Non-blocking Binary Search Trees

Faith Ellen, University of Toronto
Panagiota Fatourou, ICS FORTH & University of Crete
Eric Ruppert, York University
Franck van Breugel, York University

July 26, 2010
The Java standard library has several non-blocking data structures, but no search trees.

“You might wonder why this doesn’t use some kind of search tree instead The reason is that there are no known efficient lock-free insertion and deletion algorithms for search trees.”

Doug Lea in java.util.concurrent.ConcurrentSkipListMap
Non-blocking: some operation makes progress.

- Studied for 20+ years
 - Universal constructions [1988–present]
 - Disadvantage: inefficient
 - Array-based structures [1990–2005]
 - snapshots, stacks, queues
 - List-based structures [1995–2005]
 - singly-linked lists, stacks, queues, skip lists
 - A few others [1995–present]
 - union-find, ...
Non-Blocking Data Structures

Non-blocking: some operation makes progress.

- Studied for 20+ years
- Universal constructions [1988–present]
 - Disadvantage: inefficient
- Array-based structures [1990–2005]
 - snapshots, stacks, queues
- List-based structures [1995–2005]
 - singly-linked lists, stacks, queues, skip lists
- A few others [1995–present]
 - union-find, ...
Non-blocking: some operation makes progress.

- Studied for 20+ years
- Universal constructions [1988–present]
 Disadvantage: inefficient
- Array-based structures [1990–2005]
 snapshots, stacks, queues
- List-based structures [1995–2005]
 singly-linked lists, stacks, queues, skip lists
- A few others [1995–present]
 union-find, ...
Non-blocking: some operation makes progress.

- Studied for 20+ years
- Universal constructions [1988–present]
 Disadvantage: inefficient
- Array-based structures [1990–2005]
 snapshots, stacks, queues
- List-based structures [1995–2005]
 singly-linked lists, stacks, queues, skip lists
- A few others [1995–present]
 union-find, ...
Non-blocking: some operation makes progress.

- Studied for 20+ years
- Universal constructions [1988–present]
 Disadvantage: inefficient
- Array-based structures [1990–2005]
 snapshots, stacks, queues
- List-based structures [1995–2005]
 singly-linked lists, stacks, queues, skip lists
- A few others [1995–present]
 union-find, ...
Many lock-based implementations [1978–present]

Valois outlined how his linked lists might generalize to BSTs [1995]
 - complicated and lacks detail

Non-blocking BST [Fraser 2003]
 - uses 8-word CAS

Bender et al. outlined how their lock-based cache-oblivious B-trees might be made non-blocking [2005]
 - lacks details and proof of correctness
A non-blocking implementation of BSTs from single-word CAS.

Some properties:
- Conceptually simple
- Fast searches
- Concurrent updates to different parts of tree do not conflict
- Technique seems generalizable
- Experiments show good performance
- Asynchronous
- Crash failures allowed
- Shared memory with single-word compare-and-swap
- Linearizable
Leaf-oriented BST

Definition
- One leaf for each key in set
- Internal nodes used only for routing
- Each internal node has exactly 2 children
- BST property:
 $$\text{keys} \leq K$$
 $$\text{keys} \geq K$$

Advantages of Leaf-Oriented Trees
- Deletions much simpler
- Average depth only slightly higher

Example
Leaf-oriented BST storing key set
$$\{A, B, C, F\}$$
Leaf-oriented BST

Definition
- One leaf for each key in set
- Internal nodes used only for routing
- Each internal node has exactly 2 children
- BST property:
 - keys $\geq K$
 - keys $< K$

Advantages of Leaf-Oriented Trees
- Deletions much simpler
- Average depth only slightly higher

Example
Leaf-oriented BST storing key set \{A, B, C, F\}

- K
- keys $< K$
- keys $\geq K$
- B
- A
- C
- E
- F
Insertion (non-concurrent version)

Insertion (non-concurrent version):

1. Search for D
2. Remember leaf and its parent
3. Create new leaf, replacement leaf, and one internal node
4. Swing pointer

Ellen, Fatourou, Ruppert, van Breugel
Non-blocking Binary Search Trees
Insertion (non-concurrent version)

Insertion Algorithm

1. Search for D
2. Remember leaf and its parent
3. Create new leaf, replacement leaf, and one internal node
4. Swing pointer
Insertion (non-concurrent version)

Insertion:
1. Search for D
2. Remember leaf and its parent
3. Create new leaf, replacement leaf, and one internal node
4. Swing pointer

Ellen, Fatourou, Ruppert, van Breugel

Non-blocking Binary Search Trees
Insertion (non-concurrent version)

Insert(D)

1. Search for D
2. Remember leaf and its parent
3. Create new leaf, replacement leaf, and one internal node
4. Swing pointer
Insertion (non-concurrent version)

Insert(D)
1. Search for D
2. Remember leaf and its parent
3. Create new leaf, replacement leaf, and one internal node
4. Swing pointer
Deletion (non-concurrent version)

Delete(C)

1. Search for C
2. Remember leaf, its parent and grandparent
3. Swing pointer
Deletion (non-concurrent version)

1. Search for C
2. Remember leaf, its parent and grandparent
3. Swing pointer

Delete(C)
Deletion (non-concurrent version)

Delete(C)

1. Search for C
2. Remember leaf, its parent and grandparent
3. Swing pointer
Deletion (non-concurrent version)

Delete(C)

1. Search for C
2. Remember leaf, its parent and grandparent
3. Swing pointer
Concurrent Delete(B) and Delete(C).

\Rightarrow C is still reachable from the root!
Concurrent Delete(B) and Delete(C).

\Rightarrow C is still reachable from the root!

Ellen, Fatourou, Ruppert, van Breugel

Non-blocking Binary Search Trees
Challenges of Concurrency (2)

Concurrent Delete(C) and Insert(D).

⇒ D is not reachable from the root!
Concurrent Delete(C) and Insert(D).

\Rightarrow D is not reachable from the root!
Crucial problem: A node’s child pointer is changed while the node is being removed from the tree.

Solution: Updates to the same part of the tree must coordinate.

Desirable Properties of Coordination Scheme

- Avoid exclusive-access locks
- Maintain invariant that tree is always a BST
- Allow searches to pass unhindered
- Make updates as local as possible
- Algorithmic simplicity
Crucial problem: A node’s child pointer is changed while the node is being removed from the tree.

Solution: Updates to the same part of the tree must coordinate.

Desirable Properties of Coordination Scheme

- Avoid exclusive-access locks
- Maintain invariant that tree is always a BST
- Allow searches to pass unhindered
- Make updates as local as possible
- Algorithmic simplicity
An internal node can be either **flagged** or **marked** (but not both). Status is changed using **CAS**.

Flag
Indicates that an update is changing a child pointer.
- Before changing an internal node x’s child pointer, flag x.
- Unflag x after its child pointer has been changed.

Mark
Indicates an internal node has been (or soon will be) removed from the tree.
- Before removing an internal node, mark it.
- Node remains marked forever.
An internal node can be either flagged or marked (but not both). Status is changed using CAS.

Flag

Indicates that an update is changing a child pointer.
- Before changing an internal node x's child pointer, flag x.
- Unflag x after its child pointer has been changed.

Mark

Indicates an internal node has been (or soon will be) removed from the tree.
- Before removing an internal node, mark it.
- Node remains marked forever.
An internal node can be either flagged or marked (but not both). Status is changed using CAS.

Flag

Indicates that an update is changing a child pointer.
- Before changing an internal node x’s child pointer, flag x.
- Unflag x after its child pointer has been changed.

Mark

Indicates an internal node has been (or soon will be) removed from the tree.
- Before removing an internal node, mark it.
- Node remains marked forever.
Insertion Algorithm

Insert(D)

1. Search for D
2. Remember leaf and its parent
3. Create three new nodes
4. Flag parent (if this fails, retry from scratch)
5. Swing pointer (using CAS)
6. Unflag parent
Insertion Algorithm

Insert\((D) \)

1. Search for \(D \)
2. Remember leaf and its parent
3. Create three new nodes
4. Flag parent (if this fails, retry from scratch)
5. Swing pointer (using CAS)
6. Unflag parent
Insertion Algorithm

Insertion Algorithm (Insert(D)):

1. Search for D
2. Remember leaf and its parent
3. Create three new nodes
4. Flag parent (if this fails, retry from scratch)
5. Swing pointer (using CAS)
6. Unflag parent

Diagram:

```
  B
   |
  /|
 / | 
A  C  E
  |
  |
 B
  
C
  
F
```
Insertion Algorithm

Insert(D)

1. Search for D
2. Remember leaf and its parent
3. Create three new nodes
4. Flag parent (if this fails, retry from scratch)
5. Swing pointer (using CAS)
6. Unflag parent
Insertion Algorithm

Insert(D)

1. Search for D
2. Remember leaf and its parent
3. Create three new nodes
4. Flag parent (if this fails, retry from scratch)
5. Swing pointer (using CAS)
6. Unflag parent
Insertion Algorithm

Insert(D)

1. Search for D
2. Remember leaf and its parent
3. Create three new nodes
4. Flag parent (if this fails, retry from scratch)
5. Swing pointer (using CAS)
6. Unflag parent
Insertion Algorithm

Insert(D)

1. Search for D
2. Remember leaf and its parent
3. Create three new nodes
4. Flag parent (if this fails, retry from scratch)
5. Swing pointer (using CAS)
6. Unflag parent
Deletion Algorithm

Delete(C)

1. Search for C
2. Remember leaf, its parent and grandparent
3. Flag grandparent (if this fails, retry from scratch)
4. Mark parent (if this fails, unflag grandparent and retry from scratch)
5. Swing pointer (using CAS)
6. Unflag grandparent
Deletion Algorithm

```
Delete(C)
1. Search for C
2. Remember leaf, its parent and grandparent
3. Flag grandparent (if this fails, retry from scratch)
4. Mark parent (if this fails, unflag grandparent and retry from scratch)
5. Swing pointer (using CAS)
6. Unflag grandparent
```
Deletion Algorithm

Delete(C)

1. Search for C
2. Remember leaf, its parent and grandparent
3. Flag grandparent (if this fails, retry from scratch)
4. Mark parent (if this fails, unflag grandparent and retry from scratch)
5. Swing pointer (using CAS)
6. Unflag grandparent
Deletion Algorithm

Delete(C)

1. Search for C
2. Remember leaf, its parent and grandparent
3. Flag grandparent (if this fails, retry from scratch)
4. Mark parent (if this fails, unflag grandparent and retry from scratch)
5. Swing pointer (using CAS)
6. Unflag grandparent
Delete Algorithm

Delete(C)

1. Search for C
2. Remember leaf, its parent and grandparent
3. Flag grandparent (if this fails, retry from scratch)
4. Mark parent (if this fails, unflag grandparent and retry from scratch)
5. Swing pointer (using CAS)
6. Unflag grandparent
Delete Algorithm

Delete\((C) \)

1. Search for \(C \)
2. Remember leaf, its parent and grandparent
3. Flag grandparent (if this fails, retry from scratch)
4. Mark parent (if this fails, unflag grandparent and retry from scratch)
5. Swing pointer (using CAS)
6. Unflag grandparent
Deletion Algorithm

Delete(C)

1. Search for C
2. Remember leaf, its parent and grandparent
3. Flag grandparent (if this fails, retry from scratch)
4. Mark parent (if this fails, unflag grandparent and retry from scratch)
5. Swing pointer (using CAS)
6. Unflag grandparent
Conflicting Deletions Now Work

Concurrent Delete(B) and Delete(C)

Case I: Delete(C)’s flag succeeds.

⇒ Even if Delete(B)’s flag succeeds, its mark will fail.

⇒ Delete(C) will complete
Delete(B) will retry
Conflicting Deletions Now Work

Concurrent Delete(B) and Delete(C)

Case I: Delete(C)’s flag succeeds.

⇒ Even if Delete(B)’s flag succeeds, its mark will fail.

⇒ Delete(C) will complete
Delete(B) will retry
Conflicting Deletions Now Work

Concurrent Delete(B) and Delete(C)

Case I: Delete(C)'s flag succeeds.
⇒ Even if Delete(B)'s flag succeeds, its mark will fail.
⇒ Delete(C) will complete
Delete(B) will retry
Concurrent Delete(B) and Delete(C)

Case I: Delete(C)’s flag succeeds.

⇒ Even if Delete(B)’s flag succeeds, its mark will will fail.

⇒ Delete(C) will complete
Delete(B) will retry
Conflicting Deletions Now Work

Concurrent Delete(B) and Delete(C)

Case II: Delete(B)’s flag and mark succeed.

⇒ Delete(C)’s flag fails.
⇒ Delete (B) will complete
Delete(C) will retry
Concurrent Delete(B) and Delete(C)

Case II: Delete(B)’s flag and mark succeed.

\Rightarrow Delete(C)’s flag fails.

\Rightarrow Delete (B) will complete
Delete(C) will retry
Concurrent Delete\(B\) and Delete\(C\)

Case II: Delete\(B\)’s flag and mark succeed.

\[\Rightarrow\] Delete\(C\)’s flag fails.

\[\Rightarrow\] Delete \((B)\) will complete
Delete\(C\) will retry
Can think of flag or mark as a lock on the child pointers of a node.

- Flag corresponds to temporary ownership of lock.
- Mark corresponds to permanent ownership of lock.

Remark

Easier version of these ideas were used for singly-linked lists. Locking two child pointers with one flag or mark is harder.

Remark

Each update needs only one or two locks, searches need none. (Previous lock-based BSTs use more locks.)
Can think of flag or mark as a lock on the child pointers of a node.

- Flag corresponds to temporary ownership of lock.
- Mark corresponds to permanent ownership of lock.

Remark
Easier version of these ideas were used for singly-linked lists. Locking two child pointers with one flag or mark is harder.

Remark
Each update needs only one or two locks, searches need none. (Previous lock-based BSTs use more locks.)
Can think of flag or mark as a lock on the child pointers of a node.

- **Flag** corresponds to temporary ownership of lock.
- **Mark** corresponds to permanent ownership of lock.

Remark
Easier version of these ideas were used for singly-linked lists. Locking two child pointers with one flag or mark is harder.

Remark
Each update needs only one or two locks, searches need none. (Previous lock-based BSTs use more locks.)
Wait a second . . .

We want the data structure to be **non-blocking**!

Whenever “locking” a node, leave a key under the doormat.

A flag or mark is actually a pointer to a small record that tells a process how to help the original operation.

If an operation fails to acquire a lock, it **helps** complete the update that holds the lock before retrying.

Thus, locks are owned by **operations**, not processes.

Some similarities to Barnes’s **cooperative technique**.
We want the data structure to be non-blocking!

Whenever “locking” a node, leave a key under the doormat.

A flag or mark is actually a pointer to a small record that tells a process how to help the original operation.

If an operation fails to acquire a lock, it helps complete the update that holds the lock before retrying.

Thus, locks are owned by operations, not processes.

Some similarities to Barnes’s cooperative technique.
We want the data structure to be **non-blocking**!

Whenever “locking” a node, leave a key under the doormat.

A flag or mark is actually a pointer to a small record that tells a process how to help the original operation.

If an operation fails to acquire a lock, it **helps** complete the update that holds the lock before retrying.

Thus, locks are owned by **operations**, not processes.

Some similarities to Barnes’s **cooperative technique**.
Searching

Searches just traverse edges of the BST until reaching a leaf. They can ignore flags and marks.

Can prove by induction that each node visited by a Search(K) was on the search path for K at some time during the Search.
Goal: Show data structure is non-blocking (some operation completes).

- If an Insert successfully flags, it finishes.
- If a Delete successfully flags and marks, it finishes.
- If updates stop happening, searches must finish.

One CAS fails only if another succeeds.

⇒ A successful CAS guarantees progress, except for a Delete’s flag.
A Delete may flag, then fail to mark, then unflag to retry.

⇒ The Delete’s changes may cause other CAS’s to fail.

However, lowest Delete will make progress.
The formal proof of correctness is surprisingly difficult (20 pages long).

See the Technical Report.
Further Work

- Balancing the tree
- Proving worst-case complexity bounds
- Can same approach yield (efficient) wait-free BSTs? (Or at least wait-free Finds?)
- Other data structures