
Formal Methods in the Classroom:
The Logic of Real-Time Software Design

Jonathan S. Ostroff and Richard F. Paige
Department of Computer Science, York University

Toronto, Ontario M3J 1P3, Canada.
fjonathan,paige g@cs.yorku.ca

Abstract

In recent years, much progress has been made towards
the development of mathematical methods (“formal meth-
ods”) through which it is possible, in principle, to specify
and design software to conform to specifications. In this
paper, we provide an overview of how formal methods –
and particularly real-time formal methods – can be used
throughout the software development cycle, and what meth-
ods and tools can be introduced in the computer science
curriculum to support software development.

1. Introduction

Logic is the glue that binds together reasoning in many
domains, such as mathematics, philosophy, digital hard-
ware, and artificial intelligence. In software development,
logic has played an important role in program verification,
but its use has not on the whole been adopted in practice.

Some researchers and practitioners have suggested that
logic (and mathematics in general) should play a more sig-
nificant part in software development than it currently does
[3, 21]. They argue that software behaviour cannot be spec-
ified, predicted, or precisely documented without the use of
mathematical methods. Engineers traditionally use mathe-
matics to describe properties of products. Similarly, soft-
ware engineers can use mathematics to describe properties
of their products which are programs.

This argument is not generally accepted by the profes-
sion at large for a variety of reasons. It is argued that the use
of mathematical methods is expensive, unproven in large-
scale development, and unsupported by usable tools. Many
papers [4, 6, 7] have discussed the reasons for practition-
ers not adopting mathematical methods in full or in part.
These arguments will not be recounted in full here, but it is
clear that software professionals will not adopt mathemati-
cal methods until they are easy to use, improve our ability

to deliver quality code on time, provide tool support, and
are founded on an appropriate educational programme.

Electrical engineers are taught mathematical methods
(e.g., differential equations or Laplace transforms) and tools
(e.g., Matlab or Spice) for describing the properties of cir-
cuits. Such methods and tools are a key component of an
electrical engineering education. Similarly, engineers use
mathematical descriptions in discussions of the deformation
of a beam, the flow of fluid in a pipe and the evolution of
a chemical reaction. Methods, tools, and curriculum com-
ponents of similar simplicity and ease of use are needed for
the education and practice of software engineering.

This paper is based on the report [17], which is available
via the WWW. In this paper, we focus on some of the con-
siderations associated with reactive or real-time systems,
and refer the reader to the report for the general overview
of the use of mathematical methods in software design.

2. Rational Software Development

In real-time software development, the progression from
requirements to an implemented program is a way of bridg-
ing the gap between the phenomena of the real-world do-
mainW and those of the software controller,M [11].

A rational development process, where each step follows
from the previous ones in the most elegant and economic or-
der, does not exist in reality for complex systems. Neverthe-
less, we can fake it [20]. We can try to follow an established
process as closely as possible.

1. Elicit and document the requirementsR in terms of the
phenomena ofW.

2. From the requirementsR, expressed in terms ofW,
we derive aspecification M:specof the controller, ex-
pressed in terms of the shared phenomenaW \ M.
Specifications describe the interface or boundary be-
tween the controller and the application domain.

3. From the specificationM:specwe derive the program
M:prog. The program refers to shared and internal
phenomena ofM.

We must now provide a justification that the program satis-
fies its requirementR. To justify this claim, we must reason
as follows:

1. First, argue that if the controller behaves likeM:prog,
then the specificationM:specis satisfied, i.e.,

M:prog! M:spec (1)

The implication states thatM:prog is a more specific
or determinate product than the more abstract speci-
fication M:spec. This makes the program more use-
ful and closer to implementation than the specifica-
tion, for the program describes how the specification
is implemented, whereas the specification describes
what must be implemented, without any unnecessary
appeal to internal detail. An example of a specifica-
tion is (x0 = 0) _ (x0 = 1) wherex0 is the final value
of the program variablex. The specification asserts
that the final value of the program variable must be
either zero or one. An implementation of the specifi-
cation is a programx := 1, which can be described
in logic by the assertionx0 = 1. Since the predicate
(x0 = 1) ! (x0 = 0) _ (x0 = 1)is a theorem of propo-
sitional logic, it follows that the controller implemen-
tation satisfies its specification.

2. Next, argue that if the specificationM:specis satisfied,
then so is the requirementR, i.e.,

W:desĉ M:spec! R (2)

where we may use our knowledge of the properties of
the real-world domain(W:desc) to prove(2).

3. Having shown implementation and specification cor-
rectness, we are entitled to conclude that the controller
correctly achieves the customer requirements, i.e.,

W:desĉ M:prog! R (3)

In the process described above, a distinction is made be-
tween specifications and requirements. “Specification” is
one of a trio of terms: requirements, specifications and pro-
grams. Requirements are all and only about the environ-
ment of the controller, i.e., the real-world phenomena. By
contrast, programs are all and only about the controller phe-
nomena. Programmers are interested in phenomena at the
interfaceW \ M, but this interest is motivated by the need
to obtain the data on which the controller must operate.

Specifications form a bridge between requirements and
programs. Specifications are only about the shared phe-
nomenaW \ M. Hence specifications are requirements of

a kind (they are about some of theW phenomena) but they
are also partly programs (they are about some of theM phe-
nomena). Since specifications are derived from customer
requirements by a number of reasoning steps, they may not
make sense to either the customer or the programmer. Al-
though specifications are programs, they may not be exe-
cutable. In fact, we would prefer that they not be tainted by
implementation bias, i.e., with irrelevant controller detail.

The quality of the final software will depend critically
on getting the description of the real-world domainW:desc
and the requirementsR right. Jackson quotes a well-known
incident in which a pilot landing his airplane had tried, cor-
rectly, to engage reverse thrust, but the system would not
permit it, with the result that the pilot overshot the run-
way. The pilot could not engage reverse thrust because
the runway was wet, and the wheels were aquaplaning in-
stead of turning. But the control software only allowed re-
verse thrust to be engaged if pulses from the wheel sensors
showed that the wheels were turning (which they were not;
they were aquaplaning).

The machine MThe real-world domain

wheels_turning

moving_on_runway
reverse_enabled

wheel_pulses_on

machine M

machine interface
wheel_pulses_on

reverse_enabled

W

Figure 1. Airplane overshooting the runway

Fig. 1 shows the phenomena that we are concerned with.
The requirementRwas

R : reverse enabled � moving on runway

The developers thought that the real-world domain was de-
scribed by

W:desc:

�
wheel pulses on � wheels turning
wheels turning � moving on runway

(4)

So they derived the specification

M:spec: reverse enabled � wheel pulses on

For the above description of the real-world domain, (2) is
indeed a theorem. Unfortunately, the developers did not un-
derstand the real-world domain correctly. The first property
listed in (4) was indeed a correct description of the real-
world domain. But, the second property was not. When the

wheels are aquaplaning on a wet runway, the second prop-
erty in fact fails to hold, because “movingon runway” is
true but “wheelsturning” is false. The correct description
of the real-world was instead

W:desc=

8<
:

wheel pulses on � wheels turning
(wheels turning) _ (aquaplaning) �

moving on runway
(5)

With this correct description of the domain, a controller
satisfyingM:specabove will no longer satisfy the require-
ments, because (2) no longer holds. It is thus crucial to get
an accurate description of the real-world domain.

3. Using Logic for Software Description

The central activity of software development is descrip-
tion. Any software project will need many different kinds
of descriptions. These descriptions provide essential docu-
mentation of the software. Here are some of the main types
of descriptions [19].

� Specificationsor requirementsstate the required prop-
erties of a product (e.g.,M:specandR). The difference
between a requirement and specification was described
in the previous sub-section.

� Behavioural descriptionsstate the actual properties of
an entity or product. Behavioural descriptions describe
the visible properties of an entity without discussing
how it was constructed. The real-world description (4)
is an example of a behavioural description–in this case
it is not a product or program that is being described
but the environment (runway) in which the product
(the airplane) will operate.

� Constructive descriptionsalso state actual properties
of a program, but also describe how a program is com-
posed from other programs. Program text is an ex-
ample of a constructive description. For example, the
text for the module in Fig. 2 describes how the module
body is constructed from two private routines.

Specifications and requirements are expressed in what
grammarians call the optative mood, i.e., they express a
wish. Behavioral and constructive descriptions are ex-
pressed in the indicative mood, i.e., they assert a fact. Thus,
a description may include properties that are not required,
and a specification may include properties that a (faulty)
product may not possess.

We cannot necessarily tell from a list of properties
whether we are dealing with a behavioural description of
an already existing product, or whether the list of proper-
ties is a specification of what we hope will eventually be-
come a product. It is therefore crucial for the writer to make

the relevant distinction. Once we have demonstrated imple-
mentation correctness then the specification itself becomes
a description. Although mathematics can be used for all
descriptions, not all descriptions need necessarily be math-
ematical. We can distinguish between rough sketches, des-
ignations, definitions and refutable descriptions [11].

A refutable description describes some domain, saying
something about it that can – in principle – be refuted or
disproved. Predicate logic provides a means for expressing
refutable descriptions. A predicate can either be valid (true
in all behaviours of the product), a contradiction (false in
all behaviours) or contingent (true in at least one behaviour
and false in at least one).

The use of mathematical descriptions throughout soft-
ware documentation and design is an idealization. Not all
requirements can necessarily be captured by predicates, at
least not easily. Sometimes rough sketches must be used,
or we must resort to vague qualifications such as “approxi-
mately” or “preferably”. The requirements will not neces-
sarily remain constant. Any change may invalidate the en-
tire logical structure (although engineers will often find in-
genious ways of preserving work already completed). The
over-riding imperative to deliver a product on time and
within cost will often mean that logical analysis and cal-
culation cannot always be performed, at least in full detail.

The reality of software development does not mean
that precise mathematical descriptions cannot find a place.
The software engineer will seek a balance between rough
sketches and precise description and calculation. Useful
software development methods will therefore allow the soft-
ware engineer to choose the appropriate balance between
mathematical and informal description.

What kind of mathematics should software engineering
students be taught? Like other engineering students they
should have a working knowledge of classical mathematics
such as calculus, linear algebra, probability, and statistics.
But, the description of software products requires the use of
functions with many points of discontinuity. The study of
continuous functions must thus be supplemented with that
of predicate logic and discrete mathematics. In the full re-
port [17], we illustrated this type of knowledge with a sim-
ple example that shows how logic may be used to:

� make informal descriptions precise,

� calculate properties (by proving theorems), and

� understand the role of counterexamples.

We have shown how logic can be used for describing
requirements, specifications, and programs. We also ex-
plained that logic can be used as a descriptive calculus
throughout the software life-cycle including design, imple-
mentation and documentation. The logical calculational

format can be used in various phases of the software life-
cycle, e.g., to derive a program that implements a specifica-
tion, or to establish that an assembly of components satisfies
a requirement if the components satisfy their specifications.
The calculational format has the virtues of brevity and read-
ability that make it easy to use, and the availability of the
text [5] means that the calculational format can be taught to
students early in a Computer Science programme.

At York University in Toronto, we are updating our
mathematics and computer science curriculum to adopt the
use of the calculational format. Our first-year logic and dis-
crete mathematics courses for computer science students are
using the calculational approach, based on the text [5]. The
calculational method has also been applied in third year pro-
gram verification course. Future changes in our curriculum
will likely see the calculational method applied throughout
our software engineering curriculum.

4. A Case Study – Cooling Tank

In the full report [17], we described how calculational
logic can be used in all phases of software design. In this
section, we present a case study that illustrates the use of
logical methods and tools through all phases of software
design from requirements to implementations.

The case study involves the use of conditional expres-
sions such as

if b then e1 elsee2

whereb is of type boolean ande1; e2 are any two expres-
sions of the same type. For conciseness we also use the
abbreviationb je1e2 (see [17] for further details). LogicE as
described in [5] provides the two axioms

b! (b je1e2= e1) : b! (b je1e2= e2)

for conditional expressions. We will need more powerful
theorems to simplify calculation. We therefore refer the
reader to the Appendix of [17], in which further theorems
of conditional expressions are listed. This Appendix also
provides a proof of the theorem(6) which is an illustration
of the utility of Logic E for developing new theory. Under
the assumption thatp! b is a theorem,

(p! E[z := b je1e2]) � (p! E[z := e1]) (6)

(6) provides a method for simplifying a complex expres-
sion consisting of conditional subexpressions to a simpler
expression with the conditional eliminated. Consider a vari-
ablex with type(x) = NATURAL. It follows thatx = 0_x =
1_x > 1 is a theorem. Using “IF-transform” reasoning (see
the appendix in [17]) the following is a theorem:

[x0 = x+ (x� 1 j9y)� (x� 1 j1z)] �

2
4 (x = 0)! (x0 = x+ 9� z)
^(x = 1)! (x0 = x+ 9� 1)
^(x > 1)! (x0 = x+ y� 1)

3
5

We now present an informal description of the case study.

4.1. A Cooling Tank Description

“A tank of cooling water shall generate a low level warn-
ing when the tank contains 1 unit of water or less. The
tank shall be refilled only when the low level sensor
comes on. Refilling consists of adding water until there
are 9 units of water in the tank. The maximum capacity
of the tank is 10 units, but the water level should always
be between 1 and 9 units. The sensor readings are up-
dated once every cycle, i.e., once every 20 seconds. Ev-
ery cycle, one unit of water is used. It is possible to add
up to 10 units of water in a cycle.”

A programmer, looking at the above problem, might
immediately write plausible code for the controller mod-
ule as shown in Fig. 2. The body of the module executes
set alarm; fill tankonce every cycle.

Module controller
Inputs

level: LEVEL
-- tank input, where type LEVEL={0..10}

Outputs
alarm: BOOLEAN

-- initially false, raises tank alarm
in: LEVEL

-- setpoint for tank input value
Body

every 20 seconds do
set_alarm; fill_tank

end
Private routines used in Body

set_alarm is
do alarm := (level<=1) end

fill_tank is do
if level=0 then in := 9
elseif level=1 then in := 8
else in := 0

end
end controller

Figure 2. Faulty code for the cooling tank

The set alarm routine raises the flagalarm if the tank
level goes below 1 unit. Thefill tank routine sets the tank
input setpointin to 9 units if the tank level is already at 0
units and to 8 units if the tank level is at 1 unit. In this way,
the tank is refilled to exactly 9 units at the end of the cycle.

Apart from the fact that the program in Fig. 2 is wrong
(as we shall see later), we have also not followed the recom-
mended design method presented earlier. In fact, without a
specification that satisfies specification correctness, we can-
not even begin to debug the program.

Our rational software design method requires that we
first divide the system of interest into the real-world domain
W and the controllerM, and identify the relevant phenom-
ena. The real-world domain, in this case, is the cooling tank
with its outflow of wateroutand inflow of waterin.

The rough sketch in Fig. 3 illustrates the phenomena of
the real-world domain, including phenomena shared with
the controller (in, levelandalarm). The water outflowout is
not a shared phenomenon as the controller cannot measure
it. The informal requirements cannot be precise; the figure
therefore provides a precise description of the outflow as a
function of water level. One of the benefits of mathematical
descriptions is that they can be used to remove ambiguities
present in informal descriptions.

MACHINE DOMAIN

controller water tank

in

out
level

alarm
bell

REAL-WORLD DOMAIN

Real-world description

out = (if level>=1 then 1 else 0)

out: LEVEL -- phenomena not shared with machine
alarm: BOOLEAN
in, level: LEVEL -- phenomena shared with machine

Real-world phenomena

Figure 3. Rough sketch of the cooling tank

Having identified the phenomena of interest, the next
step is to write the requirements for the cooling tank. We
assume that the controller will read the level sensor at the
beginning of a cycle, immediately calculate the new values
for in andalarm, and then repeat this action at the begin-
ning of the next cycle 20 seconds later. We may therefore
describe the requirements in terms of the variables of inter-
est at the beginning and at the end of an arbitrary cycle.

R b= (R1 ^ R2 ^ R3) :

8<
:

R1 : (1 � level0 � 9)
R2 : level0 = (level� 1 j9level�out)

R3 : (alarm� level� 1)
(7)

The initial value of the water level, the alarm signal, and
the outflow are designated bylevel, alarm andout respec-
tively. The value of the water level at the end of the cycle
is designated bylevel0. The requirement states that the final
value of the water level must be between the stated bounds,
the tank must be filled (at the end of the cycle) if it goes low

(at the beginning of the cycle), and the alarm bell must be
sounded (at the beginning of the cycle) if the level is low.

The next step in the design method is to describe the
properties characterizing the real-world domain.

W:descb= W:d1 ^W:d2 :

�
W:d1 : level0 = (level+ in � out)
W:d2 : out = (level� 1 j1

0
)

(8)

The domain propertyW:d1 is derived from a physical
law that says flow must be preserved, i.e., the flow at the
end of a cycle is what the original level was, adjusted for
in-flows and outflows. The propertyW:d2 asserts that the
outflow at the beginning of a cycle is one unit (see informal
description) unless there is no water left to flow out (this
part was not in the informal description, but must be added
if the description is to be precise).

In the absence of a controller, the behaviour of the cool-
ing tank will not satisfy the requirements. This is because
the inflow in can be set to any value. In order to satisfy the
requirements, we must therefore specify a controller.

The requirements and real-world descriptions are al-
lowed to refer to the outflowout. However, since there was
no sensor for it,out is not a shared phenomenon, and the
controller may thereforenot refer to it. Here is a first at-
tempt at the controller specification:

2
4 in = (if level= 0 then 9

elseif level= 1 then 8
elsif level> 1 then 0)

3
5 (9)

^(alarm� level� 1)

We have assumed that the controller works much faster
than the cycle time of the cooling tank. Therefore, the con-
troller instantaneously setsin andalarm to the values de-
scribed above at the beginning of each cycle. The specifica-
tion refers to shared phenomena only.

4.2. Verifying Correctness

The controller module in Fig. 2 implements the specifi-
cation of (9). The specification might at first sight appear
correct, for it adds 9 units of water if the level is zero, and
8 units of water if the level is one(1 + 8 = 9), else nothing
is added. However, the controller specification is wrong, as
can be seen by a counterexample. Consider a state at the
beginning of a cycle in whichlevel= 1. According to the
above specification,in = 8. Thusout= 1 by W:d2. Hence,
by W:d1,

level0 = (level+ in � out)

= 8

so the requirementR2 will not be satisfied because the tank
is supposed to be at 9 units of water at the end of the cycle.
The failed specification did not take into account the fact
that there is an outflow of 1 unit when the level is at 1 unit
(recall that there is zero outflow when the level is zero). The
counterexample was detected when the logical calculation
for specification correctness (2) was performed.

A correct specification for the controller is:

M:specb= M:s1 ^M:s2 :

�
M:s1 : in = (level� 1 j90
M:s2 : alarm� (level� 1)

(10)

which states that 9 units must be added irrespective of
whether the level is zero units or one unit of water at the
beginning of a cycle. Specification correctness holds if we
can show the validity of

8 level : LEVEL j W:desĉ M:spec! R (11)

which asserts that no matter what the level is at the begin-
ning of a cycle (provided it is of typeLEVEL), and provided
the application domain satisfies the (8) and the controller its
specification, then the requirements will be satisfied. By
Logic E, this is the same as proving that

(0 � level� 10)! (W:desĉ M:spec! R)

Gathering all the information together, we must prove:

W:d0 : (0 � level� 10)

W:d1 : level0 = (level+ in� out)

W:d2 : out = (level� 1 j10)

M:s1 : in = (level� 1 j90)

M:s2 : (alarm� level� 1)

R1 : (1 � level0 � 9)

R2 : level0 = (level� 1 j9level�out)

R3 : (alarm� level� 1)

The proof follows from three lemmas.R3 can be ob-
tained directly fromM:s2 (using reflexivity of implication
p! p):

M:s2 ! R3

Next, we prove the more specific requirementR2 first, in
anticipation that it may also be useful in derivingR1. In the
proof of R2, it seems worth starting withW:d1 as it has the
most precise information (it is an equality, not an inequal-
ity). The resulting calculation, which also uses the assump-
tionsW:d2 andM:s2, can be found in [17] and yields:

W:d2 ^M:s1 ^W:d1 ! R2 (12)

The proof of (12) is long (in fact, longer than we had
hoped). The proof length is due to the need to do case

analysis. It was precisely this case analysis that provided
a counterexample to the naive specification (9).

As we originally anticipated,R1 can be derived fromR2.
This is shown in Fig. 4.

R2

= < de�nition of R2; IF� transform; assumption W:d2 >

[level� 1 ^ level0 = 9] _

[level> 1 ^ (level0 = level� (level� 1 j1
0))]

= < (10:14b) with (level> 1)! (level� 1) >

((level� 1) ^ (level0 = 9)) _ [(level> 1) ^ (level0 = level� 1)]

) < arithmetic : level0 = 9! R1 and monotonicity >

R1 _ [(level> 1) ^ (level0 = level� 1)]

= < true is the identity of conjunction >

R1 _ [(level> 1) ^ true^ (level0 = level� 1)]

= < assumption (0 � level� 10) and theorem equivalence >

R1 _ [(level> 1) ^ (0 � level� 10) ^ (level0 = level� 1)]

= < math : (level> 1) ^ (0 � level� 10) = (2 � level� 10) >

R1 _ [(2 � level� 10) ^ (level0 = level� 1)]

= < Leibniz substitution with level= level0 + 1 >

R1 _ [(2 � level0 + 1 � 10) ^ (level0 = level� 1)]

) < weakening theorem p^ q! p and monotonicity >

R1 _ (2 � level0 + 1 � 10)

= < arithmetic simpli�cation >

R1 _ (1 � level0 � 9)

= < de�nition of R1 and (p_ p) = p >

R1

Figure 4. Proof deriving R1 from R2

From this, we can obtain

(W:d0 ^W:d2)! (R2 ! R1)

Using the three lemmas, a quick calculational proof shows
the validity of specification correctness:(8 level : LEVEL j
A:desĉ M:spec! R).

4.3. Tool Support

The cooling tank example can be checked automatically
with the help of PVS (Fig. 5). The PVS descriptions of
the real-world domain, requirements, and controller speci-
fication for the cooling tank are shown in the figure. The
conjecturesystemcorrectness(end of Fig. 5) is proved au-
tomatically when submitted to the PVS prover.

There are currently a variety of tools available that con-
tain expressive specification languages, theorem provers
and model-checkers that will do large calculations automat-
ically; such tools can be used to support the design method.
We have shown the usefulness of PVS [18], but there are

tank: THEORY
BEGIN
LEVEL: TYPE = {x:nat | x<=10 }

level, level_f, inn, out: VAR LEVEL
alarm: VAR bool

%Real-world domain description
real_world_description(inn,out,level,level_f):bool =
 out = (IF level>=1 THEN 1 ELSE 0 ENDIF)
 AND
 (level_f = level+inn-out)

%Requirements document
requirement(level, level_f, out, alarm):bool =
 (1 <= level_f AND level_f <=9)
 AND
 (level_f=(IF level<=1 THEN 9 ELSE level-out ENDIF))
 AND
 (alarm=(level<=1))

%Machine specification
machine_spec(level,inn,alarm): bool =
 inn = (IF level<=1 THEN 9 ELSE 0 ENDIF)
 AND
 alarm = (level<=1)

system_correctness:CONJECTURE
 real_world_description(inn,out,level,level_f)
 AND
 machine_spec(level,inn,alarm)
 IMPLIES
 requirement(level,level_f,out,alarm)

%Designations: "level_f" is final value of "level"

Figure 5. PVS theory for the cooling tank

now a variety of tools available that have been used in se-
lected industrial applications.

The specification language of PVS is based on a typed
higher-order logic. The base types include uninterpreted
types that may be introduced by the user, and built-in
types such as the booleans, integers, reals, as well as type-
constructors that include functions, sets, tuples, records,
enumerations, and recursively-defined abstract data types,
such as lists and binary trees. PVS specifications are orga-
nized into parameterized theories that may contain assump-
tions, definitions, axioms, and theorems. PVS expressions
provide the usual arithmetic and logical operators, function
application, lambda abstraction, and quantifiers, within a
natural syntax. An extensive prelude of built-in theories
provides useful definitions and lemmas.

In the cooling tank example we abstracted out time by
restricting our attention to a single arbitrary cycle. This pre-
vents us from describing liveness properties such as “even-
tually the tank will be filled to 9 units of water”. To de-
scribe such properties we can extend our logic with tem-
poral operators so that we can assert conjectures such as:
23(level = 9). The temporal formula3p means even-
tually at some time after the initial statep must hold, and
2q meansq must hold continually. Thus23p means that
in every state of a computation there is always some future
occurrence ofp (see [14]).

Sometimes, even more specific timing information must
be described. To express the property that the tank should
always be filled to 9 units every 10 cycles (i.e., every 200
seconds) can be expressed as23�200(level = 9) in real-
time temporal logic [16].

In some situations a hybrid approach must be followed in
which there is a mixture of continuous and discrete mathe-
matics. For example, in a more precise model of the outflow
we might want to express the relationship between the tank
outflow and the valve settingv(t) as

d
dt

out(t) = c1v(t) + c2level(t)

whereout(t) is the total amount drained from the tank up to
time t, andv(t) is the outflow setting as a function of time.

The StateTime [14], STeP [13] and Hytech tools [1] are
examples of toolsets that can analyze and calculate proper-
ties of systems described with real-time temporal logic or
hybrid descriptions using algorithmic and theorem proving
techniques. These tools enable the designer to analyze con-
current and nondeterministic reactive programs.

Students can be introduced to the use of automated tools,
such as PVS or the B-Tool [10], in the later stages of their
undergraduate education, and particularly after they have a
thorough grounding in the calculational LogicE. Without a
grounding in logic, students will have difficulty understand-
ing the proof steps that they are applying, and will certainly
have complications in continuing proofs when difficulties
or apparent dead-ends arrive.

Upper-year undergraduate, and introductory graduate-
level courses, may best make use of tools for real-time sys-
tems. At York University, our fourth-year real-time systems
course makes use of such tools. But the course also requires
a grounding in mathematical methods such as the calcula-
tional logic, which the students can use for designing small
systems or small components, and as a supplement to the
automated tools when difficulties arise in proof.

5. Conclusion

Logic can be used throughout the software development
life-cycle both as a design calculus and for documenting re-
quirements, specifications, designs and programs. The use
of logic provides both precision and the ability to predict
software behaviour, thus providing the developer with a tool
akin to that used in other Engineering disciplines. Learning
the methods and tools of logic should be an important com-
ponent in the education of software professionals.

Logic and logical calculation methods can and should be
used right at the beginning of a Computer Science educa-
tion. Here we suggest a possible curriculum sequence that
makes use of calculational methods, from introductory un-

dergraduate courses, through upper-year real-time and reac-
tive software engineering courses.

� The logic text by Gries and Schneider [5] can be used
in two courses (each lasting a semester) in logic and
discrete mathematics in the first and second years. This
will provide the student with familiarity in logical cal-
culation right from the beginning. This course will also
help in future material such as understanding design-
by-contract and theorem provers. The first-year math-
ematics programme for CS students at York University
is now teaching such courses, based on Gries’ text.

� A third year software design course, taught using Eif-
fel and the Business Object Notation [15], can intro-
duce formal methods for sequential and object oriented
software design. A grounding in calculational logic is
vital in writing specifications, and in performing con-
sistency checks and other analyses.

� A fourth year course can introduce the formal methods
of reactive systems (e.g., using STeP [13], SPIN [8] or
SMV [2]). Suitable textbooks are available for each of
these courses, but more need to be written, emphasiz-
ing the use of mathematical methods in design.

A variety of applications of formal methods to industrial
systems have been reported. These applications can be
used for case studies in more advanced classes. Students
should also apply their skills to case studies such as that of
the Therac-25 radiotherapy machines [12] and the Ariane
5 heavy launcher [9], which illustrate the need for profes-
sional standards in all aspects of design.

We should not underestimate the effect that education
can have in practice. Spice is a general purpose electronic
circuit simulation program that was designed by Donald
Pederson in the early 1970s at the University of Berkeley.
Circuit response is determined by solving Kirchoff’s laws
for the nodes of a circuit. During the early 1970s, Berke-
ley was graduating over a 100 students a year who were
accustomed to using Spice. They started jobs in industry
and loaded Spice on whatever computers they had available.
Spice quickly caught on with their co-workers, and by 1975
it was in widespread use. Spice has been used to analyze
critical analog circuits in virtually every IC designed in the
United States in recent years [22].

In software development, the practitioner has to sub-
ordinate everything to the over-riding imperative to deliver
an adequate product on time and within budget. This means
that the theory and tools we do teach must be useful and as
simple as possible. LogicE, design-by-contract, Eiffel and
PVS embody useful theory and tools that can be taught and
used now, and that will contribute to professional engineer-
ing standards for software design and documentation.

References

[1] R. Alur, T. Henzinger, and P.-H. Ho. Automatic symbolic
verification of embedded systems.IEEE Transactions on
Software Engineering, 22(3):181–201, 1996.

[2] J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang.
Symbolic model checking:1020 states and beyond.Infor-
mation and Computation, 98(2):142–170, 1992.

[3] N. Dean and M. Hinchey (eds.).Teaching and Learning
Formal Methods. Academic Press, 1996.

[4] R. Glass. The software research crisis.IEEE Software,
11(6):42–47, 1994.

[5] D. Gries and F. Schneider.A Logical Approach to Discrete
Math. Springer-Verlag, 1993.

[6] A. Hall. Seven myths of formal methods.IEEE Software,
pages 11–19, September 1990.

[7] M. Hinchey and J. Bowen.Applications of Formal Methods.
Addison-Wesley, 1995.

[8] G. Holzmann. The model checker Spin.IEEE Trans. on
Software Engineering, 23(5):279–295, 1997.

[9] J.-M. Jezequel and B. Meyer. Design by contract: the
lessons of the Ariane. IEEE Computer, 30(1):129–130,
1997.

[10] J.-R. Abrial.The B-Book: Assigning Programs to Meanings.
Cambridge University Press, 1996.

[11] M. Jackson. Software Requirements and Specifications.
Addison-Wesley, 1995.

[12] N. Leveson and C. Turner. An investigation of the Therac-25
accidents.Computer, 26(7):18–41, 1993.

[13] Z. Manna. STeP: The Stanford Temporal Prover. Technical
Report STAN-CS-TR-94-1518, Stanford University, 1994.

[14] Z. Manna and A. Pneuli.The Temporal Logic of Reactive
and Concurrent Systems. Springer-Verlag, 1992.

[15] B. Meyer. Object Oriented Software Construction. Prentice
Hall, 1997.

[16] J. Ostroff. A visual toolset for the design of real-time dis-
crete event systems.IEEE Trans. on Control Systems Tech-
nology, 5(3):320–337, 1997.

[17] J. Ostroff and R. Paige. The logic of software design. Tech-
nical Report TR-98-04, York University, 4700 Keele St.,
Toronto, Ontario M3J 1P3, Canada, July 1998.

[18] S. Owre, J. Rushby, N. Shankar, and F. Henke. Formal
verification for fault-tolerant architectures: Prolegomena to
the design of PVS.IEEE Trans. on Software Engineering,
21(2):107–125, 1995.

[19] D. Parnas. Mathematical descriptions and specification of
software. InProc. IFIP World Congress 1994, Vol. I, 1994.

[20] D. Parnas and P. Clements. A rational design process: How
and why to fake it. IEEE Trans. Software Engineering,
12(2):251–257, 1986.

[21] D. Parnas, J. Madey, and M. Iglewski. Precise documen-
tation of well-structured programs.IEEE Trans. Software
Engineering, 20(12):948–976, 1994.

[22] T. Perry. Donald O. Pederson.IEEE Spectrum, 35(6):22–27,
1998.

