
Comparing Extended Z with a Heterogeneous
Notation for Reasoning about Time and Space

Richard F. Paige

Department of Computer Science, York University,
Toronto, Ontario, Canada, M3J 1P3.paige@cs.yorku.ca

Abstract. We contrast using a notation extension with using a combination of
notations. Specifically, we compare the use of an extended dialect of Z [10] with a
combination of Z and predicative programming notation [6] for algorithm refine-
ment and for reasoning about time and space constraints on systems. We discuss
the difficulty of using extended notations versus using heterogeneous notations,
and consider when we might prefer to extend or combine notations. We conclude
that there exist situations where a heterogeneous notation can be more appropriate
to use than an extended notation.

1 Introduction

Notation extension, the process of adding new syntactic or semantic features to a lan-
guage, is an important topic in formal method and software engineering research. No-
tations have been extended for a variety of reasons: in order to generalize the notation;
in order to use concepts available in other languages that have proven to be useful in
practice; or, to compare notations in a systematic manner. Notation extension has also
been used for notationdevelopment, the process for which starts with a concise kernel
language, that over time is developed into a general-purpose language.

An alternative approach to extension is to constructheterogeneous notations. A het-
erogeneous notation is manufactured from two or more distinct languages, combining
the syntax and semantics of each in some manner so as to produce a new language. Het-
erogeneous notations are used to writeheterogeneous specifications, which are compo-
sitions of partial specifications written in two or more different notations [9]. A specifier
might prefer to use a heterogeneous notation rather than extend a notation for a number
of reasons: e.g., to keep individual notations simple; or to be able to write specifications
in the most suitable specialized language [5, 9, 13].

In this paper, we are interested in contrasting the use of an extended Z dialect with
the use of a heterogeneous notation composed from Z and predicative notation [6].
We do this so as to make a preliminary attempt to determine if there exist situations
where heterogeneous notations areuseful, for writing more understandable (or possibly
more concise) specifications, and for producing simpler, more understandable refine-
ment proofs than are possible with extended notations. To this end, we will carry out
two case studies in applying an extended language and a heterogeneous notation. The
case studies will be as follows.

– Timing study:the Z notation, extended with a notion of time [3], will be applied in
specification, refinement, and proof of timing constraints. Its use will be contrasted
with an application of Z combined with predicative programming [6]—which has
a built-in notion of timing.

– Space study:the Z notation, extended with a simple notion of space, will be ap-
plied in specification, refinement, and proof of space constraints. Its use will be
contrasted with an application of Z combined with predicative programming that
has built-in notations for space [7].

The applications of the extended notations and heterogeneous notations are not meant to
be illustrative of all of the features of the individual approaches; the reader is directed
to the references for further examples [3, 9]. Rather, the case studies are intended to
demonstrate how heterogeneous notations and extended notations can be used, and how
the use of heterogeneous notations can compare to use of extended notations. It is also
important to note that our comparisons are given in terms ofexistingand very specific
notations, and in terms of eliminating limitations of these notations.

The organization of this paper will be as follows.

– In Section 2, we outline the predicative programming method. We also explain our
definition of heterogeneous notations, and how heterogeneous specifications are to
be formally manipulated, based on the approach of [9].

– In Section 3, we compare the use of Z extended with reasoning about time with the
use of a heterogeneous notation combining Z and predicative programming. We
carry out a refinement case study in order to compare the two approaches.

– In Section 4, we compare the use of Z extended with reasoning about space with the
use of a heterogeneous notation combining Z and predicative programming. Again,
we carry out a refinement case study in order to compare the two approaches.

– In Section 5, we discuss our findings, and attempt to suggest why using a heteroge-
neous approach may be preferable to an extension approach, and vice versa.

2 Notation and Approaches to Extension and Heterogeneity

2.1 Predicative programming

Predicative programming is due to Hehner [6]. It is a program design calculus like Mor-
gan’s refinement calculus [8], but unlike the latter treats programs as specifications. In
this approach, programs and specifications are predicates on pre- and poststate (final
values of variables are annotated with a prime; initial values of variables are undeco-
rated). The weakest predicate specification is> (“true”), and the strongest specification
is? (“false”). Refinement is just boolean implication.

Definition 1. A predicative specificationP on prestate� and poststate�0 is refined by
a specificationQ if 8�; �0 � (P(Q).

The refinement relation enjoys various properties that allow specifications to be
refined by parts, steps, and cases. Since refinement is just implication, carrying out a

refinement is equivalent to carrying out a logical proof. Therefore, the refinement rules
of predicative programming are laws of boolean logic; see [6] for a complete list.

Predicative specifications can be combined using the familiar operators of boolean
theory, along with all the usual program combinators (e.g., ‘.’ is the sequencing combi-
nator), as well as combinators for parallelism and communication through channels.
Predicative programming also has aframe construct equivalent to that of [8]. The
specificationframe w � P means that predicateP can change variablesw, but no other
variables; if the state consists of variablesw and�, thenframe w � P is equivalent to
(P^ �0 = �).

One particular novelty with predicative programming is thatrecursiveprograms
can be developed rather than iterative programs, using recursive refinement rules. It has
been suggested that this simplifies the process of developing certain programs [6], since
in particular it eliminates the need to construct invariantsbeforedeveloping loops.

Predicative specifications do not express constraints on termination. Instead, spec-
ifications can include reference to time variables,t andt0, which can be used to place
time bounds on any implementation. Furthermore, predicative specifications may in-
clude constraints on space that must be met by any implementation. Space constraints
are expressed through references to a space variables, which represents the current
space usage of a specification, and a maximum space variablem, which represents the
maximum usage. Detailed examples of using space and time variables can be found
in [6, 7]. In general, non-trivial space usage arises with recursive implementations and
programs, so in the case studies that use predicative programming, we typically use
recursive refinement techniques, which are very useful in proving space bounds [7].

As an example of a predicative specification, the following specification requires
reversal of the order of items in a listL, taking no more than#L div 2 units of time
(where#L is list length, and one unit is the time for a recursive call).

#L0 = #L ^ 8n : 0; ::#L � L0(n) = L(#L� n� 1) ^ t0 � t +#L div 2

2.2 Approach to extension

In the two case studies using extended notations in Sections 3 and 4, we use standard Z
notation [10], extended to specifying and reasoning abouttiming constraintsandspace
usage constraints.We now outline the approaches to extension that we will use.

For the timing case study in Section 3, we use the real-time Z extension described
in [3]; alternatives are listed in the references [1, 2]. In this approach, Z specifications
are extended with fresh variablest andt0, which express the time when a computation
starts and when a computation finishes. In [3], constraints placed ont and t0 can be
sets of times; without loss of generality, we will only place deterministic constraints on
computation time, in order to keep the examples of manageable size.

In order to reason about time in specifications, all specifications will include the
schema�Time, as follows (N1 is all non-zero naturals).

�Time b= [t; t0 : N1 j t0 � t]

The extension in [3] modifies refinement rules from [12] to include constraints on
time. These constraints express how long the primitive commands in a simple pro-
gramming language will take—for example, time constraints for evaluating the truth

of guards, or for branching back to the top of a loop after an executing the loop body.
The rules include references to a schema-valued function,age, which returns instantia-
tions of time-change schemas specifying the passage of a specific amount of time. The
primitive time-change schema,ChangeTime, which we use in the case study is

ChangeTimeb= [�Time; �ProgVar; d : N1 j t0 � t = d]

whered is an amount of time that some program will take, whileProgVar is a schema
of program variables of interest. Theagefunction is defined as follows.

age: N1 ! ChangeTime

8 t : N1 � age(t):d = t

Without loss of generality, we will use only two timing constraints: an assignment takes
one unit of time (for the store to memory); and a branch back to the top of ado loop
takes one unit of time. All other commands take no time. We will use the same con-
straints in both the extension example and the heterogeneous example. This set of tim-
ing constraints is unrealistic for some problems, but it is sufficient for the case studies
herein. These timing constraints mean that the effect of an assignment statementx := E
is defined by the operation schemaAssignEtoX(wherex can be many variables).

AssignEtoXb= [x; x0 : T; �AllElse; �Timej x0 = E^ t0 � t = 1]

(whereAllElse is all variables in scope, excepting those inx). We usex := E as syntax
for the schemaAssignEtoXwhen using Z.

The refinement rules from [3] are low-level, in that from them it is possible to derive
‘short-cut’ rules that make the approach more practical (involving shorter proof steps).
Thus, the complexity of proofs in the extended Z method that we use can be reduced.
In order to be consistent in the comparisons, we use low-level laws in applying the
heterogeneous method. In this manner, we have a common basis for comparison.

The extension of Z to reason about space is much simpler; in fact, for the most part
standard Z specifications can be written (with inclusion of some extra schema details
and syntax). To reason about space, we declare a state schema�Space, which defines
instances of two new variables:s, the current space usage of a program executing a
specification; andm, the maximum space usage of a program executing a specification.

�Spaceb= [m;m0; s; s0 : N j m� s^m0 � s0 ^m0 � m]

�Spaceis to be included in any specifications for which we want to reason about space
usage. Non-trivial space usage only results with specifications that are to be imple-
mented by recursive programs. So in the space case studies, we write specifications as
procedures, with Z specifications for bodies. These specifications will be implemented
using recursive calls to the original procedure. We will write procedure interfaces us-
ing the notation of [8], and base the development of recursive programs on [8] as well
(though modified to Z).

The refinement rules that we use for reasoning about space in Z are unchanged from
those in [12], since space usage is represented by two variables. In order to calculate

space bounds, in proofs we preface a recursive call to a procedure bys := s+ 1 and
m := maxfm; s+ 1g. On return from a recursive call, we decrease space usage by
s := s�1. With such rules, bounds on space can be proven with respect to a specification
and implementation.

2.3 Approach to heterogeneity

We aim to compare the use of an extended version of Z with a heterogeneous notation
constructed from Z and predicative programming. Since we are interested in formally
reasoning about heterogeneous specifications composed from Z specifications and pred-
icative specifications, we need to give the heterogeneous notation a formal semantics.

The approach to formally defining the meaning of heterogeneous notations that we
use is from [9]. Translations are defined between formal notations of interest. The trans-
lations provide the mechanisms by which a heterogeneous specification can be given a
formal semantics using a homogeneous specification, via mapping the original specifi-
cation into a single-notation formulation1. A set of notations and translations between
them, which is to be used to give a formal semantics to heterogeneous specifications,
is called aheterogeneous basis. The small heterogeneous basis that we use in this pa-
per consists of the Z notation and the predicative notation. It is derived from a much
larger basis given in [9], which includes Z and predicative notation, as well as a number
of other formal and informal notations. We require only one translation in the basis, a
mapping from Z to predicative notation. See [9] for mappings from predicative notation
to Z, and for other translations.

To translate from a Z schemaOp b= [�S; i? : I ; o! : O j P] to a predicative
specification, we use the translationZToPP, defined as follows.

ZToPP(Op) b= frame w � ((9w0 � P)) P)

The framew consists of the variables inS and the operation outputs. Inputsi? are
mapped to state variables or to parameters (if the resulting specification is to be en-
compassed in a procedure or function). The existential quantifier is necessary in the
translation to extract the precondition of the operation. We assume that any schema
property forShas been expanded and included in the predicateP of Op. ThoughZToPP
is written as a total function, we require that for anyOp, P 6= true, because predicative
programming cannot describe terminating yet arbitrary computations [5].

To include time variables in the result of the translationZToPP, the most we can say
in the resulting predicative specification is that time does not decrease. This results in
conjoining the predicate termt0 � t in the result ofZToPP.

In the heterogeneous method, we extend Z’s definition ofmaxto apply to empty sets
of integers (we use the standard functionmaxwhen applying pure Z). This is done so
as to be able to develop equivalent programs using the extended and the heterogeneous
methods.maxapplied to an empty set gives�1, which is smaller than any integer;
1, correspondingly, is larger than any integer and�1. A full axiomatic definition of

1 This notation need not be the same as the languages used for writing specifications.

maxand ‘extended’ integers is beyond the scope and space constraints of this paper (but
one can be found in [6]). We defineZ1, theextended integers,asZ[f1;�1g. The
definition ofmaxon sets of extended integers is

max: PZ1 7! Z1

maxf g = �1
8S : P

1
Z1; m : Z1�

(max S= m), (m2 S^ 8n : S� n� m)

2.3.1 Semantics of heterogeneous specificationsThe translationZToPPcan be used
to formally define the semantics of compositions of Z specifications and predicative
specifications, by translating heterogeneous specifications into a homogeneous speci-
fication. In this paper, heterogeneous specifications are given a semantics in terms of
predicative notation. Details of how the translation process operates over combinators
are in [9]. Informally,ZToPPapplies partwise over predicative combinators. Therefore,
we always write Z specifications under the assumption that we can translate them into
predicative notation. While we have checked that translation is possible for the specifi-
cations in this paper, we do not show the checking in the case studies.

As an example, consider the semantics of the specification(j = n)) Op, where
j = n is a predicative specification,) is boolean implication, andOp is the schema

Op b= [L; L0 : seqN; r; r 0 : N j L0 = L ^ r 0 = maxfr;maxfi : j::n� 1 � Ligg]

The semantics of this heterogeneous specification is

(j = n)) frame r; L � (L0 = L ^ r 0 = maxfr;maxfi : j::n� 1 � Ligg)

This can be refined by the specificationok, which does nothing.
Some rules for refining heterogeneous specifications composed from Z and predi-

cates were given in [9]. A useful rule that we will need in the timing case study is the
following. Informally, the rule states the conditions to be checked in order to refine a
schema by a predicative specification.

Rule 1.For a prestate� and poststate�0, a Z schema with propertyP is refined by
a predicative specificationQ if

8�; �0 � ((9�0 � P)) P)(Q

We introduce one new rule here, for the purposes of simplifying the process of
refinement of heterogeneous specifications. It generalizes thesubstitution rulefrom [6].

Rule 2.Let x be a variable andE an expression, where ‘.’ is predicative sequencing.
If S is a schema with propertyP, then

(x := E: S) = S0[E=x]

whereS0 is the same asSexcept with property(9�0 �P)) P. ReadS0[E=x] as “substi-
tuteE for x in the property of schemaS0”.

Informally, Rule 2 means that we can apply the predicative substitution rule when
using Z schemas in refinements. The property ofS0 changes under the substitution due
to the translation of Z into predicative notation: the existential quantification in the prop-
erty is necessary because the predicative notation can express miraculous computations,
while Z cannot.

In order to be able to use Z and predicative notations together, we must also be
able to parse specification compositions. This means that we have to eliminate any
syntactic ambiguity that arises by combining the two notations. For this reason, we do
the following when writing heterogeneous specifications.

– We use standard Z notation for types, e.g.,Z;N, and to describe ranges.
– Refinement in Z follows the approach of Wordsworth [12], and the refinement rela-

tion will be written asv. Refinement of Z will be to the guarded command language
of Dijkstra.

– We use Morgan’s notation for writing procedures that have Z specification bodies
[8]. Procedure syntax will be necessary for reasoning about space usage [7].

3 Reasoning about Time

Existing refinement methods, such as those presented in [6, 8, 12], provide the means
for rigorously developing correct programs from specifications. In critical applications,
correctness may also be measured in terms of performing actions at the right time.
Therefore, it is necessary to reason about timing, too.

In this section, we compare the use of Z, extended with refinement rules for timing,
with the use of Z combined with predicative programming. The comparison is done in
the context of a small case study. We first outline the problem for the case study, then
develop a solution using extended Z, and thereafter Z combined with predicates.

3.1 The problem

The very simple problem that we consider is taken from [3]; we choose it because it
is small enough to allow comparisons of two separate solutions in the space available.
We want to calculate the maximumr of a non-empty list of integersL in time that is
proportional (within a constant factor) to the length,n, of the list.

3.2 Using extended Z

We start the example by specifying the state of the system. The system state contains
three variables: the listL, the resultr, and a counter variablej.

Stateb= [L : 0::n� 1! N; j : N; r : Z j j � n]

The problem,S, that we want to solve, is therefore

S
�State; �Time

L0 = L
r 0 = maxfi : 0::n� 1 � Lig
t0 � t = 2n� 1

The time constraint,t0�t = 2n�1, requires that any implementation of this specification
takes2n� 1 units of time to execute.

We implement the problemS using the real-time refinement rules of [3]. The first
step is to refineS into a sequence of two schemas, where the first initializesj and r
(taking one unit of time). We show thatSv A1; A2, where

A1

�State; �Time

j0 = 1 ^ r 0 = L0
L0 = L
t0 � t = 1

A2

�State; �Time

j = 1 ^ r = L0 ^ L0 = L
r 0 = maxfr;maxfi : j::n� 1 � Ligg
t0 � t = 2(n� 1)

To show thatSv A1; A2, the following obligations must be discharged.

preS` preA1 (1)

preS^ A1 ` (preA2)
0 (2)

preS^ A1 ^ A0
2
` S[00= 0] (3)

In (1), it is shown that the sequence precondition can be established by the precondition
of S. In (2), we show that the precondition of the second step in the sequence,A2, can
be established byA1 in a precondition ofS. In the final step, we show that the sequence
establishes the problem. (The priming notations are described in [12]. The notation
S[00= 0] means “substitute doubly primed variables for primed variables inS”.) Steps
(1) and (2) are straightforward (because preSand preA1 aretrue). The last step, (3), is
the liveness condition, and it is also straightforward once we substitute primed values
of variables fromA1 for unprimed values of variables inA2, and see that this entailsS.

A1 is a schema expression for an assignment statementr; j := L0; 1 which takes one
unit of time and needs no further refinement. The next step is to refineA2. We see that
A2 determines the maximum ofL for all elements except the first; therefore, it needs
to be implemented by a loop which takes time2(n� 1). An invariant for a loop that
implementsA2 is as follows.

Inv
�State; �Time

r 0 = maxfi : 0::j0 � 1 � L0ig
L0 = L
t0 � t = 2(j0 � 1)

A loop variant isn� j. The time constraint in the invariant ist0 � t = 2(j0 � 1), since
this is the time that has been taken by the loop afterj0 � 1 iterations. We claim that
A2 v do j < n! A3 od, where

A3

�State; �Time

L0 = L
j0 = j + 1
r 0 = maxfr; Ljg
t0 � t = 1

To show this, we must verify the following proof obligations (whereB = j < n). The
first obligations require showing that the invariant is properly initialized (4), and that
the invariant and guardB together establish the loop body (5). Showing these two steps
is straightforward.

preA2 ^ skip ` Inv (4)

Inv^ preA2 ^ (age(T(do)) ^ B0)0 ` (preA3)
00 (5)

whereT(do) is the time required to evaluate the guard and conditionally branch, and
T(od) is the time for the branch-back. In our example, these values are0 and1 respec-
tively. Thus,age(T(do)) andage(T(od)) are

age(T(od))
�Time; �State

t0 � t = 1

age(T(do))
�Time; �State

t0 = t

In our example, only the branch-back takes non-zero time. But the refinement rules of
[3] require us to include the time constraints for branchinto the loop as well, in order
for the proof to discharge.

The next two proof steps are as follows.

preA2 ^ (Inv o

9 age(T(do))) ^ :B0 ` A2 (6)

preA2 ^ Inv^ (age(T(do)) ^ B0)0 ^ (A3
o

9 age(T(od)))00 ` Inv[000= 0] (7)

Step (6) is straightforward, by the definition ofmaxand of ranges. The final step, (7),
showing that the invariant is maintained by the loop (‘body liveness’), is more complex.
The left hand side of the proof resolves to the conjunction of the following two schemas.

�State; �Time

j = 1 ^ r = L0
r 0 = maxfi : 0::j0 � 1 � L0ig
L0 = L ^ L00 = L0

j00 = j0 ^ t00 = t0 ^ r 00 = r 0

t0 � t = 2(j0 � 1)
j00 � n

�State; �Time

L000 = L00

j000 = j00 + 1
r 000 = maxfr 00; L00(j00)g
t000 � t00 = 2

while the right hand side resolves to

�State; �Time

L000 = L
j000 � n
r 000 = maxfi : 0::j000 � 1 � L000(i)g
t000 � t = 2(j000 � 1)

and the proof obligation is then straightforward to discharge, by substitution and simple
comparison.

In order to complete the proof, it is necessary to discharge termination obligations.
We must therefore show that

preA2 ^ Inv^ (age(T(do)) ^ B0)0 ` n� j0 > 0 (8)

preA2 ^ Inv^ (age(T(do)) ^ B0)0 ^ (A3
o

9 age(T(od)))00 ` n� j000 < n� j0 (9)

Both obligations follow directly from the conjuncts in their hypotheses, which relate
j00 to j0 andj000 to j0.

Finally, we note thatA3 is a schema expression for the simultaneous assignment
j; r := j + 1;maxfr; Ljg, and so the calculation is complete.

3.3 Using the heterogeneous method

We now use the combination of Z and predicative programming. Predicative program-
ming has techniques for dealing with timing constraints built-in. We propose to specify
the state-based aspects of our system using Z, and the timing aspects using predicative
programming. The predicative refinement rules, extended to heterogeneous specifica-
tions, will be used to refine the heterogeneous specification to an implementation that
meets the time constraints.

The approach to constructing and manipulating heterogeneous specifications that
we use was outlined in Section 2.3. We use predicative refinement rules on heteroge-
neous specifications taken from [9]. These refinement rules are syntactically very simi-
lar to standard predicative refinement rules, and they provably maintain the key proper-
ties of predicative refinement, e.g., the ability to refine specifications by parts and steps
[9]. It is these properties that can make the heterogeneous approach to proving time
constraints very attractive.

The problem specification in the heterogeneous case is very similar to that for the
extended Z setting. The system state is

Stateb= [L : 0::n� 1! N; j : N; r : Z1 j j � n]

We do not include time constraints in the Z schema. Instead, time constraints are ex-
pressed as predicates. The initial problem specification isS^ Time, where

S b= [�Statej L0 = L ^ r 0 = maxfj : 0::n� 1 � Ljg]

andTime b= t0� t = 2n� 1. In the refinement, we assume that an assignment statement
and a tail-recursive call (equivalent to a loop branch-back) take one unit of time each,
and that no other operations take any time.

The refinement proceeds as follows. Since we have composedS and Time via a
predicative combinator, we use predicative refinement to implement the specification.
We do this in two steps, as is standard in predicative refinement. We first refine the
heterogeneous specification into code, ignoring all timing issues. Then, once complete,
we prove that the time constraints written in the initial specification are satisfied by
the implementation. We prove this last step by reusing the refinement tree of the first
part, considering only time variables. Then, due to refinement by parts over predicative
combinators, the composition of the timing and correctness proofs satisfies the original
(timed) specification.

The refinement without time is straightforward. The first step is:

S (j; r := 1; L0: S1

whereS1 is a Z schema, defined as follows.

S1 b= [�Statej L0 = L ^ r 0 = maxfr;maxfi : j::n� 1 � Ligg]

This is trivial to prove using Rule 2. Note that the value ofr is not constrained in the
schema; it will be constrained by the recursive refinement. If we were developing a
looping program, the value ofr would have to be constrained. We next refineS1 into a
two-branchif statement, using therefinement by casesrule of [6].

S1(if j = n then ok else(j 6= n) S1)

(ok is the empty program that does nothing.) To prove thethen branch, we use Rule 1,
and in the process substituten for j in the property ofS1, so as to show thatS1[n=j]
reduces to the schema that changes no variables. In doing this, we follow Section 2.3.1
and define the meaning ofj = n) S1 as a predicate (which is justifiable in this case,
becauseS1 is expressible in predicative notation). Substitutingn for j gives us

S1[n=j]
�State

L0 = L
r 0 = maxfr;maxfi : n::n� 1 � Ligg

The last line of the schema reduces tor 0 = maxfr;�1g, which simplifies tor 0 = r.
This schema can be implemented byok. To prove theelsebranch, we apply the boolean
laws of specialization and discharge, which prove the obligation in two lines. We omit
the details.

The proof continues by refining theelsebranch.

(j 6= n) S1)(j; r := j + 1;maxfr; Ljg: S1 (10)

This refinement says that we implementj 6= n) S1 by first settingr to the maximum of
the previous value ofr and the value ofLj, and simultaneously increasej by 1. Then we

behave like schemaS1 again. This style of recursive refinement is a standard technique
in predicative programming; it is done in lieu of developing looping programs with
invariants (though in fact an invariant is present, but it is buried within the proof step).

To verify that this proof step is correct, we apply Rule 2 to the right-hand-side of
(10), and show that it implies(j 6= n)) S1, by Rule 1. Applying Rule 2 to the right-
hand-side of(10) gives the anonymous schema

�State

L0 = L
r 0 = maxfmaxfr; Ljg;maxfi : j + 1::n� 1 � Ligg

By definition ofmaxand ranges, this simplifies to

[�Statej L0 = L ^ r 0 = maxfr;maxfi : j::n� 1 � Ligg]

which isS1, and so the refinement holds by specialization.
Now for the timing proof. Since predicative refinement can be done by parts (and

sinceSandTimeare composed predicatively), we can prove that the timing constraints
placed on the initial specification are maintained by the implementation, separate from
the correctness proof. This requires us to show

Time(j; r; t := 1; L0; t + 1 : U (11)

U (if j = n then ok elseQ (12)

Q(j; r; t := j + 1;maxfr; Ljg; t + 1 : t := t + 1 : U (13)

for suitable timing predicatesU andQ. Notice that the timing proof structure reuses the
structure of the correctness proof.

We conjecture that

U = (j = n) t0 = t) ^ (j < n) t0 = t + 2(n� j))

Q = j < n) t0 = t + 2(n� j)

and now verify the steps. The proof of time is done in the predicative notation only;
therefore, standard predicative rules apply. The proof of step (11) is straightforward
by the substitution rule of [6]. Step (12) is also straightforward, applying the law of
refinement by cases. The third step, (13), is the most complicated. (13) simplifies to,
after three applications of the substitution rule

Q((j + 1 = n) t0 = t + 2) ^

(j + 1 < n) t0 = t + 2 + 2(n� j � 1))

which, by further simplification, is true. We conclude that the timing constraintTimeis
satisfied by the implementation. By monotonicity,Ŝ Timeis implemented, and satisfies
its time bound.

We discuss the heterogeneous development, and compare it with the extended Z
development, in Section 5.

4 Reasoning about Space

Many formal notations and methods have been constructed or extended so as to be able
to reason about time for the purposes of developing real-time and reactive systems.
There has been less work done on formal reasoning about space and space usage in
formal notations and methods. One reason for this might be that space usage is typi-
cally a quantity associated with executing a specification, whereas formal notations are
typically used for writing specifications that need not be immediately executable.

In this section, we compare Z extended with space variables with a heterogeneous
combination of Z and predicative programming. We apply the two techniques to a sim-
ple problem, an abstraction of the Towers of Hanoi, to demonstrate some non-trivial
space reasoning. We might expect different results than with a comparison in terms of
time, mainly because reasoning about space (and extending notations to space) is much
simpler than time, and only requires use of conventions.

4.1 The problem

The problem we want to solve is an abstraction of the Towers of Hanoi. We ignore the
issue of putting disks on pegs, and instead concentrate on the issue of space use. The
standard (exponential) solution to this problem is doubly recursive. Letx be the number
of disks. The system state isState b= [x : N]. A solution to our abstraction of the
Towers of Hanoi problem is given in the guarded command language proceduretower.

procedure tower b= if x > 0!

x := x� 1; tower; x := x+ 1;

MoveDisk;

x := x� 1; tower; x := x+ 1

[] x = 0! skip fi

ProcedureMoveDiskcarries out the moving of disks from peg to peg (we leave its
functionality unspecified, since it will not affect space calculations). To move the pile
of disks, if there is at least one disk, first, ignore the bottom disk, remove the remaining
pile, then reconsider all disks. Now move one disk (the one we previously ignored);
then, again ignore the bottom disks, move the remaining pile, then reconsider all disks.
If there are no disks, do nothing.

We assume that a recursive call to a procedure costs one unit of space (for holding
a return address), and thatMoveDiskand all other statements require no further space.

In proving bounds on space use, we will prove that the proposed solution satisfies a
proposed space bound, i.e., a posit-and-prove approach.

4.2 Using the heterogeneous method

We first want to use the heterogeneous method to prove a bound on the maximum space
used by the programtower. We specify the goal of the space calculation in Z.

TowerSpaceb= [�State; �Spacej m0 = maxfm; s+ xg]

That is, we intend to show that the recursive proceduretowersatisfies the space bound
TowerSpace. To prove this, we start with specificationtower, and in it replace the re-
cursive calls totower with calls toTowerSpace, performing the translation from Z to
predicative notation behind-the-scenes. In doing so, we prefix the calls with changes in
variabless andm; on returns from calls, we reset variabless andm. From this specifi-
cation, we propose that (with some simplification)

TowerSpace(if x > 0 then

(x; s;m := x� 1; s+ 1;maxfm; s+ 1g:

TowerSpace: TowerSpace:

x; s := x+ 1; s� 1)

else ok

(maxis predicative programming is a function of two arguments.) The proposed refine-
ment is constructed directly fromtower. Note that this is a heterogeneous specification,
composing Z specificationTowerSpacewith predicative specifications using predicative
combinators.

We verify the refinement by cases. Theelsebranch is straightforward, and simply
requires us to show that

TowerSpace(x = 0 ^ (x0 = x^ s0 = s^m0 = m)

With the assumption thatm� s in �Space, this implication is clearlytrue. For thethen
branch, we first simplify the body. The first two statements in the sequence of thethen
branch simplify to (by applying the substitution rule from [6], as well asZToPP)

m0 = maxfm;maxfs+ 1; s+ xgg ^ x0 = x� 1 ^ s0 = s+ 1

The second two statements in sequence simplify to

m0 = maxfm;maxfs; s+ xgg ^ s0 = s^ x0 = x

The sequence of these two specifications, followed by the simultaneous assignment
s; x := s� 1; x+ 1, is the assignment

m := maxfm;maxfs+ 1; s+ xgg

In order to complete the proof, we therefore must show that

TowerSpace(x > 0 ^m := maxfm;maxfs+ 1; s+ xgg

which is equivalent to showing

TowerSpace(x > 0 ^m := maxfm; s+ xg

We therefore must prove that

(m� s) m0 = maxfm; s+ xg ^ x0 = x^ s0 = s)(x > 0 ^m := maxfm; s+ xg

By expanding the assignment statement with its predicative semantics, and by applying
the one-point rule three times, this reduces totrue, and the proof is done.

4.3 Using Z

We now prove that the space bound is satisfied using the extended Z notation. We again
use aposit-and-proveapproach. We have a proposed solution to the Towers of Hanoi
abstraction. We next specify a procedurerecSpacethat calculates the maximum space
required for an implementation oftower. The body ofrecSpaceis a Z schema.

procedure recSpaceb=

[�State; �Spacej m0 = maxfm; s+ xg ^ s0 = s^ x0 = x]

We will prove thatrecSpaceis implemented by a recursive program. We claim that

recSpacev if x > 0! x; s;m := x� 1; s+ 1;maxfm; s+ 1g;

recSpace; recSpace;

x; s := x+ 1; s� 1

[] x = 0! skip fi

The proposed refinement is obtained fromtower, where each call torecSpaceis prefixed
with s;m := s + 1;maxfm; s + 1g. The call toMoveDiskis removed since it will
not affect space use. We prove the refinement by first simplifying thex > 0 branch
of the guarded command. For each occurrence ofrecSpace, we substitute the schema
definition of its body, and simplify. The first two statements in the sequence of thex > 0
branch is equivalent to the schema

�State; �Space

m0 = maxfm;maxfs+ 1; s+ xgg
x0 = x� 1
s0 = s+ 1

The second two statements in sequence simplify to the anonymous schema

[�State; �Spacej m0 = maxfm;maxfs; s+ xgg ^ s0 = s^ x0 = x]

The sequence of these two anonymous schemas and the schema for the simultaneous
assignments; x := s� 1; x+ 1 is then

[�State; �Spacej m0 = maxfm;maxfs+ 1; s+ xgg ^ s0 = s^ x0 = x]

which is equivalent tom := maxfm;maxfs+ 1; s+ xgg. Therefore, we want to prove
that

recSpacev if x > 0! m := maxfm;maxfs+ 1; s+ xgg

[] x = 0! skip

fi

To prove theif branch, we must show that

recSpacev x > 0 ^m0 = maxfm;maxfs+ 1; s+ xgg

To do so, we assume thatm � s. Then, sincex > 0) s+ x � s+ 1, the proof goes
through. To prove theelsebranch, we take a similar approach to proving

recSpacev x = 0 ^ skip

and by assumingm� s, we see thats+ x = s, and becausex = 0, the proof also goes
through. So we have shown that the maximum space bound on the implementation of
tower is maxfm; s+ xg.

5 Discussion and Comparison

We can compare the use of extended Z with a heterogeneous combination of Z and
predicative programming in a number of different ways, such as in terms of conciseness
of the specifications, or in terms of the simplicity of the refinement rules of each method.
Many forms of comparison are subjective. We therefore compare the two methods in
terms of complexity of the method steps, i.e., refinement rules,and in terms of the
complexity of the proofs.

With the extended Z method from [3], two changes must be made from standard Z
in order to reason about time: specifications must include references to time variables
and timing constraints; and, real-time refinement rules must be constructed from stan-
dard rules. The main extension with respect to the refinement rules is to introduce time
constraints for programming language statements. Thestructureof refinements itself is
not changed; one must still show safety and liveness conditions in order to prove correct
refinements. However, the individual refinement rules are made more complicated (and
longer, since we have to deal with larger specifications) by the addition of new terms,
e.g.,age schemas. As well, the refinement rules require some ‘place-holder’ terms,
e.g.,age(T(do)), in order to properly discharge the proofs, even though the specific
programming language entities that they describe require no time. Such placeholders,
while certainly necessary for the proof, are unintuitive, and make proofs longer than is
necessary. Specialization of the refinement rules would seem to be necessary in order
to simplify the rules in cases where trivial time bounds are present.

Finally, we mention that the requirement to use refinement rules that contain both
timing and state-based constructs simultaneously can make the process of proof in the
extended method more complicated than in the heterogeneous method. It does not seem
to be possible to separate proof of timing from proof of correctness when using the ex-
tended Z method, because this will require use of the schema calculus: a specification of
behaviour will have to be (schema) conjoined with a specification of time constraints.
Refinement is not in general monotonic over the schema calculus conjunction combi-
nator [11], and so separating proof of correctness from proof of timing is not generally
possible.

In the heterogeneous method applied to timing, the refinement rules that are used
are simple, generalized rules from [6]. For those rules that are added in order to carry

out the proof of partial correctness (but not the proof of timing)—e.g., refinement of a Z
schema by a predicate—the additions are small and used in the same manner as existing
predicative refinement rules. The added rules are straightforward and for the most part
syntactic generalizations of the refinement rules from [6], with minimal restrictions on
their use. Importantly, with the heterogeneous method, proofs of correctness and timing
can be separated, due to monotonicity properties. This lets us carry out the proof of
timing in predicative notation.

If we were to look solely at using extended Z or the heterogeneous approach for
writing specifications (with time), we would find many similarities. The initial specifi-
cations that we wrote when applying extended Z and the heterogeneous approach were
similar in size and complexity. However, the specifications that wereconstructedduring
the refinement were more complex with extended Z. With the heterogeneous approach,
the specifications that were constructed were no more complex than what occurs when
writing standard predicative specification, which may be important, in particular, when
doing automated proof.

Differences between using the two approaches is less clear when we consider space
reasoning. In applying Z method, refinement rules do not have to be changed in order
to reason about space, because we treat space as new state components. However, spec-
ifications are made modestly larger because of the need to add procedure interfaces to
proposed solutions. This is due to the fact that non-trivial space behaviour arises only
with recursive procedures. In the heterogeneous approach, we can avoid adding proce-
dure interfaces because of the capability of using recursive refinement techniques [6]
on heterogeneous specifications, which negates the requirement to explicitly introduce
recursive procedures.

In the heterogeneous method, one new refinement rule must be introduced, for re-
fining Z schemas by predicative specifications. This rule is a simple generalization of
standard predicative refinement. But in the extended Z method, refinement as described
in [12] suffices for proof of space bounds. Therefore, we might conclude that the ex-
tension with respect to space favours the extended Z approach rather than the heteroge-
neous approach, at least in terms of complexity or any requirements to adapt proof rules
to heterogeneous notations. When we look at the proofs of space bounds, in both the
extended Z and the heterogeneous case, we see that the proofs are of similar complex-
ity, and take similar steps. Therefore, we might also conclude that the two approaches
are too similar in their application to make any overall distinction. Part of the reason
for this similarity is due to the fact that extension or notation integration for reasoning
about space is much more straightforward than for time: detailed new proof rules do not
have to be constructed, and existing proof rules do not generally have to be modified.

In general, then, we found that using the extension of Z to reason about time was
more complex and intrusive than using the heterogeneous combination of Z and pred-
icative programming. This intrusiveness manifested itself in terms of both writing spec-
ifications, and in terms of proof. On the other hand, we found that using the extension of
Z to reason about space was no more complex than using a heterogeneous combination
of Z and predicative programming. This was primarily an artifact of reasoning about
space constraints, which is simpler to do than reasoning about time constraints, because
there are fewer ways to effect a change in space use within a program.

This suggests that whether we should prefer an extension approach over a heteroge-
neous approach will depend on the task to which we want to apply the method. The tim-
ing case study has shown that a heterogeneous approach can be simpler to use than an
extension approach. But the space case study has also shown that in some situations—
e.g., when reasoning about a system artifact that does not broadly require changes in
refinement rules—an extension approach can be just as straightforward to use as a het-
erogeneous approach.

As an alternative to adding Z to predicative programming for proving time and space
bounds, we might consider the reverse situation: where we take predicative program-
ming and add Z notations to it. We could then use the resulting heterogeneous notation
to reason about time, space, and refinement. But predicative programming already has
built-in mechanisms for reasoning about time and space, and is a wide-spectrum de-
sign calculus with a simpler notion of refinement — boolean implication — than Z.
Therefore, for this purpose (reasoning about time, space, and refinement), it seems to
be redundant to add Z to predicative programming; there of course may be other valid
reasons for the addition.

6 Conclusions

We have briefly compared the use of an extension approach to formal methods with a
heterogeneous approach to formal methods. Applying Z, extended with specification
and reasoning for time and space, and comparing it with applications of Z combined
with predicative programming, has been carried out on small examples. We found that
the heterogeneous combination of Z and predicative programming was easy to use for
timing specification and reasoning, resulting in shorter proofs than was the case with
extended Z. And we found that the extension and heterogeneous approaches were sim-
ilar in complexity for specifying and reasoning about space usage. We therefore can
conclude that there exists a situation where heterogeneous notations are useful — and
are more useful than an extended notation.

More work remains to be done on comparing extension and heterogeneity. We have
only carried out a small pair of case studies here. It seems likely that there will be special
cases of applications for which our conclusions will not hold, and discovering such
special cases will be of interest, especially with respect to determining fundamental
system properties for which extension is simpler to use than heterogeneity (or vice
versa). As well, it would be useful to attempt other case studies, beyond time and space.
Extension with respect to semantics, e.g., such as is done in [5], would be interesting to
study and compare as well.

Acknowledgements.Thanks to Rick Hehner, Jonathan Ostroff, and Phil Brooke for
their comments. Special thanks to the anonymous referees for their detailed suggestions,
which have improved the quality and presentation of the paper. This work was supported
with the help of the National Science and Engineering Research Council of Canada.

References

1. P. Baumann and K. Lerner. A Framework for the Specification of Reactive and Con-
current Systems in Z. InProc. 15th Conference on Foundations of Software Technol-
ogy and Theoretical Computer Science, LNCS 1026, Springer-Verlag, 1995.

2. J.-M. Bruel, A. Benzekri, and Y. Raymaud. Z and the Specification of Real-time Sys-
tems. InProc. 7th Int. Conf. on Putting into Practice Methods and Tools for Informa-
tion System Design, IRIN, 1995.

3. C.J. Fidge. Real-time Refinement. InProc. FME ’93, LNCS 670, Springer-Verlag,
1993.

4. J. Grundy. Predicative Programming—A Survey. InProc. Formal Methods in Pro-
gramming and Their Applications,LNCS 735, Springer-Verlag, 1993.

5. E.C.R. Hehner and A.J. Malton. Termination Conventions and Comparative Seman-
tics,Acta Informatica, 25 (1988).

6. E.C.R. Hehner.A Practical Theory of Programming, Springer-Verlag, 1993.
7. E.C.R. Hehner. Formalization of Time and Space, submitted.
8. C.C. Morgan.Programming from Specifications, Prentice-Hall, Second Edition, 1994.
9. R.F. Paige. A Meta-Method for Formal Method Integration. InProc. FME ’97, LNCS

1313, Springer-Verlag, 1997.
10. J.M. Spivey.The Z Notation: A Reference Manual, Prentice-Hall, 1989.
11. N. Ward. Adding specification constructors to the refinement calculus. InProc. FME

’93, LNCS 670, Springer-Verlag, 1993.
12. J.B. Wordsworth.Software Development with Z, Addison-Wesley, 1992.
13. P. Zave and M. Jackson. Where do operations come from? An approach to multi-

paradigm specification,IEEE Trans. on Software Engineering, 12(7), July 1996.

