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Quantum Computing Notes 
Prof. Hamzeh Roumani 

EECS, York University, Toronto, Ont., Canada 

THE GROVER ALGORITHM 
 

 
1. The Problem 
Consider a function f: {0,1}n --> {0,1}. Its domain has 2n elements and its co-domain has 2. You 
can think of f as a 0/1-valued function of n 0/1 variables. In programming terms, f is a boolean 
function that takes n boolean parameters. And if you treat the n arguments of f as bits in the 
binary representation of some integer x, then f can be thought of as a function that maps an 
integer in [0,N-1] to either 0 or 1, where N=2n. We assume that f is provided as a black-box Uf 
(an oracle) that implements it in hardware. 
 
Given (the promise) that f maps all elements to 0 except for one which gets mapped to 1, i.e.: 
 

∀𝑥 ∈ [0, 𝑁 − 1]:	𝑓(𝑥) = 1
	0	𝑖𝑓	𝑥 ≠ 𝑡
	1	𝑖𝑓	𝑥 = 𝑡 

 
find t, the target (find its n bits). This is an example of search in unstructured data because we 
don’t have access to the function’s formula or algorithm–all we can do is query the oracle, by 
sending an x value, and examine its response. It is like searching in un-sorted arrays (a wrong 
guess does not lead to a better path toward the target). 
 

2. A Classical Algorithm 
Since we have no direct access to f (its formula or its circuit), all we can do is send arguments to 
the oracle and examine its returns. To find the target t, we must query the oracle N-1 times, in 
the worst case, before we stumble on t. Hence, this problem has a O(2n) query complexity. In 
fact, one can argue that the complexity of any classical algorithm must be Ω(2n).   
 
What if we settle for a randomized classical algorithm; one whose conclusion is mostly–but not 
always–correct? For example, we can pick a sample and hope to find t in it, which will bind the 
complexity by the sample size. Even such an approach cannot escape the exponential growth.  
  
• Some problems (like Sudoku) are hard to solve but easy to verify. Is Grover’s like that?  

• Argue that the query complexity of any deterministic classical algorithm is Ω(2n). 

• Show that the sample size in the proposed randomized algorithm has to be ~N/2 for the 
success probability to reach ½.  
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3. The Idea 
• Prepare an equal superposition of 

all values of x in [0,N-1], i.e.  

(1/√N) Σ|x> 

In this state, the amplitudes of all 
terms are equal (being 1/√N) so a 
measurement is equally likely to 
yield any of them. In the figure, N=8 
so the average of the amplitudes is:  
[ 8 x 1/√8 ] / 8 ≈ 0.354 
 
 

• Next, flip the amplitude of the term 
|t>. This is not possible in our world 
without evaluating f at all x values, 
but it is possible (and rather easy) in 
the quantum world as we shall see 
in the next section. 
 
In the figure, we assumed that t=5. 
The post-flip amplitude average is 
now: 

[ 7 x (1/√8) – 1 x (1/√8) ] / 8 ≈ 0.265  

 
 

• Finally, invert all amplitudes around 
the post-flip average, i.e. replace an 
amplitude ‘a’ with ‘2 x avg – a’.  
 
The x≠t amplitudes were all 0.089 
above average so they drop by that 
much below it to 0.176. As to the t 
amplitude, it jumps from –0.354 to 
+0.884. Hence, if we measure now, 
the outcome will be the sought t 
with high probability! 
 
Hence, the Flip-Invert technique amplifies the amplitude of the x we are searching for, thereby 
increasing the probability of measuring it. In the above, the increase was from 12% to 78% (the 
probability is the square of the amplitude). In fact, the Flip-Invert technique can be iterated in 
order to increase the probability even further.  

                 
                 
                 
                 
                 
                 
.354                avg 

                
         
         
         
 0  1  2  3  4  5  6  7 |x> 
                 
                 
                 

                 
                 
                 
                 
                 
                 

                 

.265                avg 
         

          
          
 0  1  2  3  4  5  6  7 |x> 
                 
                 
                 

                 
                 
                 
                 
                 
                 

                 

.265             Post-flip avg 
                

                 
                 
 0  1  2  3  4  5  6  7 |x> 
                 
                 
                 



Roumani on Quantum q.roumani.ca Page 3/7 

 
• In the above n=3 example, show that the average after the Invert is still 0.265. 

• Prove that the post-Invert average is always equal to the post-Flip average. 

• In the above n=3 example, show that repeating the Flip-Invert technique one more time (for 
a total of 2 iterations) would boost the probability of measuring t to about 95%. 

• In the above n=3 example, show that repeating the Flip-Invert technique two more time (for 
a total of 3 iterations) would lower the probability of measuring t to about 33%.  

• Work out the general case (not just n=3) and show that the amplitude of |t> increases from 
1/√N to (3 - 4/N)/√N after one Flip-Invert iteration.  

 
4. The Quantum Algorithm 
The circuit diagram starts the same as in the Deutsch problem: 

 

|𝜓! >	= |0 >	⊗	|0 >	⊗ |0 >	⊗ …	⊗ |0 >	⊗ |1 > 

|𝜓" >	= 	
1
√𝑁

, |𝑘 >
#$"

%&!

⊗ |−>	= 	
1
√𝑁

/|𝑡 > +,|𝑘 >
%'(

2⊗	|−> 

The Flip-Invert block that follows is to be repeated. We can think of this logically as looping the 
output of V back to the input of Uf (but this is not what physically happens--see the remarks at 
the end). Hence: 

|𝜓) >	= 3		|𝜓" >, 𝑖𝑛	𝑡ℎ𝑒	𝑓𝑖𝑟𝑠𝑡	𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
|𝜓* >, 𝑖𝑛	𝑠𝑢𝑏𝑠𝑒𝑞𝑢𝑒𝑛𝑡	𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 

After a number of iterations, we stop repeating and pass |ψ4> to the final stage. In it, the lower 
register (consisting of 1 qubit) gets uncomputed via a Hadamard gate, and the upper (consisting 
of n qubits) is measured to yield an outcome equal to |t> with high probability. 

|ψ4> |ψ3> |ψ1> 

|0>⊗n H⊗n 

H |1> 

|ψ0> 

INVERT 
V 

repeat O(√N) times 

FLIP 
Uf 

|ψ2> 

|1> H 
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Note that the upper register of |ψ1> consists of an equal superposition of all x values in [0,N-1] 
with all amplitudes being 1/√N. But since the Flip-Invert block seeks to amplify the amplitude of 
|t> and suppress the remaining (N-1) amplitudes equally, let us rewrite |ψ1> in a way that acco-
mmodates unequal amplitudes so it would be valid in all iterations, not just the first: 

|𝜓" >	= 	/𝛼|𝑡 > +𝛽,|𝑘 >
%'(

2⊗	|−> ,		where		𝛼) + (𝑁 − 1)𝛽) = 	1 

It should be noted that both ⍺ and β are real numbers because they start of being real, and FLIP 
and INVERT merely change their signs and magnitudes; they don’t introduce phases. This is why 
the normalization condition was written for real, not complex, numbers (⍺2 rather than |⍺|2). It 
should also be noted that there is only one β for all the N-1 non-target kets. This is because the 
non-target amplitudes start off being equal and INVERT amplify / suppress them equally. 
 
Based on this, we can now write |ψ2> in a way that is valid in all iterations: 

|𝜓) >	= 	/𝛼|𝑡 > +𝛽,|𝑘 >
%'(

2⊗	|−> 

When this is fed to Uf, we know (from the Deutsch problem) that the two registers will get de-
entangled by kicking the value of f(x) from a ket |f(x)> in the lower register to a phase (-1)f(x) in 
the upper. Hence: 

|𝜓+ >	= 	/𝛼(−1),(()|𝑡 > +	𝛽,(−1),(%)|𝑘 >
%'(

2⊗	|−> 

And since f(t)=1 and f(k)=0: 

|𝜓+ >	= 	/−𝛼|𝑡 > +𝛽,|𝑘 >
%'(

2⊗	|−>	 

At this stage, the post-flip average ‘avg’ of all N amplitudes is: 

𝑎𝑣𝑔	 =
−𝛼	 +	(𝑁 − 1)𝛽

𝑁
 

Upon feeding |ψ3> to V, all amplitudes would be inverted about this ‘avg’: 

|𝜓* >	= 	/(2 × 𝑎𝑣𝑔	 + 	𝛼)|𝑡 > +(2 × 𝑎𝑣𝑔	 − 	𝛽),|𝑘 >
%'(

2⊗	|−> 
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Comparing |ψ4> to |ψ2> shows how the amplitudes change from iteration i and iteration i+1:  

𝛼/0" 	= 2 × 𝑎𝑣𝑔	 +	𝛼/	 
𝛽/0" 	= 2 × 𝑎𝑣𝑔	 −	𝛽/  
These recurrence relations capture the essence of the Flip-Invert block. Solving them allows us 
to determine how many iterations are needed to boost the amplitude of t and thus increase the 
probability of measuring it. 

Let us focus on the ⍺ recurrence. Replace ‘avg‘ with its value above and use the normalization 
condition to eliminate β: 

𝛼/0" 	= (1	 − 	
2
𝑁
)𝛼/ +

2√𝑁 − 1
𝑁

M1 − 𝛼/) 

To solve this recurrence, we note that the two N-dependent factors add up to 1 when squared, 
which suggests a sin/cos trigonometric substitution. Indeed, define the angle ϕ as follows: 

𝑐𝑜𝑠(𝜑) = (1	 −	
2
𝑁
) 	⇒ 	𝑠𝑖𝑛(𝜑) =

2√𝑁 − 1
𝑁

 

The recurrence becomes: 

𝛼/0" 	= 𝑐𝑜𝑠(𝜑)𝛼/ + 𝑠𝑖𝑛(𝜑)M1 − 𝛼/) 

The presence of both ⍺	and √(1-⍺2) together with the trigonometric identity for sin(a+b) give us 
a strong hint that the solution is: 

𝛼/ 	= 𝑠𝑖𝑛(𝑖𝜑 + 𝛿) 

where 𝛿	is	determined	by	the	initial	condition	⍺=1/√N	in	iteration	i=0: 

𝛼! 	= 𝑠𝑖𝑛(𝛿) = 	1/√𝑁 ⇒ 𝛿 = 𝜑/2		 
Hence, the solution of our recurrence is: 

𝛼/ 	= 𝑠𝑖𝑛(𝑖𝜑 + 𝜑/2) 

We conclude from this that ⍺	is a periodic function of the iteration count, and hence, it doesn’t 
always increase! It is therefore important that we don’t iterate too many times. We know that 
sin reaches its maximum first when the angle is π/2, at which point ⍺	becomes	1,	the	highest	
possible	amplitude.	Using	this,	and	the	fact	that	ϕ ≈ sin(ϕ) ≈ 2/√N when N is large, we find: 

𝑖𝜑 + 𝜑/2	 = 	𝜋/2 ⇒ 𝑖 ≈ 𝜋/2𝜑 ≈ 𝜋/2𝑠𝑖𝑛(𝜑) ≈ (𝜋/4)√𝑁 

This tells us that the query complexity of Grover algorithm is O(√N) = O(2n/2); a quadratic speed-
up over the classical algorithm. 
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• Verify that sin(iϕ +	𝛿)	is	indeed	the	solution	of	the	⍺	recurrence. 

• Prove that 𝛿	= ϕ / 2. 

• Solve the β recurrence along the lines done above for ⍺. Verify that the amplitudes of the 
non-target kets approach zero when the target amplitude approaches 1.  

 
5. Implementing the INVERT Gate 
Building a unitary gate V that takes an arbitrary superposition and inverts its terms about the 
average of its amplitudes sounds complex because the transformation: 

𝑉 × , 𝑎%|𝑘 >
#$"

%&!

	= ,(2 × 𝑎𝑣𝑔	 − 	𝑎%)|𝑘 >
#$"

%&!

	 

requires computing the average: 

𝑎𝑣𝑔 = , 𝑎%/𝑁
#$"

%&!

 

which seems difficult. But in fact, computing the average is “natural” when a matrix of 1’s 
multiplies a column vector. Here is an example for n=3: 

(1/3) /
1 1 1
1 1 1
1 1 1

2 /
𝑎!
𝑎"
𝑎)
2 = (1/3) /

𝑎! + 𝑎" + 𝑎)
𝑎! + 𝑎" + 𝑎)
𝑎! + 𝑎" + 𝑎)

2 = /
𝑎𝑣𝑔
𝑎𝑣𝑔
𝑎𝑣𝑔

2 

We can therefore build V easily using an nxn matrix of 1’s, M, and the identity matrix: 

𝑉 = (2/𝑁)𝑀 − 𝐼1 
It is easy to verify that V is unitary. In fact, it can be easily constructed from a π phase shift gate 
acting on |0>. See the exercises.  

  
• Write a program in your favorite programming language to compute and print out the 

components of |ψ4> after each iteration in the n=3 case. Do this for 10 iterations and 
observe the periodicity of the target and non-target amplitudes. 

• Show that for n=1 (i.e. N=2) that V=–HPH where H is the 2x2 Hadamard gate and P is a π 
phase shift gate that flips the phase of the |0> component.   

• As above but for n=2. Note that H (aka Walsh-Hadamard) is given by: Hi,j = (-1)i.j / √2n. 
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Appendix: A Geometric Interpretation 
We start the algorithm by preparing qubits in a superposition that has only two amplitudes: one 
for the target ket and one for the rest, and both start as real numbers equal to 1/√N. The Flip-
Invert block involves operations that modify these amplitudes, but it keeps them real. More-
over, these operations treat all the non-target kets the same, and hence, there are only two 
distinct amplitudes. Because of this, the system always remains in a two-dimensional, real 
Hilbert subspace (a hyperplane) with two axes, one for all the non-target kets, which we will 
treat as the horizontal x-axis, and one for the target ket, our vertical y-axis. 
 
Viewing the algorithm within this subspace, we see that the state starts as a unit vector in the 
first quadrant with an angle ϕ/2 with the x-axis (because sin(ϕ/2) = 1/√N). Let’s call this vector 
the equal vector |e> because in it, all amplitudes are equal. We note that: 

- The flip stage involves flipping the sign of the target amplitude and keeping the rest 
unchanged. We interpret this as a reflection of the state vector about the x-axis. 

- The Invert stage can also be interpreted as a reflection about |e>. This can be seen 
in two different ways: (1) V=–HPH is a π phase flip of the 0 state (a reflection about 
the y-axis) with a basis change to |e> (via the two H’s). (2) Invert can be expressed 
as the operator 2|e><e| – I, which effectively reflects about |e>.     

Hence, the Flip-Invert block is a composition of two reflections, one about the x-axis and one 
about |e>. It is known in geometry that the composition of two reflections about two non-
parallel axes is equivalent to a rotation about the intersection point of the two axes by double 
the angle between them, which ϕ/2.  
 
Hence, the overall effect is a contraclockwise rotation of the state vector about the origin by an 
angle ϕ. This is consistent with what we found algebraically via the amplitude recurrences. 
 

Remarks 

• This algorithm was proposed by Lov Grover c. 1996. 

• The loop in the circuit diagram of this algorithm is not physical. Qubits do not move in wires 
from one gate to the next. They stay in place, and we subject them to varying conditions, e.g. 
microwave pulses of varying frequencies and durations. Repetitions are effected by re-apply-
ing these waves.   

• The Flip-Invert operation V is known as the Grover Diffusion Operator. 

• The algorithm can be easily extended to handle multiple targets; i.e. more than one x value 
at which f(x)=1. 

• In addition to speeding up brute-force search (e.g. to find the key of a symmetric cipher), the 
Grover algorithm can be used to attack cryptographic hash functions (e.g. to find collisions or 
determine a pre-image.    


