
Outline of Test-B (Chapters 1-6)

I. SCOPE

The test aims at testing your understanding of the following topics:

• Object-Based Concepts
Attributes and methods; static vs. non-static; API; field usage; final fields;
method signature and overloading; method invocation and return; constructors
and the role of new; memory diagrams; object vs. object reference; etc.

• Program Development & Java

The development cycle; VM, bytecode, and compilation; syntax, runtime and
logic errors; statement syntax; declaration; I/O via the type.lang package;
primitive types; expression evaluation; automatic vs. manual casts; assignment,
relational, and boolean operators; selection; iteration; etc.

• Using a standard or a given API

Accessing fields and invoking methods; static versus not-static; declaring local
variables and constants; carrying out assignments; I/O; input validation; output
formatting; appropriate usage of selection and looping constructs; operators; etc.

II. FORMAT

The test achieves its objectives through two groups of questions of weights ~40% (for A)
and ~60% (for B):

A. Multiple-choice or tracing questions in which given a Java program or a fragment
thereof, you are asked to identify syntax / logic errors, describe what the fragment
is doing (its functionality), and/or state the fragment's output(s) given its input(s).

B. You will be asked to write an app (or a fragment thereof) that accomplishes a

stated task. If the task involves a new class, its API will be given. Otherwise you
rely on your knowledge of the API of the String class, the Math class, or the
classes in type.lang.

Note:
You are assumed to have memorized the names of the primitive types; the arithmetic, re-
lational, and boolean operators; the assignment algorithm; and the main features of the
API of the classes: type.lang.IO, type.lang.SE, java.lang.Math, and
java.lang.String Nevertheless, the following sheet will be provided:

Data Sheet for Test-B

String Methods
(invoke on a string s)

char charAt(int p)
Returns the character at position# p in s.

boolean equals(String t)
Returns true if s and t have equal contents.

int compareTo(String t)
Returns a negative number if s<t, zero if s=t,
and a positive number if s>t.

int indexOf(String t, int f)
Looks for the string t within s, starting at
position# f in s. Returns the position in s
where the match was found. Returns -1 if
no match was found.

Integer.parseInt(s)
Double.parseDouble(s)
Static methods to convert a string s that
contains a number to a primitive type.

int indexOf(String t)
Looks for the string t within s (as
above), starting at the beginning of s.

String trim()
Returns the same content as s but with
any leading/trailing white-space removed.

String substring(int f,int t)
Returns all characters in s with position
numbers ≥ f and < t.

Static methods in Math

String substring(int f)
Returns a substring of s that begins at f and
extends to the end of s.

double abs(double x)
Returns the absolute value of x.

String replace(char x,char y)
Returns a string with all occurrences of
character x in s replaced by y.

double pow(double x, double y)
Returns x raised to y.

String toUpper/LowerCase()
Returns a string of all characters in s
converted to upper / lower case.

double rint(double a)
Returns the closest double value to a that is
equal to a mathematical integer.

