
Formal Aspects of Computing (1998) 3: 1{000
c
 1998 BCS

Heterogeneous Notations for Pure
Formal Method Integration

Richard F. Paige1

1Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3G4,
Canada. paige@cs.utoronto.ca

Keywords: method integration; heterogeneous speci�cation; re�nement

Abstract. We outline an extendible approach for combining formal methods|
such as Z, Morgan's re�nement calculus, and predicative programming|based
on composing speci�cations written in similar formal languages. We discuss how
algorithm re�nement can be extended to such a setting, and outline some exam-
ples of using integrated formal methods. We also provide justi�cations for why
using combinations of similar methods might be helpful.

1. Introduction

Formality in software development can be applied in many ways, such as for
writing speci�cations [Spi89], or for critical systems development [BoH94]. A
kernel of recent research has focused on the synthesis of method and notation
concepts [Kro93, SFD92]. It is on this general theme that we focus in this paper.

The perspective we take is that there is no one formal method that will
su�ce for meeting all functional and non-functional requirements. There are both
technical and philosophical reasons for this. For one, each separate formal method
o�ers a di�erent set of expressive capabilities appropriate for specifying clearly
and concisely a di�erent set of properties [ZaJ96]. Furthermore, the complexity
of the development process suggests that it is unrealistic to expect to have one
method that perfectly conveys this process [Kro93].

Our interest in methods and notations has focused on combining two or more
methods into a potentially more useful whole, viz., method integration [Kro93].

Correspondence and o�print requests to: Richard F. Paige, Department of Computer Science,
York University, Toronto, Ontario M3J 1P3, Canada. paige@cs.yorku.ca

2 R. F. Paige

In this paper, we outline a technique for integrating only formal methods, the
process for which we term pure formal method integration.

1.1. Methods and method integration

A method for software development provides notations, as well as a process that
fashions a systematic way of accomplishing parts of the task of software devel-
opment. A formal method includes a formal speci�cation language as well as
transformation rules, e.g., for algorithm and data re�nement.

Method integration is the activity of resolving incompatibilities between meth-
ods, so that they can be e�ectively used together [Kro93]. Method integration
has been used in practice, in combining multiple formal methods [ZaJ96, Hal96,
BDW96], and for combining formal with informal methods [SFD92, Kro93].

This paper presents a technique for pure formal method integration (PFMI),
the process of combining multiple formal methods. PFMI can be carried out when
formal methods are complementary in some way. For example, PFMI might be
performed so as to be able to say more than is possible with one notation. Or, it
might be done to deal with complexity: by applying methods to those problem
aspects for which they are best suited, it may be possible to better deal with
large problems than with single methods [ZaJ96, Jac95].

We now brie
y introduce the technique that we use for pure formal method
integration, and discuss complementarity of methods in more detail.

1.2. Heterogeneous speci�cations and complementarity

A heterogeneous notation is syntactically and semantically composed from sev-
eral separate notations. It is used to write heterogeneous speci�cations.

De�nition 1. A speci�cation is heterogeneous if it is a composition of partial
speci�cations written in two or more separate notations.

The semantics of a heterogeneous speci�cation is given by formally de�ning the
meaning of all the used notation compositions. Such a semantics can be provided
by a heterogeneous basis.

De�nition 2. A heterogeneous basis is a set of translations between notations
that can be used to provide a formal semantics to heterogeneous speci�cations.

The heterogeneous basis that we use is shown in Fig. 1 (arrows are translations).

w : [pre, post]

wp(S, R) Z

predicative notation

Fig. 1. A small heterogeneous basis

The notations in Fig. 1 are all quite similar to begin with. Each makes use
of �rst-order logic or set theory for types, and each has a similar model of state

Heterogeneous Notations for Pure Formal Method Integration 3

transition. This suggests that we should expect these speci�c notations to com-
bine in a straightforward manner, and raises questions as to whether it is useful
to combine them. We are interested in combining notations in order to combine
methods; a notation is only part of a method. We suggest that similarity in terms
of notation need not exclude complementarity in terms of method.

The methods associated with the notations Fig. 1 can be considered as com-
plementary in terms of notation. Each notation in Fig. 1 supports a di�erent
style of speci�cation: speci�cation statements use a pre- and postcondition spec-
i�cation style, while Z and predicative notation use a single predicate. Further,
predicative notation can explicitly talk about timing (through time variables),
while the other notations express only termination. It is possible to extend Z or
speci�cation statements to talk about time|e.g., see [Fid94]|but the ability to
write heterogeneous speci�cations can eliminate the need to do so.

The methods in Fig. 1 are also complementary in terms of re�nement tech-
nique. For example, Morgan's re�nement calculus supports development of loop-
ing programs using loop invariants. A di�erent approach is used in predicative
programming, where instead recursive programs are developed using recursive
re�nement [Heh93]; loop invariants are not explicitly used. Morgan's calculus
and predicative programming are also complementary to Z, because the former
are program design calculi, while the latter is a speci�cation language.

The complementarity of the methods in Fig. 1 suggests that it may well be
useful to consider their integration, in order to take advantage of their individual
useful techniques.

1.3. Heterogeneous notations for PFMI

Pure formal method integration can be carried out in two steps. The �rst step is
to combine the notations used by the methods of interest, so that we can write
heterogeneous speci�cations with a formal semantics. This occurs by building
a heterogeneous basis. Once this is done, PFMI continues by generalizing the
transformation rules or proof techniques associated with the methods of inter-
est to be applicable to heterogeneous notations. This occurs by de�ning how
transformation rules or proof techniques from one method are to be applied to
speci�cations from a second method. In e�ect, this lets developers use rules and
techniques from multiple methods together in developing programs or in proving
properties about heterogeneous speci�cations. As we shall show, this can give us
a low-cost form of pure formal method integration.

Heterogeneous notations will not solve all the problems of method integration;
issues such as method compatibility and tool use still remain to be dealt with.
We claim that heterogeneous notations can provide a systematic �rst step for
PFMI, and we attempt to provide some evidence to support this claim herein.

1.4. Organization of the paper

The remainder of this paper is organized as follows. In Section 2, we brie
y
describe how to construct the heterogeneous basis of Fig. 1. In Section 3 we
summarize the process of extending algorithm re�nement to heterogeneous spec-
i�cations. This serves to partially integrate the methods which use the respective
notations. In Section 4, we informally outline the details of several examples of

4 R. F. Paige

using integrated formal methods that can be found in the references. Finally,
in Section 5, we summarize our �ndings, and discuss in brief detail the issues
regarding the e�ect of PFMI on software development. The reader is directed to
[Pai99] for full technical details and further examples.

2. A Heterogeneous Basis

A heterogeneous basis is used to provide a formal semantics to a heterogeneous
speci�cation by de�ning language compositions. Its existence is a precondition
for PFMI by heterogeneous notations: without a basis, we have no way to prove
properties regarding or apply transformations to heterogeneous speci�cations.

In this paper, we construct a heterogeneous basis by giving translations be-
tween notations. We also take a speci�c approach to resolving di�erences in
notation expressiveness. By doing so, we present a technique that describes ways
to translate a heterogeneous speci�cation into a formal speci�cation that de�nes
the meaning of the initial heterogeneous speci�cation.

We depicted the translations that we use in this paper in Fig. 1. We summa-
rize only a few of these translations here, due to space constraints; the remainder
can be found in [Pai99]. Other translations can be constructed by composition.
In presenting the translations, we assume that all notations use the unprimed-
primed convention of Z [Spi89] to distinguish pre- and poststate. Di�erent nota-
tions, such as CSP and Larch, are considered in [Pa97a, Pa97b].

2.1. Predicative programming and speci�cation statements

Predicative speci�cations [Heh93] can come in two forms: the �rst makes no
mention of timing or termination; the second explicitly talks about time through
use of the time variables t and t 0. Such variables can provide constraints on the
execution time of a program that implements the speci�cation.

Let frame w � P be a predicative speci�cation (where P is a predicate on
pre- and poststate, and w is a frame) not referencing the time variables t and
t 0. The speci�cation is translated to a speci�cation statement by the function
PredToSS , de�ned as:

PredToSS (frame w � P) b= w : [true;P]

Complications in using this translation are discussed in [Pai99].

A predicative speci�cation frame w �P that includes references to time vari-
ables t and t 0 in P can be translated using TimedPredToSS .

TimedPredToSS (frame w � P) b=

w : [8 t � 9n : nat � 8w 0 � P) t 0 � t + n; 9 t � 9 t 0 � P ^ t 0 � t]

The precondition in the translation result is the exact precondition for termina-
tion due to Norvell [Heh93], while the postcondition is existentially quanti�ed to
locally bind time variable references.

To translate a speci�cation statement into a predicative speci�cation that
does not mention time, we use SSToPred :

SSToPred(w : [pre; post]) b= frame w � (pre) post):

Heterogeneous Notations for Pure Formal Method Integration 5

Translations from speci�cation statements to timed predicative speci�cations are
in [Pai99], as are translations PredToWp and WpToPred , between predicative
notation and wp.

2.2. Speci�cation statements and weakest preconditions

The mapping from speci�cation statements to weakest preconditions, SSToWp,
can be found in [Mor94], so we omit it here. The reverse transformation, given
as function WpToSS , is somewhat more complex and is derived from [HeM88].

WpToSS (wp(S ;R0)) b= w : [wp(S ; true); (:wp(S ;w 0 6= w0))[w
0=w0]];

where w is a frame of variables (determined in the usual way by the speci�er)
with w0 not in w . It is assumed that wp(S ;R0) is given for an arbitrary relation
R0. For the calculation of wp in the postcondition of WpToSS , the w0 are the
variables.

2.3. Z and speci�cation statements

The �nal translations we describe are between Z and speci�cation statements.
The translation from Z to speci�cation statements has been noted in the past
[Kin90], and so we omit it here. The reverse mapping, from speci�cation state-
ments to Z, requires the translator to decorate variables (as input or output)
in the resulting schema. The speci�cation statement w : [pre; post] can be
translated using function SSToZ .

SSToZ (w : [pre; post]) b= [��; �w j pre ^ post] :

(The �-list denotes those variables that remain unchanged by the speci�cation.)
In SSToZ , � is the list of all variables not in the frame w .

2.4. Expressiveness and semantics

The notations in Fig. 1 are not equivalent in terms of what they can express; for
example, speci�cation statements can express angelicism, while predicative nota-
tion cannot [HeM88]. Di�erences in expressiveness must be dealt with when com-
posing partial speci�cations in di�erent languages. There are many approaches
we might take. For example, we could extend notations to represent special fea-
tures [HeM88], or, we could restrict the use of language features to translatable
elements. In the latter approach, the intersection of language semantics is taken
in the heterogeneous notation. We have used this approach in this paper. The ad-
vantages with this approach is that the translations between notations are simple
to express and use, and transformation techniques can be extended straightfor-
wardly to heterogeneous speci�cations. A disadvantage with this approach is
that we cannot express more with a combination of notations than we can with
one notation (and in most cases, can express strictly less).

Though we have taken an intersection approach to semantics in this paper,
the general approach to PFMI that we present permits use of other approaches
to giving a semantics to heterogeneous speci�cations (examples are discussed in
[Pa97a]). We use only intersection techniques in the work summarized herein.

6 R. F. Paige

3. Generalizing Algorithm Re�nement

The heterogeneous basis of Section 2 provides translations that are used to sup-
ply heterogeneous speci�cations with a formal semantics. Such a semantics can
be used to de�ne how the transformation rules from individual methods|e.g.,
for algorithm re�nement or data transformation|can be used on heterogeneous
speci�cations. By extending transformation rules to heterogeneous notations, an
explanation of how individual methods are to be used together is provided.

As a �rst step, we brie
y outline how algorithm re�nement rules can be gener-
alized to heterogeneous speci�cations. We present only a selection of generalized
rules here; further rules and detailed examples can be found in [Pa97a, Pai99].
Rules for data transformation and satis�ability can be found in [Pa97a].

3.1. Re�nement relation extension

We give a few rules that demonstrate how to apply the re�nement relations
((of predicative programming) and v (of Morgan's re�nement calculus) to
speci�cations of di�erent type. In following subsections, we summarize rules that
apply over speci�cation combinators. We omit all proofs, which can be found in
[Pa97a, Pai99]

Rule 3.1. Let P and Q be predicative speci�cations on prestate � and poststate
�0. Then P v Q (8�; �0 � (P (Q).

Informally, this rule states that if P is re�ned by Q using (, then P will also
be re�ned by Q using v.

A further result tells us that a speci�cation statement is always re�ned by
its predicative translation.

Rule 3.2. If S b= w : [pre; post] is a speci�cation statement and predS is its
predicative translation, then S v predS .

Finally, we see that re�nement is actually preserved over translation from spec-
i�cation statements to predicative notation.

Rule 3.3. For speci�cation statements S and T , and their predicative transla-
tions predS and predT , (S v T)) (predS (predT).

3.2. Re�nement over conjunction and disjunction

We describe a pair of re�nement rules for application over predicative conjunction
and disjunction; more rules are in [Pai99]. In the following, let S ;S 0 and T be
speci�cation statements, and let P be a predicative speci�cation; the combinators
^ and _ are predicative operators from [Heh93].

Rule 3.4. If S v T then P ^ S v P ^ T .

The predicative combinators _ and ^ can be used to compose speci�cation
statements. Such compositions can also be re�ned in a partwise manner.

Rule 3.5. Providing that S ;S 0; and T are all expressible in predicative notation,

(S ^ T v S 0 ^ T) (S v S 0;

(S _ T v S 0 _ T) (S v S 0:

Heterogeneous Notations for Pure Formal Method Integration 7

3.3. Changing notation within a re�nement tree

The �nal collection of algorithm re�nement rules that we present can be used for
changing notation as a re�nement step. These rules let us use translations within
a calculational proof style. Changing notation during a proof might be useful for
several reasons: e.g., to reformulate a speci�cation in a new notation which is
more convenient for the developer; or, to explore di�erent strategies that are not
possible in the original notations.

We present two rules for changing notation, omitting all proofs. Further rules
and several proofs are in [Pai99]. In the following, let P be a predicative speci�ca-

tion, let X b= [�S ; i? : I ; o! : O j pred] be a Z schema, and T b= w : [pre; post].

Rule 3.6. If pre^8�0 �(post) P) then frame w �P (T and frame w �P v T .

Rule 3.7. If (9w 0 � pred)) (pre ^ 8w 0 � (pred (post)), then X v T and
X (T .

4. Use of Integrated Formal Methods

In this section, we informally summarize the details of some examples of using
integrated formal methods. Space constraints prevent us from presenting exam-
ples of using integrated formal methods here. However, we have some experience
in using and combining the methods discussed in this paper, as well as for other
methods as well. Some of the examples of pure formal method integrations we
have carried out and used are as follows.

1. A combination of Z and predicative programming. We used Z to
write speci�cation parts on which we want to carry out data transformation;
Z was used to specify the system state, and also those operations on which we
wanted to carry out data transformation. We used Z in this role because it of-
fered the ability to carry out piecewise data transformation [Mor90], whereas
such techniques are not always possible to use in predicative programming.
Furthermore, Z provided the ability to build speci�cations by parts, a tech-
nique we found helpful in dealing with error conditions.
We used predicative notation to specify the other system parts, those on
which we wanted to carry out algorithm re�nement. It has been suggested
that a re�nement calculus is easier to use for algorithm re�nement than Z
[Kin90]. Predicative programming, in particular, let us use recursive re�ne-
ment rules [Heh93] to develop implementations from speci�cations.
A further example of using Z and predicative programming, for reasoning
about time and space, is presented in [Pai98].

2. A combination of Z and the re�nement calculus. Z was used to specify
system state and those operations to which we wanted to apply data trans-
formation. The re�nement calculus was used to specify and algorithmically
re�ne the other operations. Unlike the approach of [Kin90], we did not trans-
form from Z to the re�nement calculus. Instead, each notation was used where
it was deemed to be helpful, and transformation rules from each method were
used on the notations of the method.

3. A combination of Larch and predicative programming. Larch LSL
was used to specify a system module, i.e., an abstract data type. Predicative

8 R. F. Paige

notation was used to specify system operations that used the LSL speci�-
cation. We used the two together because the methods are complementary:
Larch LSL has tool support, while predicative programming does not. Pred-
icative programming has algorithm re�nement rules, while Larch LSL does
not. Speci�cally, we used predicative programming for algorithm re�nement,
while Larch LP was used to semi-automatically prove properties about the
abstract data type.

These, and other examples of pure formal method integration are presented in
detail in [Pa97a, Pai99].

5. Discussion

Integrating formal methods via heterogeneous notations (or by any other ap-
proach) introduces a number of signi�cant issues, especially associated with
learning and using formal methods, tool application, and standardization. We
brie
y address some of these issues here.

5.1. Learning and using formal methods

A complaint about formal methods is that they are di�cult to learn and apply,
because of mathematical syntax and because of the di�culty in understanding
the underlying modeling concepts. One implication of integrating formal methods
is that this will make formal methods even more di�cult to learn, use, and
teach, because integrated methods will require understanding di�erent modeling
techniques and multiple syntaxes.

This is a legitimate concern. By combining several di�erent syntaxes, it is
possible to introduce ambiguities, incompatibilities, and potentially di�cult-
to-understand speci�cations. On the other hand, the use of several di�erent
notations|and hence several di�erent methods|could in turn make formal
methods easier to use [BoH94]. A project by Zave and Mataga [ZaM93] showed
that using multiple formal methods could produce smaller, more concise, and
more understandable speci�cations than by using a single notation. The case
studies in [Pai98] showed that multiple formal methods could produce shorter
re�nements for reasoning about time. The ability to write concise, understand-
able formal speci�cations could prove helpful in making formal methods easier
to learn and use. Our speci�c approach to heterogeneity could be bene�cial in
this respect. A low-cost technique for giving a semantics to heterogeneous spec-
i�cations could make using multiple methods more attractive and accessible to
developers, than for other approaches that require use of more complicated se-
mantic models.

More experience with practical examples of using multiple methods is neces-
sary before it becomes clear as to the e�ect of using integrated methods together
on teaching and learning formal methods.

5.2. Standardization

Formal methods often use di�erent notations for the same or similar concept,
e.g., types, type constructions, speci�cation combinators, program combinators,

Heterogeneous Notations for Pure Formal Method Integration 9

et cetera. One e�ect of combining formal methods via heterogeneous notations
is that it may lead to eventual standardization of common parts of notations at
both a syntactic and semantic level, e.g., representation of system state, types
and operators, speci�cation combinators, et cetera. Such standardization must
be done for reasons of parsing, as well as to improve speci�cation readability. This
may in turn lead to more understandable and usable formal methods, since less
new mathematical notation will have to be understood when learning a method.

5.3. Use of tools

Certain formal methods are supported by tools, e.g., for theorem proving, code
generation, model checking, et cetera. Integrating formal methods will have a
signi�cant impact in terms of tool use. Certainly, if it is determined that the
impact of PFMI on tool use is negative (in the sense that tools become di�cult
to use) then using combined methods may not be appropriate for projects that
rely heavily on tools. However, if it can be shown that existing or new tools
can be used to support integrated methods, then the bene�ts of formal method
integration and use of individual tools may be further propagated.

The issue of how to extend tools to support multiple formal methods is one of
ongoing research. In supporting integrated methods via heterogeneous notations,
there are several strategies that might be considered. One strategy might be as
follows. If a tool to support a single formal method is supplied with a heteroge-
neous speci�cation|for which the tool only supports notations for parts of the
speci�cation|the tool might treat parts that it does not understand as \black
boxes", which it must assume are properly typed system components, but which
it cannot manipulate. So, for example, if a theorem prover was supplied with a
heterogeneous speci�cation, it might be capable of proving lemmas about parts
of the speci�cation written in a notation that it understands, but for other parts,
it will have no such capability.

Another approach to tool support might make use of application frameworks,
which are the topic of a case study in [BDW96]. A framework might be used to
control communication and interaction between several separate tools for sup-
port of formal methods. The framework could (partially) automate the process
inherent in a heterogeneous basis, by translating speci�cations and by supplying
information to the separate tools when it is needed. Part of our current work is
focusing on this approach.

6. Conclusion

Individual formal methods have been shown to be useful, on both small problems
and industrial-scale projects. However, one formal method is not a panacea. Each
formal method supports particular tasks well, e.g., the writing of concise speci-
�cations, algorithm re�nement, data transformation, or application of tool sup-
port. For complicated projects, or for projects where functional or non-functional
requirements dictate that no single method will su�ce, the use of method inte-
gration techniques will be necessary.

This paper has suggested an approach for combining instances of formal
methods that, on a super�cial level appear to be very similar. On closer inspec-
tion, we have found that the methods are in fact complementary in many di�erent

10 R. F. Paige

ways, e.g., in terms of notation or transformation technique. We explored how to
compose speci�cations from such methods, and to give the compositions a for-
mal meaning. We also looked at how algorithm re�nement can be used in such
a setting. Our future work will look at broadening the scope of the approach
to further methods (see [Pa97a, Pa97b] for initial work in this direction), and
to providing tool support to multiple methods via tool integration. Such exten-
sions, and method integration in general may help to further propagate the use
of formal methods into practice.

Acknowledgements

This work was partially carried out while the author was at the University of
Toronto. Rick Hehner and Pamela Zave provided advice and many helpful com-
ments on the paper and the research in general. Special thanks to the anonymous
referees for their excellent suggestions.

References

[BDW96] J. Biccaregui, J. Dick, and E. Woods.: Quantitative Analysis of an Application of
Formal Methods. In Proc. Formal Methods Europe `96, Springer-Verlag, 1996.

[BoH94] J. Bowen and M. Hinchey.: Ten Commandments of Formal Methods. Oxford Uni-
versity Computing Laboratory Technical Monograph, 1994.

[Fid94] C. Fidge.: Adding real time to formal program development. In Proc. Formal
Methods Europe `94, LNCS 873, Springer-Verlag, 1994.

[Hal96] A. Hall. Using Formal Methods to Develop an ATC Information System. IEEE
Software, March 1996.

[Heh93] E.C.R. Hehner.: A Practical Theory of Programming, Springer-Verlag, 1993.
[HeM88] E.C.R. Hehner and A.J. Malton.: Termination Conventions and Comparative Se-

mantics. Acta Informatica, 25 (1988).
[Jac95] M.A. Jackson.: Software Requirements and Speci�cations, Addison-Wesley, 1995.
[Kin90] S. King.: Z and the re�nement calculus. In Proc. VDM `90, LNCS 428, Springer-

Verlag, 1990.
[Kro93] K. Kronl�of, ed.: Method Integration: Concepts and Case Studies, Wiley, 1993.
[Mor94] C.C. Morgan.: Programming from Speci�cations, Prentice-Hall, Second Edition,

1994.
[Mor90] J. Morris.: Piecewise data re�nement. In Formal Development of Programs and

Proofs, Addison-Wesley, 1990.
[Pa97a] R.F. Paige.: Formal Method Integration via Heterogeneous Notations, PhD dis-

sertation, University of Toronto, November 1997.
[Pa97b] R.F. Paige.: A Meta-Method for Formal Method Integration. In Proc. Formal

Methods Europe `97, LNCS 1313, Springer-Verlag, September 1997.
[Pai98] R.F. Paige.: Comparing Extended Z with a Heterogeneous Notation for Reasoning

about Time and Space. In Proc. ZUM '98, LNCS 1493, Springer-Verlag, Septem-
ber 1998.

[Pai99] R.F. Paige.: Heterogeneous Notations for Pure Formal Method Integration. In
Formal Aspects of Computing vol. 9(E), 1999.

[SFD92] L.T. Semmens, R.B. France, and T.W. Docker.: Integrated Structured Analysis
and Formal Speci�cation Techniques. The Computer Journal 35(6), June 1992.

[Spi89] J.M. Spivey.: The Z Notation: A Reference Manual, Prentice-Hall, 1989.
[War93] N. Ward.: Adding speci�cation constructors to the re�nement calculus. In Proc.

Formal Methods Europe `93, LNCS 670, Springer-Verlag, 1993.
[ZaJ96] P. Zave and M. Jackson.: Where do operations come from? An approach to mul-

tiparadigm speci�cation. IEEE Trans. Software Engineering, 12(7), July 1996.
[ZaM93] P. Zave and P. Mataga.: A formal speci�cation of some important 5ESS features,

Part I: Overview. AT&T Bell Laboratories Technical Memorandum, October 1993.

