Java By Abstraction -

Test-B (Chapters 1-6)

Last Name

First Name

Do not write below thisline

B (60%)

A (40%)

TOTAL

String Methods
(invoke on a string s)

char charAt(int p)
Returns the character at position# p in s.

bool ean equals(String t)
Returns frue if s and t have equal
contents.

i Nt compareTo (String t)
Returns a negative number if s<t, zero if
s=t, and a positive number if s>t.

i nt indexOf (String t, int f)
Looks for the string t within s, starting at
position# f in s. Returns the position in s
where the match was found. Returns -1
if no match was found.

I nt eger. parseInt(s)

Doubl e. parseDouble(S)

Static methods to convert a string s that
contains a number to a primitive type.

i nt indexOf (String t)
Looks for the string t within s (as
above), starting at the beginning of s.

String trim()
Returns the same content as s but with any
leading/trailing white-space removed.

String substring(int f£,int t)
Returns all characters in s with position
numbers 3 fand < t.

Static methods in Math

String substring(int £)
Returns a substring of s that begins at f
and extends to the end of s.

doubl e abs (double x)
Returns the absolute value of x.

String replace(char x,char y)
Returns a string with all occurrences of
character x in s replaced by y.

doubl e pow(double x, double y)
Returns x raised to y.

String toUpper/LowerCase ()
Returns a string of all characters in s
converted to upper / lower case.

doubl e rint(doubl e a)
Returns the closest doubl e value to a that
is equal to a mathematical integer.

GROUP - A <10 questions x 4 points each = 40 points >

For each question, write in the box the output of the shown fragment. If you believe the
fragment will not produce output due to errors, write the error type and a brief
explanation. You can assume all needed classes are properly imported.

A1l int k = 16412;
int m=k % 10;
k = k / 10;
k = k % 1000;
IO printin(m;
| O println(k);

A2 String s = "York University";
int p = s.indexOf("n");
int g = s.substring(3, 9).indexOr("n");
| Q. println(p);
IO println(q);

A3 Stock s new St ock("NT");
Stock u new St ock();

St ock t S;

u. set Synbol (" NT");

| O. println(t.getSymbol ());

s. set Synbol ("ATY");
| Q. println(t.equals(u));

Java By Abstraction Test-B Pg. 1 of 10

GROUP - A continued

A4 int i1, 12, i3;
double r1, r2;

il = 5;
rl = 3.0;
rz =2 * ri;
i2=2*i1;
|3=|2/r2;

IO println(r2);
IO println(i3);

A5 The BankAccount class has a constructor that takes two parameters: the name
of the account (a Stri ng) and its initial balance (a doubl e). The class has a
doubl e accessor method get Bal ance() that returns the balance of the
account on which it was invoked.

BankAccount al
BankAccount a2
BankAccount a3;

new BankAccount (" Mary", 1000);
new BankAccount (" Mary", 1000);

a3 = al;

int m= O;

if (a2 == a3)
{ m= 55;

}

int k = 0O;

if (a2 == al)
{ k -1

} else if (a3.getBal ance() == a2.getBal ance())
{ k -22

} else

{ k =-333

}

IO println(m;
| O println(k);

Java By Abstraction Test-B Pg. 2 of 10

GROUP - A continued

A6 int x = 5763;
int y = 0;
int k;
for (k = 0; x > 0; k++)
{ y=y +x % 10;
x = x [10;
}
| O println(k);
O println(y);
A7 int a = 10;
int b = 20;
int ¢ = 30;
boolean m= a + 10 == c;
IO println(m;

if (a>b || b+ 10 > ¢)
IO println("case 1");
else if (a<b && b + 10 < ¢)
IO println("case 2");
elseif (!'(a+20 >c) || a+ 10 < b)
IO println("case 3");
el se
IO println("case 4");

Java By Abstraction Test-B Pg. 3 of 10

GROUP - A continued

A8 String s = "abcdefgh";
int K = s.length() - 6;
IO println(s.substring(k, s.length() - 1));
boolean b = s.substring(1,2) == "b";
| O. println(b);

A9 String sl = "100";
String s2 "20";
IO println(sl + s2 + 30);
IO printin(9/ 2 + 30 + s1 + s2);

A10 Stock stkl = new Stock("RY");

Stock stk2 = new St ock("BMJ');
Stock stk3 = stk2;
stk2 = null

bool ean bl stk2 == stk3;
O println(bl);

st k3. set Synmbol ("RY");
bool ean b2 = stk3 == stkl;
| O println(b2);

Java By Abstraction Test-B Pg. 4 of 10

GROUP - B <60 points >

B.1 <20 points>

Consider the following (partial) API of two classes:

Department Class

Constructor Summary

Departnent (String nane, int budget)
Constructs a Depar t ment object.

Parameters:

name - name of the department
budget - budget of this department

Method Summary

voi d

assi gn(Enpl oyee who)

Add an employee to t hi s department

Parameter:

who - the employee to be assigned to t hi s department

get HeadCount ()
Returns:
the number of employees in t hi s department

get Budget ()
Returns:
the budget of t hi s department

voi d

changeBudget (i nt del ta)

Increase or decrease the budget of t hi s department by the passed
amount. Delta is the increment or decrement, not the new budget.
Parameter:

delta - change the budget by adding this amount to it (fo reduce budget,
provide a negative amount).

Employee Class

Constructor Summary

Enpl oyee(String nanme,int rank)
Constructs an Enpl oyee object.

Parameters:

name - name of the employee
rank - the rank (level) of the employee

Java By Abstraction

Test-B Pg. 5 of 10

B.1, continued

Develop the Java application App whose main method performs the following tasks, in the
order shown:

1. Create a department called "R&D" with budget 2,000,000.
2. Create an employee John whose rank is 3.

3. Create an employee Debbie whose rank is 2.

4. Assign both John and Debbie to the R&D department

5. Determine the head count of the R&D department by using a method, and store it in
some variable count .

6. If count is greater than 10, increase the department budget by 5%, otherwise reduce
it by 2%.

Note that it is OK to use the above magic numbers —no need to store them in finals.

Write your app on the next page.

Java By Abstraction Test-B Pg. 6 of 10

B.1, continued

i nport type.lang.*;

public class App
{ public static void main(String[] args)

{

Java By Abstraction Test-B Pg. 7 of 10

GROUP - B

B.2 <20 points>
Write the program App that starts by prompting for and reading a string from the user. If
the length of the entered string is equal to or greater than 20, the program must terminate
with the error message "Stri ng too | ong!". Otherwise, the program outputs the string
after padding it with +' characters at its two ends, so that the total length of the output is
20 and the entered string is at | Enter a string: Toronto

the centre of the output. If the | +++++++Tor ont o++++++
number of '+' characters to be

added is odd, you can put the | Enter a string: Computer Science Dept.
extra '+' on either side. Three | String too | ong!
samples are shown.

Enter a string: 1234567890
+++++1234567890+++++

i nport type.lang.*;

public class App

{ public static void main(String[] args)
{ final int WDTH = 20;

Java By Abstraction Test-B Pg. 8 of 10

GROUP - B

B.3 <20 points>

Write the program App that plays a game with the user as follows: it prompts the user to
enter a guess for the role of the dice. It then simulates throwing one die by generating a
random number (an integer between 1 and 6, inclusive) and displaying it on the screen. If
the user's guess was correct, the user gets $2; i.e. the program adds $2 to the user's
balance, otherwise, the user loses $2, and the new balance is displayed on the screen.
The game continues indefinitely until the user enters an invalid guess (less than 1 or more
than 6) or runs out of money. The user starts off with $10.

Here is a partial APl of the Random class whose services enable you to simulate the
throwing of a dice:

Random Class in the java.util package

Constructor Summary

Random()
Creates a new random number generator.

Method Summary

i nt nextlnt(int n)
Returns a random number uniformly distributed between 0 (inclusive) and
the specified parameter n (exclusive); i.e. the return is greater or equal to
0 and less than n.

Write the program on the next page.

Java By Abstraction Test-B Pg. 9 of 10

B.3, continued

i nport type.lang.*;

public class App
{ public static void main(String[] args)

{

Java By Abstraction Test-B Pg. 10 of 10

