When is Recoverable Consensus Harder Than Consensus?

Carole Delporte-Gallet Panagiota Fatourou

Hugues Fauconnier

Eric Ruppert

IRIF. Université Paris Cité

LIPADE. Université Paris Cité & FORTH ICS & University of Crete

IRIF, Université Paris Cité

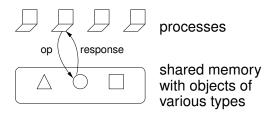
York University

France France Greece France

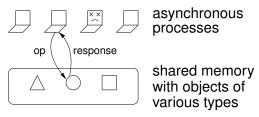
Canada

July 27, 2022

Classical shared memory

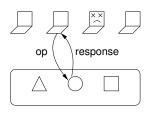


Classical shared memory Wait-free algorithms



Permanent crash failures

Classical shared memory Wait-free algorithms

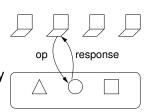


asynchronous processes

shared memory with objects of various types

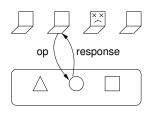
Permanent crash failures

Non-volatile shared memory Recoverable algorithms



Crash-recovery failures
-erase *local* memory of process
(including programme counter)

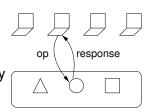
Classical shared memory Wait-free algorithms



asynchronous processes

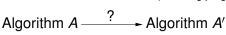
shared memory with objects of various types

Non-volatile shared memory Recoverable algorithms



Permanent crash failures

Crash-recovery failures
-erase *local* memory of process
(including programme counter)



Consensus

Consensus Problem

Each process has an input value and must output a value.

- Each output is the input of some process
- No 2 outputs differ
- If a process takes enough steps without crashing, it outputs a value

Recoverable Consensus

Consensus in context of crash-recovery failures

Recoverable Consensus Problem (RC) [Golab SPAA 2020]

Each process has an input value and must output a value.

- Each output is the input of some process
- No 2 outputs differ (including 2 outputs of 1 process)
- If a process takes enough steps between crashes, it outputs a value

Consensus Hierarchy

cons(T)

maximum number of processes that can solve wait-free consensus using objects of type *T* and registers tolerating permanent crashes

rcons(T)

maximum number of processes that can solve recoverable consensus using objects of type *T* and registers tolerating crash-recovery failures

Recoverable Consensus Hierarchy

cons(T)

maximum number of processes that can solve wait-free consensus using objects of type *T* and registers tolerating permanent crashes

rcons(T)

maximum number of processes that can solve recoverable consensus using objects of type *T* and registers tolerating crash-recovery failures

Consensus

Consensus numbers tell us about wait-free implementations [Herlihy 1991]

Universality

 $cons(T) \ge n \Rightarrow T$ implements *every* object for *n* processes

Non-implementability

 $cons(T) < cons(T') = n \Rightarrow T$ cannot implement T' for n processes.

Analogous results for rcons(T). [Berryhill, Golab, Tripunitara OPODIS 2015; this work]

Significance of Recoverable Consensus

Consensus numbers tell us about wait-free implementations [Herlihy 1991]

Universality

 $cons(T) \ge n \Rightarrow T$ implements *every* object for *n* processes

Non-implementability

 $cons(T) < cons(T') = n \Rightarrow T$ cannot implement T' for n processes.

Analogous results for rcons(T). [Berryhill, Golab, Tripunitara OPODIS 2015; this work]

Key Question

$rcons(T) \leq cons(T)$

Any RC algorithm also solves consensus. So RC is at least as hard as consensus.

Question

Is RC (much) harder than consensus?
Can rcons(T) be (much) smaller than cons(T)?

Key Question

$rcons(T) \leq cons(T)$

Any RC algorithm also solves consensus. So RC is at least as hard as consensus.

Question

Is RC (much) harder than consensus?

Key Question

$rcons(T) \leq cons(T)$

Any RC algorithm also solves consensus. So RC is at least as hard as consensus.

Question

Is RC (much) harder than consensus? Can rcons(T) be (much) smaller than cons(T)?

Results

System-wide crash-recovery failures

$$rcons(T) = 2 \Leftrightarrow cons(T) = 2.$$

[Golab 2020]

Results

System-wide crash-recovery failures

$$rcons(T) = 2 \Leftrightarrow cons(T) = 2.$$

[Golab 2020]

Independent crash-recovery failures:

 With known bound on number of failures: rcons(T) = cons(T).

[Golab 2020]

• Necessary condition for $rcons(T) \ge 2$.

[Golab 2020]

Results

System-wide crash-recovery failures

$$rcons(T) = 2 \Leftrightarrow cons(T) = 2.$$

[Golab 2020]

Independent crash-recovery failures:

 With known bound on number of failures: rcons(T) = cons(T).

[Golab 2020]

• Necessary condition for $rcons(T) \ge 2$.

[Golab 2020]

Previous and New Results

System-wide crash-recovery failures

$$rcons(T) = 2 \Leftrightarrow cons(T) = 2.$$
 [Golab 2020]
 $rcons(T) = cons(T)$

Independent crash-recovery failures:

- With *known bound* on number of failures: rcons(T) = cons(T).
- [Golab 2020]
- Necessary condition for $rcons(T) \ge 2$. [Golab 2020]

Previous and New Results

System-wide crash-recovery failures

$$rcons(T) = 2 \Leftrightarrow cons(T) = 2.$$
 [Golab 2020]
 $rcons(T) = cons(T)$

Independent crash-recovery failures:

- With known bound on number of failures: rcons(T) = cons(T). [Golab 2020]
- Necessary condition for $rcons(T) \ge 2$. [Golab 2020] We (partially) characterize when rcons(T) = n for all n.

Focus on readable objects, independent failure model

We define *n*-recording property of shared object types.

$$n$$
-recording
 \downarrow
 n -proc RC solvable
 \downarrow
 $(n-1)$ -recording

Focus on readable objects, independent failure model

We define *n*-recording property of shared object types.

$$n$$
-recording \downarrow
 n -proc RC solvable \downarrow
 $(n-1)$ -recording \downarrow
 $(n-1)$ -proc RC solvable \downarrow
 $(n-2)$ -recording \downarrow
 $(n-2)$ -proc RC solvable

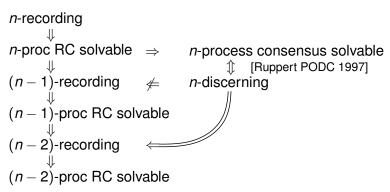
Focus on readable objects, independent failure model

We define *n*-recording property of shared object types.

$$n$$
-recording
 n -proc RC solvable \Rightarrow n -process consensus solvable
 $(n-1)$ -recording $\not=$ n -discerning
 $(n-1)$ -proc RC solvable
 $(n-2)$ -recording
 $(n-2)$ -proc RC solvable

Focus on readable objects, independent failure model

We define *n*-recording property of shared object types.



Corollary

$$cons(T) - 2 \le rcons(T) \le cons(T)$$

n-recording Property: First Attempt

- Pick a starting state q₀.
- Divide n processes into two teams Red and Blue.
- Assign an operation op_i to each process p_i .

Look at states reached from q_0 by permutations of op_1, \ldots, op_n .

$$Red = \{p_1, p_2\}$$

$$Blue = \{p_3\}$$

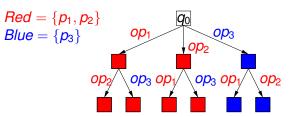
$$op_2 op_3 op_1 op_3 op_1 op_2$$

n-recording Property: First Attempt

- Pick a starting state q₀.
- Divide n processes into two teams Red and Blue.
- Assign an operation op_i to each process p_i.

Look at states reached from q_0 by permutations of op_1, \ldots, op_n .

Example: 3 processes p_1, p_2, p_3 .



State should *record* which team did the *first* operation after q_0 .

- Red states are disjoint from blue states
- q₀ is neither red nor blue

Sufficiency of *n*-recording Property

Team RC problem

Same as RC with constraint: each team gets a common input

Theorem

An n-recording type T can solve n-process team RC.

Proof.

Use object O of type T (initially q_0) and one register per team

Decide(v)

write ν into my team's register if O's state is q_0 then perform op_i on O read O and determine which team accessed O first output value from that team's register

If red process accesses O first, state stays red forever.

Sufficiency of *n*-recording Property

Team RC problem

Same as RC with constraint: each team gets a common input

Theorem

An n-recording type T can solve n-process team RC.

Proof.

Use object O of type T (initially q_0) and one register per team

Decide(v)

write ν into my team's register if O's state is q_0 then perform op_i on O read O and determine which team accessed O first output value from that team's register

f red process accesses O first, state stays red forever.

Sufficiency of *n*-recording Property

Team RC problem

Same as RC with constraint: each team gets a common input

Theorem

An n-recording type T can solve n-process team RC.

Proof.

Use object O of type T (initially q_0) and one register per team

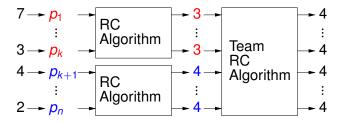
Decide(v)

write v into my team's register if O's state is q_0 then perform op_i on O read O and determine which team accessed O first output value from that team's register

If red process accesses O first, state stays red forever.

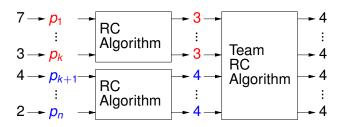
If blue process accesses O first, state stays blue forever.

Sufficiency: Solving RC using team RC



[Neiger 1995, Ruppert 1997]

Sufficiency: Solving RC using team RC

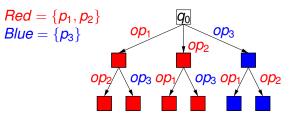


Solve smaller RC instances recursively.

 \rightarrow Yields a tournament algorithm

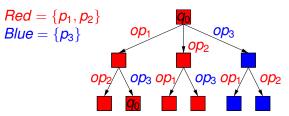
[Neiger 1995, Ruppert 1997]

Refining the Condition



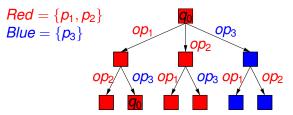
- Red states are disjoint from blue states
- q₀ is neither red nor blue
- q₀ can be red if there is only one blue process
- q₀ can be blue if there is only one red process

Refining the Condition



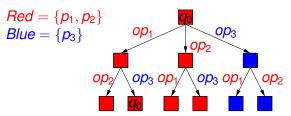
- Red states are disjoint from blue states
- q₀ is neither red nor blue
- a_0 can be red if there is only one blue process
- q₀ can be blue if there is only one red process

Refining the Condition



- Red states are disjoint from blue states
- q₀ is neither red nor blue
- q₀ can be red if there is only one blue process
- q₀ can be blue if there is only one red process

Modified Definition Still Sufficient for Team RC



Key idea to modify team RC algorithm if q_0 is red:

 p_3 performs op_3 on O only if

 p_3 sees state is q_0 and no red process has woken up.

 \Rightarrow Ensures that if state of O returns to q_0 , it remains red forever.

n-recording Property

Definition

A readable type *T* is *n-recording* if there exist

- an initial state q₀
- partition of n processes into red and blue team,
- operations op_1, \ldots, op_n

such that

- Red states are disjoint from blue states
- either q₀ is not red or there is only 1 blue process
- either q₀ is not blue or there is only 1 red process.

Red state: reachable from q_0 by sequence of operations $op_{i_1}, \ldots, op_{i_k}$ with distinct indices starting with red op_{i_1} Blue state defined symmetrically.

Sufficiency

Theorem (Sufficient Condition)

T is n-recording $\Rightarrow rcons(T) \ge n$

Proof Sketch

Build team RC algorithm using *n*-recording object. Use team RC in tournament to solve RC.

Sufficiency

Theorem (Sufficient Condition)

T is n-recording $\Rightarrow rcons(T) \ge n$

Proof Sketch

Build team RC algorithm using *n*-recording object. Use team RC in tournament to solve RC.

Theorem (Necessary Condition)

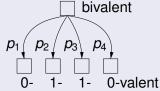
T is (n-1)-recording \leftarrow rcons(T) ≥ n

Theorem (Necessary Condition)

T is (n-1)-recording $\leftarrow rcons(T) \ge n$

Ideas for proof

- Valency argument
- Critical configuration used to define q_0, op_1, \dots, op_n , teams

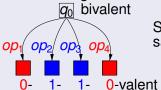


Theorem (Necessary Condition)

T is (n-1)-recording \Leftarrow rcons $(T) \ge n$

Ideas for proof

- Valency argument
- Critical configuration used to define q_0, op_1, \dots, op_n , teams



Show that these choices satisfy definition

Theorem (Necessary Condition)

T is (n-1)-recording \Leftarrow rcons $(T) \ge n$

Ideas for proof

- Valency argument
- Critical configuration used to define q_0, op_1, \dots, op_n , teams
- Challenge: Not all executions produce output.

Solution: Use restricted set of runs:

- Only p₁ can crash.
- # crashes by $p_1 \le$ # total steps by p_2, \ldots, p_n .

Ensures every run produces output.

Theorem (Necessary Condition)

T is (n-1)-recording \Leftarrow rcons $(T) \ge n$

Ideas for proof

- Valency argument
- Critical configuration used to define q_0, op_1, \dots, op_n , teams
- Challenge: Not all executions produce output.

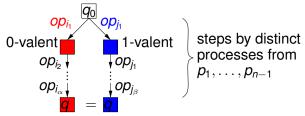
Solution: Use restricted set of runs:

- Only p₁ can crash.
- # crashes by $p_1 \le$ # total steps by p_2, \ldots, p_n .

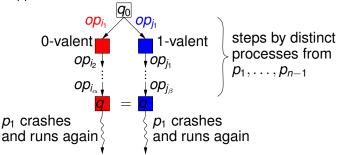
Ensures every run produces output.

Challenge: Must construct runs that belong to this set.
 Solution: "Extra process" takes steps to enable crashes.

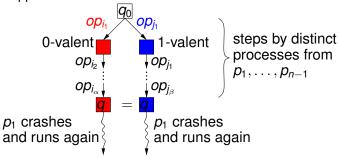
Prove red and blue states are disjoint in definition of (n-1)-recording. Suppose not.



Prove red and blue states are disjoint in definition of (n-1)-recording. Suppose not.

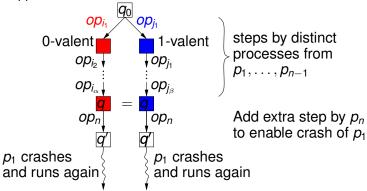


Prove red and blue states are disjoint in definition of (n-1)-recording. Suppose not.



But crashing p_1 might not be allowed if one sequence is just op_1 .

Prove red and blue states are disjoint in definition of (n-1)-recording. Suppose not.



Main Results (Readable Types, Indep. Failures)

n-recording \downarrow n-proc RC solvable \Rightarrow n-process consensus solvable \uparrow [Ruppert PODC 1997] (n-1)-recording $\not\leftarrow$ n-discerning \downarrow (n-1)-proc RC solvable \downarrow (n-2)-recording \downarrow \downarrow (n-2)-proc RC solvable

Corollary

$$cons(T) - 2 \le rcons(T) \le cons(T)$$

Examples

Sometimes rcons(T) = cons(T) and sometimes rcons(T) < cons(T).

Bonus Result: Robustness

Theorem

If RC is solvable using several readable types together, then RC is solvable using one of those types.

$$rcons(T_1, ..., T_k) = max(rcons(T_1), ..., rcons(T_k))$$

Bonus Result: Robustness

Theorem

If RC is solvable using several readable types together, then RC is solvable using one of those types.

$$rcons(T_1, ..., T_k) = max(rcons(T_1), ..., rcons(T_k))$$

Research Directions

- Is rcons(T) = cons(T) 2 for some readable type T?
- Is rcons(T) << cons(T) for some non-readable type T?
- Close gap between necessary and sufficient condition.
 First step: Is 2-recording necessary for solving 2-process RC?
- Efficient algorithms for RC and recoverable implementations of data structures

