
york-cse-24MAR06 1

york'06

Practice What You Practice What You
PreachPreach

Full Separation of Concerns in CS1/CS2

Hamzeh Roumani
Department of Comp Science & Engineering

York University, Toronto, Canada

york'06

SIGCSE, its conferences and
activities, and attitudes of its
members toward OOP in CS1

CONTEXTCONTEXT

york-cse-24MAR06 2

york'06

1. Once upon a time…

2. Reflections

3. Separation of Concerns

4. The York experience

ContentsContents

york'06

york-cse-24MAR06 3

york'06

york'06

The KingThe King The MinisterThe Minister

york-cse-24MAR06 4

york'06

Session 1:
Pedaling and the Chain

york'06

1. Pedaling & the Chain
2. Braking & the Pads
3. Steering and the Axis
4. Etiquette of the Road

The Bicycle Course

york-cse-24MAR06 5

york'06

The QueenThe Queen

york'06

1. The Gas pedal, Spark Plugs, and the Green Light

2. The Brake Pedal, Disk Breaks, and the Red Light

3. The Steering Wheel, Pumps, and Turn Signals

The Car Course

york-cse-24MAR06 6

york'06

Session 2:
Stopping the Car

york'06

york-cse-24MAR06 7

york'06

Q: What makes a car stop?

A: When the traffic light
turns red, the brake fluid gets
compressed and this pulls on
the pedal so the driver must
depress it. This stops the car.

york'06

york-cse-24MAR06 8

york'06

1. Once upon a time…

2. Reflections

3. Separation of Concerns

4. The York experience

ContentsContents

york'06

What went wrong?What went wrong?
•The car course should have been longer;
perhaps split into two or three courses?

•The Minister had little or no experience
teaching cars?

•The younger generation is weaker and
shallower; they cannot handle cars?

•Cars considered harmful; let’s go back to
good’ol bicycles.

york-cse-24MAR06 9

york'06

Works because linkage between cause and effect is direct
and visible: you pedal, the chain rotates, the bike moves.

The bike course taught you how to ride
and how the bike works.

Doesn’t work because the journey from the gas pedal, thru
spark plugs, to the wheel is long, invisible, and complex.

The car course teaches you how to drive
and how the car works.

york'06

Why is it, then, Why is it, then,
that most people that most people
today can today can easilyeasily
learn how to drive?learn how to drive?

york-cse-24MAR06 10

york'06

• Today, most people can learn how to drive easily
thanks to the hood.

• It hides the complexity by encapsulating it under it.

• It allows drivers to think of abstractions (steering
wheel, brake, etc.) rather than how engines work.

• It separate the concerns.

Rather than remove it, celebrate it!Rather than remove it, celebrate it!

The HoodThe Hood

york'06

1. Once upon a time…

2. Reflections

3. Separation of Concerns

4. The York experience

ContentsContents

york-cse-24MAR06 11

york'06

Pascal, Pascal,
TuringTuring……

OOPOOP

Simplicity allows us to teach usage (calling a
procedure or function) and implementation

(making one) together.

To confront the complexity, must separate
class usage (e.g. method invocation) from

class implementation.

york'06

Separation of Concerns:Separation of Concerns:
The Prime DirectiveThe Prime Directive

• Dijkstra, EWD447
But nothing is gained --on the contrary!-- by tackling these various aspects simultaneously.
It is what I sometimes have called "the separation of concerns", which, even if not perfectly
possible, is yet the only available technique for effective ordering of one's thoughts, that I
know of. This is what I mean by "focusing one's attention upon some aspect": it does not
mean ignoring the other aspects, it is just doing justice to the fact that from this aspect's
point of view, the other is irrelevant.

• The main theme in the evolution of Computer Science
Algorithms & data structures; MVC, Computer architecture, Network Protocol Stack, …

• Numerous SIGCSE papers
All calling for “An Exodus from Implementation-Biased Teaching” (see paper)

york-cse-24MAR06 12

york'06

Separation of ConcernsSeparation of Concerns

q So important, so well-recognized, so obvious!
q We adopt it in all our 2nd, 3rd, 4th year course.

It is therefore mind boggling that our very first
course should ignore this directive and that all

the popular textbooks cover usage and
implementation together* in the same chapter

and sometimes in the same sentence!

*E.g. formal parameters – arguments, new – this, super – polymorphism, validation - precondition …

york'06

Write apps (main method) à What
The New CSThe New CS11

Separation of ConcernsSeparation of Concerns

Implement classes à How

The New CSThe New CS22

york-cse-24MAR06 13

york'06

ComponentComponent--Based ArchitectureBased Architecture

app

The components (drawn from J2SE) can be standalone or
members of aggregation and/or inheritance hierarchies.

york'06

WordStat
But what if the energy to develop and support these
contracts is overwhelming? A system that consists of just
five standard components, each available in four
commercial implementations, produces 20 configurations
to test, certify, and support. How does this scale out?
According to a distinguished engineer from IBM, a recent
internal study revealed that only about one in three
dollars that IBM spends on software product development
goes toward new features. The other two-thirds are spent
on non-value-added integration costs. IBM is no less
efficient in software development than the rest of the
industry. Mathematics is hard to argue with…

Write an app that takes a text file and produces a list of
its word frequencies (case insensitive, space delimiters)

york-cse-24MAR06 14

york'06

WordStat
But what if the energy to develop and support these
contracts is overwhelming? A system that consists of just
five standard components, each available in four
commercial implementations, produces 20 configurations
to test, certify, and support. How does this scale out?
According to a distinguished engineer from IBM, a recent
internal study revealed that only about one in three
dollars that IBM spends on software product development
goes toward new features. The other two-thirds are spent
on non-value-added integration costs. IBM is no less
efficient in software development than the rest of the
industry. Mathematics is hard to argue with…

a = 3, software = 2, that = 3, …

york'06

WordStat Architecture

disk

Scanner Tokenizer Map PrintStream

display

app

lin
e line

wo
rd

word

word
count

co
un

t

york-cse-24MAR06 15

york'06

Connect
Write an app that connects to a server having a given IP and

port and then communicates with it based on its protocol.

Port: 5005 Port: 1225

IP: cs.uiuc.edu

CLIENT

Input Stream

Output Stream

IP: cs.yorku.ca

SERVER

Input Stream

Output Stream

york'06

Connect Architecture

Scanner PrintStream

app

lin
e

server

port

line

SocketInputStream OutputStream1 1

1 1

server

port

york-cse-24MAR06 16

york'06

ParseXML Given an XML timetable, determine how many
courses use a given building.

<?xml version="1.0" encoding="UTF-8"?>
<timetable term="W06" xmlns="www.cs.yorku.ca/2005-06/W">

<course credit = "3" id = "1030">
<section id = "M">

<instructor>hr</instructor>
<time><day>MWF</day><hour>10:30</hour></time>
<venue><building>RSS</building><room>137s</room></venue>

</section>

<section id = "N">
<instructor>fv</instructor>
<time><day>W</day><hour>19:00</hour></time>
<venue><building>CSEB</building><room>B</room></venue>

</section>
</course>

</timetable>

york'06

ParseXML

1030

M N

fv time venue

CSEB

B

W

19:00

york-cse-24MAR06 17

york'06

ParseXML Architecture

Document
BuilderFactory

Document

app

Document
Builder

NodeList

Node

1

*
disk

york'06

RSA Encrypt a message with your public key.

Bob Alice

Eve

york-cse-24MAR06 18

york'06

RSA Architecture

KeyPair-
Generator

Cipher

app

PrivateKey

KeyPair

PublicKey1
1

1

york'06

1. Once upon a time…

2. Reflections

3. Separation of Concerns

4. The York experience

ContentsContents

york-cse-24MAR06 19

york'06

• 1999:Moved to conventional (mixed-concerns) Java
• 2003:Moved to the client view using Java By Abstraction

CSCS11 @York@York

1. What is Programming
2. Delegation
3. API
4. Objects
5. Control Structures
6. Strings, Tokenizers, Regex
7. Dev Methodologies, UML, Testing
8. Aggregation and Composition
9. Inheritance
10. The Collection Framework
11. Exception Handling
12. Applications

york'06

Significant improvement in qualitySignificant improvement in quality

CSCS11

• Short programs, confidence, debugging

• Focus on problem solving, not language

• Emphasize S/E and loop invariants

• Contracts and responsibilities are key

• Can develop “cool” applications quickly

• Promote system (integrative) thinking

Side Benefit: not everyone who takes CS1 wants to be a car mechanic!

york-cse-24MAR06 20

york'06

• 1999:Moved to conventional (mixed-concerns) Java
• 2004:Moved to the implementer’s view

CSCS22 @York@York

1. Implementing a utility class
2. Implementing a non-utility class
3. Implementing aggregation
4. Implementing generic collections
5. Implementing inheritance
6. Implementing abstract classes and interfaces
7. Review of the implementer’s view
8. GUI Applications
9. Recursion
10. Searching and sorting
11. Introduction to data structures
12. Linked Lists

york'06

CSCS22

• Marked improvement in quality

• The 2-course package seen as much easier

• Lots of “Aha!”

• Focus on the implementer’s concern

• The implementer is a client too

york-cse-24MAR06 21

york'06

Questions?Questions?

