. ALLACCEPT(T)) A
—Previously(INFORM (self , negotiator, ~3r. ALLACCEPT(T))) —
INFORM (self , negotiator, ~37. ALLACCEPT(7)))
»

PERSONAL (self, negotiator)]
endProc

proc PERSONAL (self | negotiator)
(r : Goal(self, Eventually(KWhether (negotiator, ACCEPTABLE(self, 7)))) A
Know(self , —Previously(INFORMWHETHER(self, negotiator,
ACCEPTABLE(self, 7)))) —
if Know(self , ACCEPTABLE(self, 7)) then
INFORM (self , negotiator, ACCEPTABLE (self, 7))
ese
INFORM (self , negotiator, ~ACCEPTABLE(self, 7)) ;
COUNTERPROPOSE (self, T, negotiator)
endIf)
endProc

proc COUNTERPROPOSE (self , T, negotiator)
if 37" . Know(self, SPECIALIZATION(7',) A ACCEPTABLE (self, ') A
—PREVIOUSLY (INFORM (self , negotiator, ACCEPTABLE (self, 7')))) then
1’ .Know(self , SPECIALIZATION(7', 7) A ACCEPTABLE((self, ') A
—PREVIOUSLY (INFORM (self , negotiator, ACCEPTABLE (self , 7))))7;
INFORM (self , negotiator, ACCEPTABLE(self, 7))
dsif 37" .Know(self, COUSIN(7’, 7) A ACCEPTABLE(self, ') A
—Previously(INFORM (self, negotiator, ACCEPTABLE(self, 7')))) then
' Know(self, COUSIN(7’, 7) A ACCEPTABLE(self, ') A
—Previously(INFORM (self , negotiator, ACCEPTABLE(self, 7/))))7;
INFORM (self , negotiator, ACCEPTABLE(self, 7))
end!f
endProc

Fig. 1. Procedures run by the initiator and other personal agents.

proc NEGOTIATOR(self)
(initiator : Goal(self , Eventually(3r.Know(initiator, ALLACCEPT(1)))) —
while (=3r.Know(self, ALLACCEPT(T)) A
—Know(self, =3r.ALLACCEPT(7))) do
if 37, agent .POSSIBLESOLUTION (7, agent) then
7T, agent .POSSIBLESOLUTION(T, agent)?;
if agent # tnitiator A
—KWhether (self, ACCEPTABLE (initiator, 7)) then
REQUEST (self, initiator, Eventually(
KWhether (self , ACCEPTABLE(initiator, 7))));
KWhether (self , ACCEPTABLE(initiator, T))7;
if Know(self, ~ACCEPT (initiator, 7)) then
INFORMALL (self , AGENTS(7), "ALLACCEPT(T))
endIf
else
for agt € AGENTS(7) — {initiator, agent } do
REQUEST (self, agt, Eventually(
KWhether (self, ACCEPTABLE (agt, 7))))
endFor;
KWhether (self, NIAACCEPT(7))7;
if Know(self, NIAACCEPT(7)) then
TERMINATESUCCESSFULLY (self, 7)
else
INFORMALL (self , AGENTS(7), "ALLACCEPT(T))
endIf
endIf
endIf
endWhile;
if =37.Know(self, ALLACCEPT(7)) then
TERMINATEUNSUCCESSFULLY (self)
endIf)
endProc

proc INFORMALL (self, agts, ¢)
for agt € agts do INFORM (self, agt, ¢) endFor
endProc

proc TERMINATESUCCESSFULLY (self, T)

INFORMALL (self, AGENTS(T), ALLACCEPT(T));

INFORMALL (self, ALLAGENTS — AGENTS(7), FINISHEDNEGOTIATION)
endProc

proc TERMINATEUNSUCCESSFULLY (self)
INFORMALL (self, ALLAGENTS, ~37.ALLACCEPT(7))
endProc

Fig. 2. Proceduresrun by the negotiator agent.

INFORM(UN, N, AcCePTABLE(UN, TWOWAY (UN, CND);
DISCONNECT(UN, CND))).

In order to satisfy UN’s request, the negotiator—whose behavior is described by the
NEGOTIATOR procedure—will start a negotiation process between UN and CND and
then inform them of the results of this process. CND isrunning the PERSONAL proce-
dure, inwhichitwaitsfor and respondsto proposal sfrom the negotiator. After executing
the two actions above, UN aso runs the PERSONAL procedure, but a a higher priority
it executes an interrupt. In the interrupt, if UN comes to know that there are no untried
proposalsthat it accepts, then it informsthe negotiator of thisand the negotiation termi-
nates unsuccessfully.

UN'’srequest described above causes the negotiator to have the appropriate goal and
itsinterrupt fires. Thefirst actionintheinterruptisawhile-loopto try possiblesolutions.
Since the negotiator has not yet found a proposal that everyone accepts, and it does not
know that there are no acceptable proposas, and UN has suggested a proposal to the
negotiator, and the negotiator does not know that anyone rejects this proposal, the ne-
gotiator enters its while-loop with UN’s proposal as a possible solution. Since UN is
the initiator, the negotiator will ask the non-initiating agents whether they accept UN’s
proposd. In this case, the only non-initiating agent is CND:

REQUEST (N, CND, Eventually(KWhether (N,
AcCEPTABLE(CND, TWOWAY (UN, CND); DISCONNECT(UN, CND))))).

Then, the negotiator waits to find out if CND accepts the proposal. The negotiator’s
request causes CND’s interrupt to fire. The proposa is not acceptable to CND be-
cause TWOWAY (UN, CND) is an implementation of CONNECT(UN, CND) and the
next action whose agent is UN and whose recipient is CND (which happens to be the
next action in the proposal, i.e., DISCONNECT(UN, CND)) is not a specidization of
IDENTITY (UN, CND). Therefore, CND informs the negotiator that UN’s proposal is
not acceptable:
INFORM(CND, N, =ACCEPTABLE(CND, TWOWAY (UN, CND);
DISCONNECT(UN, CND))).

Next, CND enters the COUNTERPROPOSE procedure. There are no specializations of
the proposal, so CND seeks an acceptabl e cousin. For example, suppose CND chooses
IDENTIFIEDCALL (UN, CND). CND then suggests its choice as a proposa to the ne-
gotiator:

INFORM(CND, N, AcCEPTABLE(CND, IDENTIFIEDCALL (UN, CND))).

CND exits COUNTERPROPOSE and then exits the body of the interrupt and waits for
further proposals from the negotiator.

The negotiator now hasitsanswer from CND. CND did not accept UN’s proposal,
so it informs UN and CND that not everyone accepted the proposal and goes back to
the top of the while-loop. Now, CND’s proposal is a possible solution. Since CND is
not theinitiator and the negotiator does not know whether UN accepts CND’ s proposal,
the negotiator asks UN whether it accepts the proposal and awaits UN’s answer:

REQUEST (N, UN, Eventually(KWhether (N,
AccePTABLE(UN;, IDENTIFIEDCALL (UN, CND))))).

This request causes the interrupt in UN's ingtantiation of the PERSONAL
procedure to firee CND’s proposal is not acceptable to UN because
TWOWAY (UN, CND); NUMBER(UN, CND); DISCONNECT(UN,CND) is a spe
cialization of the proposal that clashes with UN’s gods. So, UN indicates to the
negotiator that it does not accept CND’s proposal :

INFORM(UN, N, ~AccePTABLE(UN, IDENTIFIEDCALL (UN, CND))).

TWOWAY (UN, CND); NAME(UN, CND); DISCONNECT(UN, CND) is a specidiza-
tion of the proposal that UN accepts, so UN counterproposesit to the negotiator:

INFORM(UN, N, AccepTABLE(UN, TWOWAY (UN, CND); NAME(UN, CND);
DISCONNECT(UN, CND))).

The execution then continuesin a similar way, with the negotiator suggesting UN’s
latest proposal to CND, who responds by informing the negotiator that it accepts the
proposal. The negotiator then knows that all the agents accepted this last proposal, so
it entersthe TERMINATESUCCESSFULLY procedure where it informs UN and CND of
the successful proposal. At this point, no interrupts fire for any agent, so the program
terminates.

4.2 Verification

Griffethand Velthuijseninformally state and show that their system hasthe property that
if thereisa proposa to which al the agentsinvolved agree, it will eventualy be found.
Sinceour systemisdefined formally, we can also formally state and verify itsproperties.
Hereisaformal statement of the property suggested by Griffeth and Vel thuijsen:

Do(FIR(éinitiator, agt, negot, init Prop), Sy, 8) D
(37.ALLACCEPT (1, S0)) D
drVagt € AGENTS(7).Know(agt, ALLACCEPT(7), 5)).

That is, for any legal execution of FIR(initiator, agt, negot, initProp) that endsin s, if
thereisaproposal that isacceptable to al agents, thenin s, therewill be a proposal that
isknown by all agents concerned to be acceptable to all.

Conversaly, we might want to show that if there is no proposal that is acceptableto
all, then thisfact becomes known to all:

Do(FIR(initiator, agt, negot, initProp), Sp, s) D
(=37 ALLACCEPT(T, Sp)) D
Vagt € ALLAGENTS.Know(agt, ~3r.ALLACCEPT(7), 5).

We [15] are currently developing an environment to facilitate the verification of
properties of CASL specifications using the PV S verification system [12]. The environ-
ment has been used to prove properties of simpler multiagent systems. We plan to useit
to verify properties of thisexample as well.

5 Conclusonsand Future Work

Wefed that using aformal specification language, such as CASL, to model multiagent
systems such as this feature interaction resolution system is advantageous for several
reasons. Firstly, sincethelanguage hasaformal semantics, itispossibletoformally state
and verify properties of the system. The use of atheory of action with complex actions
allowsus great flexibility in defining agents’ preferences. Also, modeling agents’ pref-
erences withmental state operators(i.e., knowledgeand goals) alowsusto abstract over
the representation of these preferences. Moreover, it aso alows us to model the com-
munication between agents as speech acts (i.e., informs and requests), which abstracts
over the messaging mechanism.

There has been alot of work in the past on formal specification languages for soft-
ware engineering [1, 18]. But these formalisms did not include any notions of agents
and mental attitudes. Only recently have such notionsstarted to beincorporated into re-
guirements engineering frameworks such as KAOS [4], Albert-11 [2], and i* [20]. But
the genera view has been that goals and other mentalistic notions must be operational -
ized away by the time requirements are produced.

Within the agents community, there has been some recent work on agent-oriented
software design methodol ogies[3, 8, 19]. In[5], aformal specificationlanguagefor mul-
tiagent systems based ontemporal epistemic logicisdescribed, and techniquesfor spec-
ifying and verifying such systemsin a compositional manner are proposed. While com-
positionality is clearly an important issue for verification, the specification languagein
[5] isless expressivethan CASL; thereisno goa modality and the specification of com-
plex behaviors appears to be more difficult. In future work, we hope to address the con-
nection between our specification language and methodol ogiesfor designing multiagent
systems.

We would aso like to verify the properties discussed in Sec. 4.2 as well as other
properties of the system using the verification environment that we are developing. As
mentioned in Sec. 2.2, we want to develop a more sophisticated method for handling
conflicting requests. We would like to expand the exampl e presented here and our model
of communicative interaction to make them more realistic.

References

1. D.Bjorner andC. B. Jones. The Vienna Development Method: The Metalanguage, volume 61
of LNCS. Springer-Verlag, 1978.

2. Ph. DuBois. The Albert Il Language— On the design and the Use of a Formal Specification
language for Requirements Analysis. PhD thesis, Department of Computer Science, Univer-
sity of Namur, 1995.

3. F. Brazier, B. Dunin-Keplicz, N. R. Jennings, and Jan Treur. Formal specifications of multi-
agentssystems: A real-world casestudy. In Proceedingsof the First International Conference
on Multi-Agent Systems (ICMAS 95), pages 25-32, San Francisco, CA, June 1995. Springer-
Verlag.

4. A. Dardenne, S. Fickas, and A. van Lamsweerde. Goal-directed requirements acquisition.
Science of Computer Programming, 20:3-50, 1993.

10.

11

12.

13.

14.

15.

16.

17.

18.
19.

20.

. Joeri Engelfriet, Catholijn M. Jonker, and Jan Treur. Compositional verification of multi-

agent systems in temporal multi-epistemic logic. In J. P. Miller, M. P. Singh, and A. S.
Rao, editors, Intelligent AgentsV: Proceedingsof the Fifth International \Workshop on Agent
Theories, Architectures and languages (ATAL’98), volume 1555 of LNAI, pages 177-194.
Springer-Verlag, 1999.

. Giuseppe De Giacomo, Yves L espérance, and Hector J. Levesque. ConGolog, a concurrent

programming language based on the situation calculus. To appear in Artificial Intelligence.

. Nancy D. Griffeth and Hugo Velthuijsen. Win/win negotiation among autonomousagents. In

Proceedingsof the 12th International Workshop on Distributed Artificial Intelligence, pages
187-202, Hidden Valley, PA, May 1993.

. D. Kinny, M. Georgeff, and A. S. Rao. A methodology and modelling technique for systems

of BDI agents. In W. Van der Velde and J. W. Perram, editors, Agents Breaking Away, pages
56-71. LNAI 1038, Springer-Verlag, 1996.

. Gerhard Lakemeyer and Hector J. Levesque. AOL: alogic of acting, sensing, knowing, and

only knowing. In Proceedingsof Knowledge Representation and Reasoning (KR-98), pages
316-327, 1998.

Hector J. Levesque, Raymond Reiter, YvesL espérance, FangzhenLin, and Richard B. Scherl.
GOLOG: A logic programming language for dynamic domains. Journal of Logic Program-
ming, 31:59-84, 1997.

John McCarthy and Patrick J. Hayes. Some philosophical problems from the standpoint of
artificial intelligence. In Bernard Meltzer and Donald Michie, editors, Machine Intelligence
4. Edinburgh University Press, 1969.

S. Owre, S. Rgjan, J. M. Rushby, N. Shankar, and M. K. Srivas. PVS: Combining specifica-
tion, proof checking, and model checking. In Rajeev Alur and ThomasA. Henzinger, editors,
Computer-Aided Verification, CAV ' 96, volume 1102 of Lecture Notesin Computer Science,
pages 411414, New Brunswick, NJ, July/August 1996. Springer-Verlag.

Raymond Reiter. Theframe problem in the situation calculus: A simple solution (sometimes)
and acompletenessresult for goal regression. In Vladimir Lifschitz, editor, Artificial Intelli-
genceand Mathematical Theory of Computation: Papersin Honor of John McCarthy, pages
359-380. Academic Press, San Diego, CA, 1991.

Richard B. Scherl and Hector J. Levesgue. The frame problem and knowledge-producing
actions. In Proceedingsof the Eleventh National Conferenceon Artificial Intelligence, pages
689695, Washington, DC, July 1993. AAAI Press'The MIT Press.

Steven Shapiro. PhD thesis. In preparation.

Steven Shapiro, Yves L espérance, and Hector J. Levesque. Specifying communicative multi-
agent systems. In Wayne Wobcke, Maurice Pagnucco, and Chenggi Zhang, editors, Agents
and Multi-Agent Systems— Formalisms, Methodologies, and Applications, volume 1441 of
LNAI, pages 1-14. Springer-Verlag, Berlin, 1998.

Steven Shapiro, Maurice Pagnucco, Yves L espérance, and Hector J. Levesque. Iterated be-
lief changein the situation calculus. In A. G. Cohn, F. Giunchiglia, and B.Selman, editors,
Principlesof Knowledge Representation and Reasoning: Proceedingsof the Seventh Inter na-
tional Conference (KR2000), pages 527-538, San Francisco, CA, 2000. Morgan Kaufmann
Publishers.

J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 1989.

M. Wooldridge, N. R. Jennings, and D. Kinny. A methodology for agent-oriented analysis
and design. In O. Etzioni, J. P. Miller, and J. Bradshaw, editors, Agents’99: Proceedings of
the Third International Conference on Autonomous Agents, Seattle, WA, May 1999.

Eric S. K. Yu. Modelling Strategic Relationships for Process Reengineering. PhD thesis,
Dept. of Computer Science, University of Toronto, 1995.

