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THE SHOR ALGORITHM 
 

 
1. The Problem 
Given an integer N > 1, factor it. If N is prime, the problem becomes trivial (only 1 and N divide 
N) so let us add “N is not prime” to the promise (note that this is easy to check since primality is 
in P). In addition, let us focus on finding just one non-trivial factor (i.e. neither 1 nor N) because 
once we find such a factor, we divide N by it to get a second, and if either is not prime, we use 
the same approach to factor it, and this ultimately leads to all the prime factors of N. Hence, 
our problem becomes: Given a non-prime integer N>1, find any non-trivial factor of it. 
 
This easy-to-state problem has the entire security of the Internet resting on its difficulty! The 
most commonly used encryption algorithm on the web is RSA, and it involves a publicly known 
integer that is equal to the product of two secret primes. Factoring it leads to discovering these 
two primes, and thus, to breaking the encryption. In the context of RSA, N involves hundreds of 
digits (thousands of bits).  
 
2. Examples 
N = 67,893 à 21 
 
N = 172,453 à 5563 
 
N =695,681,049,241à 771,401 
 
3. A Classical Algorithm 
The non-trivial factors of N must be in [2, N-1], so we can check them, one-by-one to see if any 
divides N (the check can be done efficiently by computing the GCD of N and the candidate 
factor). This approach grows linearly with N, so it is exponential in n, the number of bits in the 
binary representation of N. You can speed up the process by narrowing the range to [2, √N], but 
regardless, the problem has a O(2n) complexity. A randomized algorithm can sample this range, 
but to no avail: the complexity remains exponential. 
  
• The Euclidean algorithm for GCD is based on GCD(x, y) = GCD(y, x mod y), where x > y > 0. 

Use your favorite programming language to implement this algorithm and test it. What is the 
complexity in terms of n, the number of bits in the representations of x and y. 

• Suppose that N is a product of two primes and that we sampled the [2, N-1] range. What is 
the probability of failing to find a factor after k sample points? Estimate the value of k that 
makes this probability less than 50%.  
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4. The Algorithm at a Glance 
Follow these steps to find a factor of N: 

1. Generate a random integer a in [2,N–1]. 
This integer will be used as a base to be raised to an exponent. 

2. If a shares a factor with N (i.e. GCD(N,a) ≠ 1), we are done!  
In this case the GCD is the sought factor of N. 

3. We now have: GCD(N,a) = 1. 
This is almost always the case–astronomically unlikely to stumble on a factor of N.   

4. Consider the function f(x) = ax mod N, where x is a positive integer. 
The values of this function are all in [0,N–1]. 

5. Find the value(s) of x at which f is 1, and let r be the smallest such value. 
f has to be 1 at some value of x (by Euler theorem). 

6. If r is odd, the algorithm fails. Restart by going back to Step #1. 
It can be shown that r will be even with probability ≥ ½.  

7. Since ar = 1, then (ar/2 – 1) (ar/2 + 1) = 0  (all modulo N). 
We have two numbers multiplying to 0, i.e. to a multiple of N. 

8. The first number cannot be 0 (a multiple of N). 
Because this would contradict r being the smallest exponent that leads to 1. 

9. If the second number is zero, the algorithm fails. Restart by going back to Step #1. 
It can be shown that ar/2 + 1 ≠ 0 (mod N) with probability ≥ ½. 

10. Since both numbers are not zero yet their product is, we are done! 
GCD(ar/2 ± 1, N) are factors of N.  

 
Interestingly, only Step#5 needs a quantum computer; the remaining steps can easily be done 
on a classical computer. As we shall see, this step is called “period finding”. 
  
• Let N = 68,911, which is a product of two primes 137 and 503. Present a quantitative 

argument to show that it is unlikely to guess a such that GCD(N,a) ≠1.  
• For the following questions, assume that N=15 and a=2  
• Tabulate the function f(x) above for all values of x in [1,N-1].  
• How many values of x map to 1?  
• Determine the value of r. Is it even? 
• Compute ar/2 + 1 mod N. Is it 0 modulo N? 
• Based on your findings and on the above algorithm, what are the factors of N?  
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5. The Quantum Advantage 
Finding the integer r in Step#5 is as difficult a problem as finding a factor of N because r can be 
any integer in [2,N-1], which is the same range in which we look for factors. We can turn the 
search for r into a search for a global property of a function (something quantum computers do 
very well) as follows: since r yields 1 when used as an exponent, we can write:  
 
∀	𝑥 > 0:		𝑓(𝑥 + 𝑟) = 	𝑎!"#𝑚𝑜𝑑	𝑁 = 	𝑎!	𝑚𝑜𝑑	𝑁	 × 𝑎#𝑚𝑜𝑑	𝑁 = 𝑎!	𝑚𝑜𝑑	𝑁 = 𝑓(𝑥)  
 
Hence, the existence of r makes f a periodic function with period r. Quantum computing has 
proven extremely powerful in determining global properties of functions, periodicity in this 
case. Indeed, Simon’s algorithm used constructive and destructive interference to determine a 
property of a bijective function f, namely: the value of s that makes f(x⊕ s) = f(x). This equality 
bears strong resemblance to the above f(x+r)=f(x) except that the operation is bitwise xor in the 
former and integer addition in the latter. Indeed, Simon’s algorithm was a source of inspiration 
for Shor’s. In conclusion, note that the quantum aspect of integer factorization is period finding. 
 
To get a feel for this function, let us tabulate it for a few values of x. Specifically, look at N=21. 
The base, a, must be coprime with N so, aside from the trivial a=1 case, it can take 11 different 
values. The table below tabulates the function at values of x in [2,N-1] for each possible choice 
of a, one row per choice. Examine the rows and observe the patterns:  
 

ax 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

2 2 4 8 16 11 1 2 4 8 16 11 1 2 4 8 16 11 1 2 4 

4 4 16 1 4 16 1 4 16 1 4 16 1 4 16 1 4 16 1 4 16 

5 5 4 20 16 17 1 5 4 20 16 17 1 5 4 20 16 17 1 5 4 

8 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 

10 10 16 13 4 19 1 10 16 13 4 19 1 10 16 13 4 19 1 10 16 

11 11 16 8 4 2 1 11 16 8 4 2 1 11 16 8 4 2 1 11 16 

13 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 

16 16 4 1 16 4 1 16 4 1 16 4 1 16 4 1 16 4 1 16 4 

17 17 16 20 4 5 1 17 16 20 4 5 1 17 16 20 4 5 1 17 16 

19 19 4 13 16 10 1 19 4 13 16 10 1 19 4 13 16 10 1 19 4 

20 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 
 
Note that the function is periodic in all rows. The period is 6 in six of the rows, 3 in two, and 2 in 
three. Also note that in a row with period p, we have ap ≡ 1. Finally, note that when p is even 
and ap/2 is not -1, then ap/2 ± 1 do indeed contain factors of 21. 
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6. Period Finding: The Idea 
We need to find the period of a function f(x)=ax mod N given an oracle Uf that implements it in 
hardware. The domain of f is all the positive integers, and its codomain is [0,N-1]. To detect the 
period, the circuit must sample f at as many values of x as possible in the domain. To that end, 
let us make x m-qubit wide (which allows it to take classical values in [0,M-1], where M=2m. As 
to the control input, it must have the same width as f (because the two get xor’ed), so it needs 
to be n-qubit wide, where n is the number of bits in N (n = 1 + floor of lgN). We will see later 
that an accurate estimate of the period obtains when M≈N2, which means m≈2n. We thus have 
m+n inputs and m+n outputs, and we will set all n control qubits to zero: 

If we feed the oracle an equal superposition of all possible x values in [0,M-1], the output would 
be a superposition of 2m states each of which has a value for x entangled with a corresponding 
value for f(x):  
 

! |𝑥 >⊗ |𝑓(𝑥) >
"!#$

%&'

 

 
If we now measure the lower output |f(x)>, it will collapse to one of the values of f, say F, and 
the entangled upper output |x> will collapse to an equal superposition of all values of x that are 
consistent with F, i.e. values for which f(x)=F.  Since f is periodic with period r, the upper super-
position will involve values of x that are r apart, i.e. the upper output collapses to:  
 
|𝑥' > +	|𝑥' + 𝑟 > +	|𝑥' + 2𝑟 > +⋯+ |𝑥' + (𝑀/𝑟 − 1)𝑟 > 
 
where f(x0)=F. Note that the problem is done in the “quantum world” because if we can “see” 
this state, we can easily “see” r. Unfortunately, this is not the case in “our world” because all 
we can do is measure, and once we do, the state will collapse to one of the terms, and one 
term does not determine r. Cloning the state is not allowed, and repeating the entire process 
two times (in the hope of seeing two terms and determining r from their difference) doesn’t 
help because the two attempts may collapse to a different F, and thus a different x0. 
 
We therefore need to manipulate the state before we measure. As in the Apple Gedanken, we 
add a “merge” on the upper output (a quantum Fourier transform) to allow the components to 
interfere and expose the period. 

m 
| x > 

Uf | x > ⊗	|	f(x) > 
| 0 > 

n 

m 

n 
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7. Period Finding: The Algorithm 
The input consists of m+n qubits, m in the upper register and n in the lower, all set to |0>. We 
create a superposition in the upper input thru Hadamard gates. The gate’s lower output is then 
measured. The upper output undergoes a quantum Fourier transform before we arrive at the 
final upper output, which gets measured.   
 

|𝜓' >	= |000…000 >	⊗	|000…000 > 

|𝜓$ >	= 	
|0 > +	|1 >

√2
⊗
|0 > +	|1 >

√2
⊗…⊗

|0 > +	|1 >
√2

…⊗ |000…000 > 

 

|𝜓$ >	= 	
1
√𝑀

! |𝑘 >
(#$

)&'

⊗ |000…000 > 

|𝜓" >	= 	
1
√𝑀

! |𝑘 >
(#$

)&'

⊗ |𝑓(𝑘) > 

If we now measure the lower register of |ψ2>, |f(k)> will collapse to some value F and the 
entangled upper register |k> will collapse to values compatible with F, i.e. values of x that map 
to F. Since f is periodic with period r, there are M/r such values in [0,M-1] (as they are r apart): 

|𝜓* >	=
1

8𝑀/𝑟
! |𝑥' + 𝑘𝑟 >

(/,#$

)&'

	⊗ |𝐹 > ,	where	𝑓(𝑥') = 𝐹 

|ψ4> 

|0>⊗m H⊗m 
Uf 

QFT 

|0>⊗n 

|ψ2> |ψ1> |ψ0> |ψ3> 
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As indicated in the previous section, performing a measurement of the upper register at this 
stage is not helpful because we need at least two terms to discern the period r, and repeating 
the whole process is not guaranteed to have the same x0. That’s why we resort to Fourier: 

The Fourier transform is a well-established technique for detecting and exposing periodicity. 
The most common application involves a signal that changes in time in a periodic way. Taking 
the transform of that signal leads to a function that peaks around the periods of the signal, thus 
exposing them. The Quantum Fourier Transform (QFT) is a linear, unitary gate which, acting on 
an m-qubit input |x>, it produces the following m-qubit output (with M=2m): 

𝑄𝐹𝑇	|𝑥 >	=
1
√𝑀

! 𝜙-|𝑦 > 		where	𝜙- = 𝑒"./%-/(
(#$

-&'

 

Applying this to the upper m qubits in ψ3 (i.e. to the |x0 + kr> ket) yields: 

|𝜓0 >	=
1

8𝑀/𝑟
×

1
√𝑀

! 𝜙-|𝑦 >
(#$

-&'

=
√𝑟
𝑀

! 𝜙-|𝑦 >
(#$

-&'

 

where	𝜙- 	= ! 𝑒"./(%"2),)-/(
(/,#$

)&'

=	𝑒"./%"-/( ! 𝑒"./),-/(
(/,#$

)&'

 

How does QFT expose periodicity? The QFT output ψ4 looks like a superposition of M terms, but 
upon closer examination, we can see that many of them are zero (interfered destructively). The 
only non-zero terms (constructive interference) are those that correspond to the period r of ψ3.  
 
Indeed, the terms in which y is a multiple of M/r, the coefficient ɸy = M/r (because 2πikry/M in 
the final sum would be a multiple of 2πi, which leads to a sum of 1’s, which yields M/r). Clearly, 
there are r such terms in the sum, and hence: 
 

|𝜓0 >	=
√𝑟
𝑀
E !

𝑀
𝑟
|𝑦 >

-∣(/,

+ ! 𝜙-|𝑦 >
-∤(/,

F =
1
√𝑟

! |𝑦 >
-∣(/,

+
√𝑟
𝑀

! 𝜙-|𝑦 >
-∤(/,

 

Note that the first term is normalized, and since ψ4 is normalized, the last term must be zero. 
 
If we now measure ψ4, it will collapse randomly and uniformly to one of the y states in which y 
is some multiple of M/r, which gives us some information about r. To learn more, we repeat the 
entire process to get another multiple of M/r. After collecting enough distinct multiples, we 
should be able to compute M/r and thus r.  
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The above discussion glanced over a point: what if M/r is not an integer, i.e. the chosen range 
for x does not contain a whole number of periodic runs? In this case, the Fourier transform will 
have small spreads around multiples of M/r rather than being sharply peaked, and hence, the 
obtained multiples of M/r will be approximate. It can be shown that choosing N2 ≤ M < 2N2 will 
ensure that the measured state will, with high probability, be within ½ of a multiple of M/r.  
 
Finally, we need to estimate the number of times we need to repeat the entire process before 
the period can be determined. The problem is that each measurement gives a multiple of M/r, 
not M/r itself. For example, if M/r = 7 and the measurements yielded 14 and 21 then it is clear 
that M/r must be 7. But if the measurement yielded 14 and 28 then M/r could be 2 or 7. It can 
be shown that by using continued fractions, one can determine M/r, and thus r, unambiguously 
after at most lg(lgr) steps. The oracle complexity of our algorithm is thus O(lglgN) (because r is 
less than N), which is O(lgN), which is linear in the number of bits in N. 
  
• Argue that the intermediate measurement of the lower register is not needed. 

Hint: See the appendix in the notes on Simon’s Algorithm. 
• Show that terms in ψ4 in which y is not a multiple of M/r vanish (i.e. have ɸy = 0). 

Hint: This was shown above using a normalization argument. This question asks you to show 
it directly.  

 
 
 
 
 
 

Remarks 
• This algorithm was proposed by Peter Shor c. 1994. 

• All pre and post quantum processing is done on a classical computer. 

• The complexity of common classical factoring algorithms is O(2n), where n is the number of 
bits in the number to be factored. 

• The query complexity of Shor’s algorithm is O(n). 

• The complexity of Shor’s algorithm (not just query complexity) is O(n3) per iteration. This is 
estimated as shown below. 

• Computing GCD takes O(n). 

• The Uf oracle takes O(n3). Better exponentiation algorithms reduce this to O(n2lgnlglgn). 

• The QFT gate takes O(n2). It can be built out of O(n2) 1/2-qubit gates. 

 


