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SINGLE QUBIT SYSTEMS 
 

 
1. The Qubit 
The qubit (short for quantum bit) is the smallest unit of information in the quantum world. It is 
much richer (in terms of information content) than the bit of the classical world, which can only 
be in one of two states (yes/no, true/false, 0/1, …). But once a qubit is measured (information 
about its state leaks out of the system being studied), its state collapses, and it reduces to a bit, 
thereby losing all its information content except for the 0 or 1 outcome.  
 
In our Apple gedanken, the qubit is person while inside rooms and corridors. It could have all 
kinds of thoughts about apples while in there, but once we observe from which door it exited, it 
collapses to either a yes or a no person, i.e. the qubit becomes a bit.  
 
A qubit can be realized using any two-state quantum system. Examples include: a photon (with 
transmitted versus reflected states); a photon (with horizontal versus vertical polarization); an 
electron or a nucleus (with spin up versus down); and a superconducting loop with Josephson 
junctions (with clockwise versus counterclockwise current).  
 

2. The State 
The state of a qubit (its information content) before a measurement is a superposition of the 
two possible outcomes of that measurement. There are a number of mathematical structures 
capable of representing such a two-entity superposition (a point in a plane, a vector, a column 
vector, an ordered pair, etc.) and we will go with a vector. And as noted in the Apple Gedanken 
experiment, this vector must have a norm (length) associated with it (so we can normalize it) 
and must be scalable by a complex number (so we can represent speakers). Finally, in order to 
accommodate superposition, we need to be able to add these vectors. 
 
The vector that represents a qubit in state s can be written as s (in bold), or as s with an arrow 
on top, or using Dirac's bra-ket notation, which we will adopt throughout. In this notation, the 
vector is written as a ket |s>.  
 
A set of elements (vectors) that have an addition operation + (defined with the typical commu-
tative group properties), a multiplication * by a scalar field (complex numbers), and a distribu-
tive behaviour of * over + is known as a vector space. And if we augment this space with a dot 
product that allows us to define a distance metric (and thus norm) in a complete way, we end 
up with what is known as a Hilbert space. 
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Basis 
Since our qubit is a two-state system, our vector space is two dimensional, i.e. any vector in it 
can be written uniquely as a linear combination of two vectors that span the space. These two 
vectors are known as the basis of the vector space. We usually work in the so-called standard 
(or laboratory) basis in which the two vectors are denoted by |0> and |1>. The state |s> of our 
qubit can thus be written as:  
 
|s> = ⍺|0> + β|1> 
 
where ⍺ and β are complex numbers known as the components (or projections) of the state 
along the two basis vectors. In this basis, we can also represent |s> using the column vector: 
 

!
𝛼
𝛽
$ 

 
If we take the adjoint of |s> (transpose and complex conjugate), we get the row vector: 
 
(𝛼∗ 𝛽∗) 
 
which is denoted using the bra-ket notation with the bra: <s|.  
 
It should be noted that our vector space has infinitely many bases. Any two unit-length vectors 
that are not multiples of each other can be used to form a basis.  
 
Dot Product  
Given two vectors, |s> (with components s1 and s2) and |t> (with components t1 and t2), their 
inner product (aka dot product) denoted by <s|t> (or s ⋅ t) is defined as the complex number: 
 
𝑠	. 𝑡 =	< 𝑠|𝑡 >	= 	 𝑠"∗ × 𝑡" + 𝑠#∗ × 𝑡# 
 
Using this, one can easily show that: 
 

• <s|s> is real and non-negative 
• <s|t> = <t|s>* 
• <s|(a|t1> + b|t2>) = a<s|t1> + b<s|t1>  

 
The first property allows us to define the norm (or length) of a vector as: 
 

‖𝑠‖ = 2< 𝑠|𝑠 >  
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A vector is normalized if its length is 1, and two vectors are orthogonal if their dot product is 0. 
If two vectors are both normalized and orthogonal, they are orthonormal. Our basis vectors are 
always chosen to be orthonormal. Hence, for the standard basis, we have: 
 
<0|0> = <1|1> = 1 and <0|1> = <1|0> = 0 
 
And as noted earlier, there are infinitely many bases in the vector space and all of which are 
orthonormal. Let |x>, |y> be the vectors of a non-standard base, and note the followings: 
 

• By Orthonormality 
<x|x> = <y|y> = 1 and <x|y> = <y|x> = 0 

 
• Change of Basis 

If |s> = ⍺|0> + β|1> then we can also express it in the (x,y) basis as: |s> = ⍺'|x> + β'|y>, 
where ⍺', β' are the components (or projections) of |s> on |x> and |y>. To compute 
them, multiply both sides of the first expression by the bra <x| and again by <y|: 

|s> = ⍺|0> + β|1> => <x|s> = ⍺<x|0> + β<x|1> => ⍺'	=	⍺<x|0> + β<x|1> 
|s> = ⍺|0> + β|1> => <y|s> = ⍺<y|0> + β<y|1> => β'	=	⍺<y|0> + β<y|1> 

 Hence: 

3
𝛼′
𝛽′5

= !< 𝑥|0 > < 𝑥|1 >
< 𝑦|0 > < 𝑦|1 >$ × !

𝛼
𝛽
$ 

 
• Superposition is Basis Dependent 

If |s> = ⍺|0> + β|1>, with ⍺ and β ≠ 0 then |s> is a superposition state. But if we express 
the same state in the x,y basis, |s> = ⍺'|x> + β'|y>, then it is possible that either ⍺' or β' 
is 0, which means |s> is not a superposition in the eyes of the (x,y) basis. 

 
Global Phase  
A vector |s> = ⍺|0> + β|1> that represents a qubit must be normalized. Hence: 
 
< 𝑠|𝑠 >= 𝛼∗ × 𝛼 + 𝛽∗ × 𝛽 =	 |𝛼|# + |𝛽|# = 1 
 
We can build this constraint in by writing each of ⍺ and β in terms of modulus and argument 
and expressing the two moduli as the sin and cos of some angle (so the sum of their squares 
will be 1). And by pulling out a global phase, we end up with: 
 

|𝑠 >= 𝑒$% × ;𝑐𝑜𝑠(𝜃/2)|0 > +	𝑠𝑖𝑛(𝜃/2)𝑒$&|1 >C 
 

The global phase g has no physical meaning (it has no implication) and can be dropped. In other 
words, all state vectors that have the same θ and 𝜑 are considered equivalent regardless of the 
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values of g in them. We will from now on set g to zero to represent all these vectors, and hence, 
the most general qubit state (in the quotient space) is represented by: 

|𝑠 >= 𝑐𝑜𝑠(𝜃/2)|0 > +	𝑠𝑖𝑛(𝜃/2)𝑒!"|1 > 

Observe the number of parameters (and hence the entropy or the information content) needed 
to specify a qubit: rather than just 0 or 1 for the state of a bit, a qubit needs two real numbers: 
θ∈[0,π] and 𝜑∈ [0,2π).  
 
Bloch Sphere  
Since the qubit state can expressed as a linear combination of |0> and |1>, one is tempted to 
visualize it as a 2D vector with |0> being the unit vector of the horizontal x-axis and |1> the unit 
vector on the vertical y-axis. This picture would be valid if both components are real but is very 
deceptive otherwise. We will therefore employ a different 
geometric view, the Bloch sphere, as shown. The sphere has 
a radius of 1, and its surface represents all the possible qubit 
states. The qubit state vector (from the centre to a point on 
the surface) is normalized and makes the two angles, θ and 
𝜑,	as	shown.	Notice	how	|0>	and	|1>	are	not	perpendicu-
lar	in	this	view—they	are	along	the	+z	and	-z	axis.	 
 
In addition to the standard basis, we sometime use the so-
called Hadamard basis whose two vectors are: 
|+>	= (|0 > +	|1 >)	/		√2	 
|−>	= (|0 > −	|1 >)	/		√2	 

Comparing these expressions to the one describing the most general qubit vector reveals that 
they correspond to θ=π/2 in both and 𝜑=0	for	|+>	and	π for |−>. The Hadamard basis vectors 
in the Bloch view are thus unit vectors along the +x and -x axis. 

The Bloch Sphere provides a visual account of the difference between a qubit and a bit vis-à-vis 
information content: the qubit can be any point on the surface, but once measured in the stan-
dard basis, it reduces to a bit—a point either at the north or the south pole of the sphere. 
  
• Prove that <s|t> = [ <t|s> ]* 
• Prove that <s|s> is real and non-negative 
• Prove that: <u | ( ⍺|s> + β|t> ) = ⍺ <u|s> ) +  β <u|t> 
• Consider the two vectors: |i> = (|0> + i|1>)/√2 and |−i> = (|0> − i|1>)/√2 

Prove that they form an orthonormal basis and locate them on the Bloch sphere. 
• Prove that these two vectors represent the same state: 

|0> and i|0>. 
• Prove that these two vectors represent the same state: 

(i|1> −	|0>)/√2 and (i|0> + |1>)/√2. 
• Prove that these two vectors represent the same state: 

(|+> +	|−>)/√2 and |0>. 
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• Is this state a superposition in the standard basis? 
(|0> − i|1>)/√2 

• Is this state a superposition in the standard basis? 
√3/2|+> − 1/2|−>  

• Prove the change-of-basis matrix is unitary. 
• Prove that any transformation can be thought of as a change of basis. Conclude from that a 

way to check if a matrix is unitary. 
Hint: the rows (and columns) are the vectors of two bases, and these bases are orthonormal.  

 

3. Transformations 
Devices that modify the qubit state without learning anything about its current state (no leak of 
information) are transformations that take one vector to another within the Hilbert space. In 
the Apple Gedanken experiment, the rooms are such devices. In physical realizations, beam 
splitters, glass plates, magnetic fields, or microwave pulse (depending on how the qubit is rea-
lized) are used to modify the state of the qubit, e.g. take it from |0> to |1> or from one super-
position to another. The time evolution of a closed system is also a state transformation.   
 
Mathematically, transformations appear as operators in the state space, and once a basis is 
chosen, these operators can be represented by matrices. 
 
Linearity 
All transformations in the quantum world are linear, i.e. given a transformation T, 

T (⍺|0> + β|1>) = ⍺T|0> + β T|1>  

Linearity is very useful in quantum computing because it tells us how a device will act on a qubit 
in a superposition state if we know how it acts on classical bits (the basis vectors). Linearity also 
justifies using matrices to represent transformations. 
 
Unitarity 
All transformations in the quantum world preserve the normalization of the state, and this is 
achieved by requiring unitarity. A transformation matrix T is unitary if: 

T Unitary  ⇔  T†T = T T† = I 

where T† is the adjoint (complex conjugate of the transpose) of T. And from the above equality, 
we see that T† is no other than T-1, the inverse of T. 
 
Reversibility 
All transformations in the quantum world are reversible. Mathematically, this is a consequence 
of unitarity because the inverse of a unitary matrix exists, so we can apply it to the output of 
the device to reproduce its input. For computing, this is quite a contrast to classical gates (the 
building blocks of computers), such as OR and AND, which are non-reversible.   
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Complex Rotation 
Since all vectors in the state space are normalized, and since all transformations are unitary, the 
length of any transformed vector remains 1. Hence, all transformations are actually rotations. It 
should be kept in mind however, that this is a complex space, so these rotations do not look the 
same (geometrically) as O(3) rotations. Keep in mind that there 4 different spaces: the complex 
Hilbert space where linear algebra reigns; the projective space (all vectors normalized and only 
one vector per global phase) where the qubit states live; the parameter space (θ,𝜑) where the 
Bloch sphere allows us to visualize the states; and our "real" space where the physical qubits 
(photons, electrons, …) reside.  
 
 
4. Measurement 
Unlike a transforming device, a measuring device seeks to glean information about the state of 
the system, and it does so in an odd way. Specifically: 

• Each measuring device has its own basis for the vector space. Let |e1> and |e2> denote the 
two basis vectors of that basis.  

• Given a vector |s> to be measured, the device computes its components ⍺ and β along the 
|e1> and |e2>. 

• The system is forced to collapse to (i.e. become) either |e1> or |e2>. The choice is random 
but not uniformly so. It chooses |e1> with probability |⍺|2 and |e2> with probability |β|2. 

 
The following key points must be kept in mind vis-à-vis measurement and collapse: 
 
A. Once a measurement is made, the collapsed state of the system does not change (assuming 

the system does not interact with anything). In other words, no matter how many times the 
measurement is repeated, the outcome will stay the same. 
 

B. Randomness is intrinsic in Nature. Unless the state vector happened to be along one of the 
basis vectors of the measuring device (in which case the outcome is certain to be the state), 
the outcome is truly random and has a distribution derived from the components of the 
state vector along the vectors of the measurement basis. This is in stark contrast with our 
classical world in which randomness is a convenience that covers our inability to know the 
initial condition exactly or to cope with complexity. 

 
C. We cannot determine the state of a given qubit exactly. In fact, we cannot even determine 

it probabilistically because once we measure, the state collapses. The only way out would 
be to make many copies of that state (an ensemble) and then measure all the copies to 
obtain stats about the various outcomes. Alas, it is not possible to copy a state as shown by 
the following theorem: 
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The No-Cloning Theorem 
It is impossible to copy a given unknown quantum state. The proof involves multi-qubit 
vectors, which we haven't covered yet, so we will return to this proof. Note that you can of 
course copy a known state (by constructing it) but not an unknown one. 
 
The post-measurement collapse and the inability to copy states sounds ominous for 
quantum computing. For even if we benefited from the rich information content and the 
rich parallelism of the quantum world, the results of any computation we do there is 
seemingly inaccessible to us. We will see later that clever transformations in the quantum 
world before we measure, can put the result state in a form that is useful to us even after it 
collapses. 
 

D. We cannot always distinguish two given states exactly. Even if we know exactly the states 
of two qubits, and we just want to know which is which, we cannot perform a measurement 
to tell them apart in all cases. If the two vectors are identical, then there is nothing to do. If 
they are orthogonal, then we measure using them as basis, and in that case, the outcomes 
would be 0 for one of them, 1 for the other. In all other cases (i.e. vectors neither parallel 
not perpendicular), the outcomes are probabilistic and cannot distinguish the two exactly. 

 
E. A measuring device is designed to measure some observable, e.g. the spin of an electron. 

Mathematically, that observable is represented by a Hermitian matrix (one that is equal to 
its adjoint). The eigenvectors of that matrix define the device's basis. The act of forcing the 
state to become one of the basis vectors is thus by a projection operator (or a matrix). The 
outcome of the measurement is the eigenvalue of the chosen eigenvector. For example, to 
force the state to be along |0>, we use the projector |0><0| or the matrix [ 1,0], [0,0] ]. 

 
• A qubit in state (2|0> + |1>)/√5 is measured in the standard basis. Show that the outcome of 

the measurement will be the bit 0 80% of the time. But if we measure in the Hadamard basis 
then the state will collapse to |+> 90% of the time. 

• What is wrong with this argument: "A qubit in pure state |0> is measured in the +/− basis. 
Given the 1/√2 amplitude, the measurement outcome is certain to be ½"?  

 
5. Gates 
When transformations are performed as part of a computation (an algorithm), we call them 
gates and use circuit-derived terminology such as input and output. Hence, gates are always 
linear, unitary, and reversible, and are represented by operators or matrices. 
 
To specify the function or purpose of a gate, we often specify how the gate acts on a classical 
bit and then invoke linearity to determine how it acts on a qubit. To obtain the matrix of the 
gate, we can do so by inspection, given the gate's function, or use projection operators (outer 
products). Here is an example: 
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Suppose we need to transform a state to its negation. In the classical bit world, negating a bit 
means flipping it from 0 to 1 or from 1 to 0. In the quantum world, we leverage linearity to de-
fine the negation of |s> = ⍺|0> + β|1> as |s> = ⍺|1> + β|0>. How do we find the matrix of this 
transformation? We will do that by expressing the transformation as an operator first and then 
obtaining the matrix. We note that multiplying a state by |0><1| will project its |1> component 
on |0>, and similarly, |1><0| will project its |0> component on |1>. Hence, if we do both, the 
state will be negated. Hence, the sought operator is: 

|0><1| + |1><0| 

These two outer products lead to the matrix: 

!
1
0
$ (0 1) + !

0
1
$ (1 0) = D0 1

0 0E + D
0 0
1 0E = D0 1

1 0E 

This is the Pauli X matrix, and it behaves like a NOT. Here are the three Pauli matrices: 

𝐼 = D1 0
0 1E , 𝑋 = D0 1

1 0E , 𝑌 = D0 −𝑖
𝑖 0 E , 𝑍 = D1 0

0 −1E 

The XYZ Pauli matrices can be used to effect state rotations on the Bloch sphere. Specifically, 
the following operators rotate the state by an angle θ about the X, Y, and Z axis, respectively.  

𝑅! = 𝑒"#$%/' = $
cos(𝜃/2) −𝑖𝑠𝑖𝑛(𝜃/2)
−𝑖𝑠𝑖𝑛(𝜃/2) cos(𝜃/2) 1 

𝑅( = 𝑒"#)%/' = $
cos(𝜃/2) −𝑠𝑖𝑛(𝜃/2)
𝑠𝑖𝑛(𝜃/2) cos(𝜃/2) 1 

𝑅* = 𝑒"#+%/' = $e
"#%/' 0
0 e#%/'

1 

In general, cos(θ/2)𝟙 + isin(θ/2) (X.nX + Y.nY + Z.nZ ) rotates the state by an angle θ about n. 
 
Two other gates, Hadamard and Phase, are used frequently in quantum algorithms. The first is 
denoted by H and it turns the standard 0/1 basis to the Hadamard +/− basis. Based on this, we 
can see that its operator and matrix are: 

𝐻 = |+>< 0| + |−>< 1| ⇒ 	𝐻 = 1/√2 D1 1
1 −1E 

The phase gate applies a phase to either or both components of a qubit. We can always pull out 
and drop a global phase and leave only the phase on the second component. Hence: 

𝑃ℎ𝑎𝑠𝑒 = D1 0
0 𝑒$'E 

If θ = π/2 (the phase is i) then this gate is often denoted by S or P, and if θ = π/4 then this gate is 
often denoted by T. 
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Once the gate's matrix is obtained, we need to come up with a physical realization of it so it can 
be inserted in a quantum computer. To that end, the notion of universality is handy. In classical 
digital logic, it was found that any gate can be built using only gates chosen from a universal 
set, e.g. the {AND, OR, NOT} set. The same was found for quantum gates: any single-qubit gate 
can be synthesized from gates chosen from a universal set. Hence, once the gates in a universal 
set are realized, all other gates can be synthesized. There are many universal sets. For example, 
{ Ry, Rz } is universal in that given any gate G, we can always find angles a, b, c such that, up to a 
global phase, G = Rz(a) @ Ry(b) @ Rz(c). The set { H, Phase } is also universal. 
 
 
• What does the Z matrix do? Express it as the sum of two outer products. 
• The Hadamard matrix turns |0> to |+> and |1> to |–>. Create its matrix via outer products. 
• Compute X@Y (@ is matrix multiplication) and express it in terms of a Pauli matrix. 
• Show that the Hadamard gate takes |x> to [ |0> + (−1)x |1> ] / √2, where x is either 0 or 1. 
• Why is 1/√2 x [ [exp(ipi/4),	exp(−ipi/4], [exp(−ipi/4),	exp(ipi/4] ] known as the square root of 

the X gate. It takes 0 not to 1 but halfway to 45 degrees … 
• Prove that X = HZH.   
 
6. Gates by Code 
Rather than doing matrix operations by hand, we can use a programming language to do it for 
us. Python is a light-weight programming language that has a library called NumPy intended for 
scientific computations, including linear algebra. For example, to build the X gate from the sum 
of two outer products |0><1| + |1><0|, we start by importing the library module and giving it 
an abbreviated name np: 
 
import numpy as np  
In this module, vectors and matrices are called arrays. So to define the ket |0>, which is a 
column vector with 1 on top and 0 below, we write: 
 
ket0 = np.array([[1],[0]])  
To define the corresponding bra <0|, which is the adjoint of |0>, we transpose the above ket 
and complex conjugate the elements to obtain the row vector: 
 
bra0 = np.conjugate(ket0.T)  
Similarly for |1> and <1|: 
 
ket1 = np.array([[0],[1]]) 
bra1 = np.conjugate(ket1.T)  
Finally, we compute the two outer products (aka Kronecker product) and add them: 
 
x = np.kron(ket0, bra1) + np.kron(ket1, bra0)  
You can insert print statements throughout to see what is being computed, e.g. 
 
print("ket0: \n", ket0) 
print("x: \n", x) 
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(The "\n" character is to insert a new line between the textual message and the value.) 
 
The final output should be the same as the Pauli X matrix: 
 
pauliX = np.array([[0,1], [1,0]]) 
print(pauliX)  
Finally, let us test that our matrix does indeed negate the state. Start with: 
 
|state> = (3|0> + 4|1>)/5 = 0.6|0> + 0.8|1> 
 
and transform it via X (the @ operator multiplies matrices): 
 
state = np.array([[0.6],[0.8]]) 
print(x@state)  
The output should be a column vector with 0.8 on top and 0.6 below. 
 
7. Circuits with Qiskit 
Computing outputs programmatically rather than manually makes designing and testing gates a 
lot faster and less prone to errors. In this section, we move beyond gates and look at circuits 
made up of several gates intended to implement an algorithm. To that end, we enrich the pro-
gramming approach with the Qiskit framework. Qiskit was designed specifically for quantum 
computing, and hence, it knows about gates and states and has ready-made functions, so we 
don't need to build things from scratch as we did with NumPy. Moreover, Qiskit comes with 
visualization features that allows us to see the circuit and the Bloch Sphere, and with compila-
tion features that allows us to actually run the circuit either on a simulator or on a real quan-
tum computer backend.  
 
To build a circuit in Qiskit, five steps are needed: 

1. Indicate the number of qubits needed for the computation. These qubits are collectively 
known as the quantum register, and you create it using a statement like this: 
q = QuantumRegister(1,'q') 

The left-hand-side variable q holds this register; the "1" parameter means only one qubit is 
needed, and the final 'q' is an arbitrary label that we attach to this register, and it appears in 
the circuit diagram. It can be any label you like. 

 
2. Indicate the number of classical bits needed for the computation. All quantum algorithms 

end up in some measurement and in qiskit, the outcome of any measurement is stored in a 
classical bit. These bits are also collectively known as the classical register, and you create it 
using a statement like this: 

c = ClassicalRegister(1,'c') 

The left-hand-side variable c holds this register; the "1" parameter means only one qubit is 
needed, and the final 'c' is an arbitrary label that we attach to this register, and it appears in 
the circuit diagram. It can be any label you like. 
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3. Create the quantum circuit and give it a name. Use a statement like this: 
qc = QuantumCircuit(q,c) 

The left-hand-side variable qc holds the circuit, and the right-hand-side specifies the qubits 
it works on and the bits to store the measurement outcomes in. 
 

4. Initialize the input, i.e. specify the initial state of the qubits in the quantum register: 
qc.initialize([1,0], q) 

This function takes an array to indicate the initial state and the name of the quantum regis-
ter. In our example, the register holds only 1 qubit so the array has only two elements. 
 

5. Indicates the gates (x, y, z, h, p, …) that make up the circuit, e.g. 

qc.x(q[0]) 
qc.h(q[0]) 

Each statement starts with the circuit variable qc followed by a dot, followed by the gate. 
Note how Qiskit "knows" about the Hadamard gate h and the Pauli X gate x, so we don't 
need to build their matrices from scratch. You need to specify the quantum register and 
which qubit within it you like the gate to operate on. In our case, there is only one register 
and one qubit in it, so you can write q[0] or just q. 

 
Once these 5 steps are taken, you can draw the circuit and run it and see the outcome of 
measuring the output. Here is the complete program. 
 
import numpy as np 
from qiskit import * 
backend = Aer.get_backend('qasm_simulator') 
q = QuantumRegister(1,'q') 
c = ClassicalRegister(1,'c') 
qc = QuantumCircuit(q,c) 
qc.initialize([1,0], q) 
qc.x(q[0]) 
qc.h(q[0]) 
qc.measure(q,c) 
print(qc.draw(output='text')) 
job = execute(qc, backend, shots=1000) 
result = job.result() 
counts = result.get_counts() 
print(counts) 
 
Running this program yields the output below.  
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The measurement yielded stats of about 50%-50% for 0 and 1, so the final state before taking 
the measurement must have been an equal superposition: 1/√2(|0> ∓ |1>). We can't tell the 
relative phase between the two basis vectors, but we know their two amplitudes are equal in 
magnitude. Verify this manually (multiply the input states by the X and then the H matrix). 
 
Finally, we show three Qiskit features that I find very instructive: the ability to track the state 
vector ket along the circuit; the ability to see the state vector on the Bloch sphere; and the 
ability to use a custom gate:  
 

• Capturing the state ket 
To do this, we need is to save the state vector after each stage and then display it at the end. 
The needed additions to the above program are shown in purple below: 
 
qc.initialize([1,0], q) 
qc.save_statevector(label='v0') 
qc.x(q[0]) 
qc.save_statevector(label='v1') 
qc.h(q[0]) 
qc.save_statevector(label='v2') 
qc.measure(q,c)   
for i in range(0,3): 
    print("At barrier "+str(i)+":") 
    print(np.asarray(result.data(0)['v'+str(i)])) 
 
Running this program adds the following to the above output:  
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• Bloch visualization of the state 
To do this, we add two statements to your code, an import and a plot: 
 

 
 

 
 

• Using custom gates 
To add a custom gate (an arbitrary unitary matrix), we can either decompose it into a product 
of built-in, universal gates, or enter its matrix directly. For the latter, we add two statements: 
an import and an append, plus the matrix: 
   
 
 
 
 
 
 
 
 
 
 
 
 
  

from qiskit.quantum_info.operators import Operator 
... 
custom = np.matrix( … ) 
… 
qc.append(Operator(custom), [0]); 
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Remarks 
1. Postulate #1 of QM (Statics) 

The state is a vector in a complex Hilbert space. 

2. Postulate #2 of QM (Dynamics) 
The system evolves through a unitary transformation 

3. Postulate #3 of QM (Measurement) 
Each measuring device defines an orthonormal basis. Upon measurement, the outcome and 
the post-measurement state will be one of those basis vectors, with probability equal to the 
modulus squared of the state projection on that basis vector. 

4. Postulate #4 of QM (Composite) 
The state space of a composite system is the tensor product of the component spaces.  

5. It may sound negative that unknown states cannot be cloned (because no cloning precludes 
being able to gather statistics), but we can turn this to our advantage: digital currency can-
not be copied. Isn't the inability to forge money the key property of any currency? 

6. The programs we wrote for gates and circuits are not really programs in the typical sense; 
they don't compute. They merely describe behaviour, much like Verilog programs describe 
hardware. In particular, they cannot have selection (if statements) as this requires testing a 
condition, which amounts to measuring in the middle of computing, which would collapse 
the state—we only measure at the end of a quantum algorithm.   

7. Note that a circuit with a number of serial gates is just a model, or a visualization, of a 
number of transformations acting, one after the other, on the input. In terms of matrices, 
this model represents the product of the matrices of the gates. Viewed this way, the circuit 
seeks to perform a "big" unitary transformation, and it does that by expressing its matrix as 
a product of matrices (gates) belonging to some universal set. 

 


