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ABSTRACT
Clickjacking worms exploit online social network features
such as Like and Share to propagate themselves in these
networks. They trick a user into clicking on something dif­
ferent from what the user intends to click on. We discuss an
implementation of such clickjacking malware and the way it
propagates in a social network. We present simulation re­
sults that characterize the propagation of clickjacking mal­
ware in social networks. In particular, user habits of follow­
ing posted links and the highly clustered structure of online
social networks have significant impacts on the propagation
speed of clickjacking malware.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection-Social network secu­
rity, Malware propagation; D.4.6 [Operating Systems]:
Security and Protection-Application Vulnerability

General Terms
Security

Keywords
Malware, Online Social Networks, ClickJacking Worms

1. INTRODUCTION
Online social networks such as Facebook, Twitter and MyS­
pace have attracted hundreds of millions of people worldwide
who use this service to connect and communicate with their
friends, family and colleagues geographically distributed all
around the world. This service cuts two ways, however. On
one hand, OSNs are an ideal place for people to gather, com­
municate, socialize and share their common interests. On
the other hand, malware creators often exploit the trust re­
lationship among OSN users to propagate automated worms
through online social networks for their own benefits. The
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first OSN worm, Samy, that hit MySpace in 2005 by exploit­
ing a cross-site scripting (XSS) vulnerability in a MySpace
web application infected about one million victims within 24
hours [1].

A clickjacking worm works by tricking a user into clicking on
something he does not intend to do. For example, the user
thinks he is clicking on a playback button to playa YouTube
video clip while he is actually clicking on an invisible "Like"
(or "Shared") button placed on top of the playback button.
This action automatically posts a link to the spam site to
the user's Facebook news feed, which will be shown to all his
friends. The unintended "Like" action and the spam link will
make the user's friends think that he has recommended the
video, and many of them may follow the link to see the video.
Figure 1 illustrates the process of a clickjacking malware
propagation. The process continues until the malware is
discovered by the OSN administrator and the spam links
are removed, or the attacker stops the process himself (e.g,
by removing the spam page containing the video).

The impacts of clickjacking worms can range from benign
to harmful outcomes to victims. When a user unknowingly
visits a web site, the attacker can make money through affil­
iated advertising programs. The more people "like" and sub­
sequently visit the page, the more profit the attacker makes.
A clickjacking worm can also trick users into enabling their
webcams, invading their privacy [22]. In more serious at­
tacks, clickjacking worms can redirect people to malicious
web pages that host malware, which will be installed on the
victims' computers using drive by download techniques.

There has not been any in-depth research on clickjacking
worms and their propagation in online social networks. In
fact, the topic of malware in OSNs has only been studied
recently. However, existing works focus on prevention, de­
tection, containment and elimination of malware [2, 3, 4, 5,
6], or on XSS worms [1] and Trojan worms [7]. Our work
in this article focuses on characteristics of clickjacking worm
propagation in OSNs, which will allow us to design more ef­
fective and resource-efficient countermeasures in the future.

We identify two major factors that have significant effects
on the clickjacking worm propagation speed (infection rate)
in an OSN. They are (1) user behaviors, namely, the prob­
ability of following a posted link and (2) the highly clus­
tered structure of communities. We conducted simulations



Figure 1: Self propagating process of clickjacking malware

on a real-world Facrbook subgraph to study the propagation
characteristics of clickjacking malware in an OSN.

The remainder of this article is organized as follows. We
discuss related work in Section 2 and describe an implemen­
tation of clickjacking worms for OSNs in Section 3. The
simulation model and parameters are presented in Section
4. We analyze the simulation results in Section 5. We sum­
marize the article and outline our future work in Section
6.

2. RELATED WORK
Among the first works on malware propagation in online
social networks are [1, 7, 8]. Several other researchers also
study malware propagation in OSNs via simulations [3,9,2].
However, they did not use graphs with the characteristics
of OSNs (i.e., high clustering co-efficient, and low average
shortest path distance) [3, 9], or limited their simulations
to only a single network [2]. Van et al. [2] describe three
approaches for node monitoring in order to detect malware
in OSNs using (1) node degree metric, (2) user activities and
(3) network partition into small islands.

Defense and detection mechanisms against clickjacking have
previously been studied [10, 11, 12, 13]. Rydstedt et al. [10]
studied Alexa's top-500 frame busting technique - a tech­
nique which disallows a page to be framed - and showed
that all of the implemented clickjacking preventing tech­
niques can be circumvented. Niemietz et al. [11] discussed
different clickjacking attack vectors, and introduced an au­
tomated detection system that is based on web page statis­
tics. Johns and Lekies [12] proposed a likejacking1 protec­
tion technique based on three pillars: J avascript visibility
check, a secure in-browser communication protocol and in­
tegrity of essential DOM properties and APIs. Rehman et
al. [13] proposed a browser-based solution to protect against
cursor spoofing and clickjacking, which can help to detect
likejacking in online social networks.

To the best of our knowledge, the work presented in this pa­
per is the first that addresses the issue of clickjacking worm

1 Likejacking is a type of clickjacking that tricks users of a
website into posting a "Like" update for the site unknowingly
as discussed earlier.
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propagation in online social networks.

3. CLICKJACKING WORMS: IMPLEMEN-
TATION AND PROPAGATION

In this section, we discuss how a clickjacking malware can be
implemenetd and propagated in an OSN. An attacker first
creates fake profiles to infiltrate a social network. Using
the fake profiles, they try to befriend as many real users as
possible in order to spread a malware as widely and quickly
as possible via these "friendships" and "Like" or "Shared"
features.

The attacker then creates an enticing web page to lure people
into viewing them. This web page, for example, may con­
tain latest updates on breaking news, gossips on celebrities,
exclusive video clips, or promotional items (e.g., coupons
and free gift cards, which mayor may not be given out).
Lisitng 1 shows a code snippet in which the attacker em­
beds a YouTube video with a playback button (see Part 1).

In the second part, the attacker places a Facebook "Like"
button on top of the playback button (see Part 2). For
example, assume that the playback button is located at the
coordinate (x, y) on the web page. The attacker will set the
<fb> tag position in the style to place the "Like" button
exactly at coordinate (x, y) (not shown here). To make the
"Like" button invisible, its opacity is set to zero.

The attacker then clicks on the "Like" button, which posts a
link to the spam site containing the video to the attacker's
news feed. When his friends see the "Like" post, they will
click on the link, which leads them to the video. When a
user clicks on the playback button to view the video, she is
actually clicking on the "Like" button. Her friends will see
her (unintended) recommendation posted on her new feed
and follow the same link. This process continues until the
malware is detected and removed, or the attacker stops the
propagation himself.

Sometimes, after the user clicks on the invisible button and
realizes that no action is performed (e.g., the video is not
played, or the next photo is not shown), they keep clicking
on the button. To prevent users' frustration and suspicion
(which eventually leads them to reporting the spam site to



Listing 1: Clickjacking worm code snippet
<--! Part1: Showing the video underneath the hidden

like button -->

<iframe width="640" height="410" frameborder="O"
allowfullscreen="" allowtransparency="true"
src="Youtube.com/avideo.html" style="z-index:-1">

<--! Part2: Making the like button hide and put it on
top of the play button -->

<fb:like id="fblike"
href="currentsite.com/currentpage.html"
style="opacity:O;filter:alphaCopacity=O);">

the network administrator or the anti-virus software), the
attacker should write better code so that, after the first click,
the invisible "Like" button will be removed to let the user
click on the actual playback button. As a result, the user
will see the video played and would think that the first click
was not performed properly.

Facebook recently implemented some countermeasures to
combat clickjacking worms. If the URL of a web page is
deemed suspicious, Facebook will ask a user to confirm her
"Like" action before a recommendation (and thus the spam
link) is posted on the user's news feed. This countermea­
sure can prevent a clickjacking malware from self propa­
gating in some cases (e.g., well known malicious web sites
that are black listed). Web sites or applications registered
with Facebook are deemed legitimate and are not subject
to "Like" action confirmation. Therefore, an attacker could
register his application or web page to make it legitimate,
and put the registration ID in the script in order to bypass
the screening for "Like" confirmation. (Registering an appli­
cation requires the attacker's personal information such as
name, phone number and mailing address. Stolen personal
information can be bought cheaply on the black market.)

Moreover, clickjacking worms can propagate through other
means outside social networks such as through email or on­
line forums.

4. SIMULATION MODEL AND PARAME-
TERS

In this section, we review the characteristics of online so­
cial networks, and describe the network graph model and
malware propagation model used in our simulations.

In several OSNs such as Facebook, LinkedIn, Orkut, and hi5,
the relationship (friendship) between two users is mutual.
Such an OSN can be represented by an undirected graph
G = (V, E) in which each vertex (or node) v E V represents
a user, and an edge e E E between two vertices indicates
the existence of a relationship (friendship) between the two
respective users. In this article, we consider only OSNs that
can be represented by undirected graphs. Our simulations
were carried out on a real-world graph [14] that possess all
the characteristics of a social network. The characteristics
of online social networks, which are studied in [16], [17], [15]
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can be summarized as follows:

1. An OSN typically has a low average network distance,
approximately equal to log( s)/ log(d), where s is the
number of vertices (people), and d is the average vertex
degree of the equivalent graph.

2. Online social networks typically show a high clustering
property, or high local transitivity. That is, if person
A knows Band C, then Band C are likely to know
each other. Thus A, Band C form a friendship trian­
gle. Let k denote the degree of a vertex v. Then the
number of all possible triangles originated from vertex
v is k(k - 1) /2. Let f denote the number of friendship
triangles of a vertex v in a social network graph. Then
the clustering coefficient C (v) of vertex v is defined as
C(v) = 2f/(k(k - 1)). The clustering coefficient of a
graph is the average of the clustering coefficients of all
of its vertices. In a real OSN, the average clustering
coefficient is about 0.1 to 0.7.

3. Node degrees of a social network graph tend to be,
or at least approximately, power-law distributed. The
node degree of a power-law topology is a right-skewed
distribution with a power-law Complementary Cumu­
lative Density Function (CCDF) of F(k) ex: k- cx

, which
is linear on a logarithmic scale. The power law distri­
bution states that the probability for a node v to have
a degree k is P(k) ex: k- cx

, where a is the power-law
exponent [19].

For the simulations reported in this article, we used the
Facebook social network graph constructed by McAuley and
Leskovec [14]. The parameters and characteristics of this
OSN graph are listed in Table 1. We also created an equiv­
alent random graph (ERG) corresponding to the Facebook
graph using the algorithm proposed by Viger and Latapy
[18]. The random graph has the same node degree distribu­
tion as the equivalent Facebook graph. However, the other
parameters may be different. For instance, an ERG usually
has a lower clustering coefficient and network diameter than
the original OSN graph. The parameters of an equivalent
random graph generated based on the Facebook sub-graph
are listed in Table 1.

Previous research has shown that a malware may propagate
faster in an ERG than in the original OSN graph [8, 7]. An
attacker may be able to obtain the graph of an OSN using
a tool such as R [20] or Pajek [21]. He may then create
ERGs based on the original OSN graph using an algorithm
such as the one by Viger and Latapy [18]. We also study
the propagation of clickjacking worms in ERGs to determine
whether ERGs help or hinder the propagation of clickjacking
worms in order to predict attack strategies.

We define an event or a visit in an OSN to be the action
of visiting (accessing) a user's home page or news feed. We
assume that events in an OSN happen consecutively one
after another. (Two different users may click on the same
profile at the same time. Their access requests, however, will
be queued at a server consecutively, waiting to be processed.
The two events are thus considered to happen one after the
other.)



Parameter OSN ERG

Number of vertices (people) 4,039 4,039
Number of edges 88,234 88,234
Average clustering coefficient 0.6055 0.06
Average shortest path length 3.692 2.59
Netvvork diameter 8 5
Maximum node degree 1045 1045
Average node degree d 43.69 43.69
log(N) I log(d) 1.6 1.6

on the spam link vvith a probability Q and get infected2

The performance metric is the total number of infections
(infected users) S as a function of the number of visits (time
slots). Given the same number of visits, the smaller the
value of S, the better. We carried out tvvo sets of exper­
iments, one using the Facebook sub-graph and the other
using an random equivalent graph (ERG) as described in
the above section.

Figure 2: Clickjacking worm proapgation for differ­
ent values of p in the OSN

2In this paper, vve assume that all users have the same prob­
ability Q. In future vvork, vve vvill consider the case in vvhich
different users have different probabilities of follovving an un­
knovvn link. The probability p for a user to be infected is
thus p = q x Q.

If vve assume that people visit the OSN based on a Poisson
process, vve can convert the number of visits into an actual
time scale (hours). In the online survey mentioned earlier,
92.2% of the participants said that they visit a social netvvork
at least once a day. Given the OSN used in this experiment
(4,039 users), this results in 3,724 people visiting the vvebsite
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Using the same data collected in this experiment, vve plotted
a graph that shovvs the impact of probability p on the mal­
vvare propagation. In particular, the graph in Figure 3 shovvs
the number of visits required to infect 90% of the population
(3,635 out of 4,039 users) as a function of p. As the value
of p increases, the number of visits required to infect 90%
of the population goes dovvn significantly. For instance, this
number is 49,538 for p = 0.3 and only 18,780 for p = 0.8.
That is, the more cautious users are about clicking on un­
knovvn links, the longer it takes a malvvare to infect the same
number of profiles.

Experiment 1. Using the Facebook sub-graph netvvork,
vve varied the probability p of getting infected from 0.25
to 0.75. The graph in Figure 2 shovvs the total number
of infections as a function of the number of visits for p =
0.25,0.5,0.75. The results shovv that the higher the proba­
bility p, the more users are infected given the same number
of visits. For instance, after the 15,000th visit, the total
number of infected users is 2,975 for p = 0.75 vvhile that
number is only 756 for p = 0.25.

Table 1: The OSN and its Equivalent Random
Graph

Each data point in the result graphs is the average of 100
runs, each vvith a different random seed. If a user's brovvser
has add-on protections to prevent clickjacking scripts from
running automatically, that user is considered not vulnerable
to clickjack vvorms. We vvill consider only vulnerable users
in our analysis and simulations.

The simulation softvvare is implemented using MATLAB.
The simulation is of discrete-event type, consisting of dis­
crete virtual time slots. A time slot is equivalent to an event
defined above. In the first time slot (i.e., vvhen the simu­
lation starts, a user (node) is chosen randomly to be the
attacker, vvho clicks the "Like" button on the spam site and
the recommendation is posted on his nevvs feed for all his
friends to see. (Tvvo users are friends if and only if their
corresponding vertices in the OSN graph is connected by an
edge e E E.) In the next time slot, another user j is selected
randomly vvith a probability of liN vvhere N is total number
of nodes in the netvvork. If the user sees the spam link (i.e.,
one of her friends had "liked" the videoIphotoIpage earlier),
the user vvill follovv the link vvith a probability Q and get
clickjacked (infected). (Some users are more cautious and
do not click on just any link.) This process continue until
the simulation is stopped.

Note that the spam link may be pushed dovvn on a Facebook
page by more recent activities. In this case, the user needs
to scroll dovvn the screen and checks for all nevv posts in
order to see the spam link. Not all users have the habit of
checking all their nevv post. We conducted an online survey
involving 182 Facebook users from 18 countries around the
vvorld. 75% of the participants said that they vvould scroll
all the posts to capture nevv posts. In our simulation vve
assume that if a spam link is posted on a user's vvall, only
75% of these users actually see the spam link.

5. SIMULATION RESULTS AND ANALYSIS
When the simulation started, a random user (node) vvas se­
lected to be the attacker's fake profile. The attacker "Liked"
a spam site and the recommendation vvas posted on his nevvs
feed. In the next time slot, a random user A vvas chosen vvith
a probability of liN vvhere N is total number of nodes in
the netvvork. If a spam link had previously posted on A's
vvall by a friend, A vvould actually scroll dovvn to see the
post vvith a probability q = 0.75 according to the statistics
provided by our online survey. When A savv the spam link,
she mayor may not click on the link as some people are
more cautious than others. Assume that a user vvould click
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Figure 3: Total number of visits required to infect
90% of the population

Figure 5: Clickjacking worm proapgation for differ­
ent values of p in the ERG
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Figure 4: Total number of infections as a function
of number of hours (p = 0.75)

at least once a day. This means an average of 155 visits per
hour. Therefore, for a unit of one hour, we have a Poisson
process with A = 155. Since we assume that the average
number of visits per hour is A = 155, the inter-arrival time
of the users follows an exponential distribution with A-I =
155. If we map the x-axis of the graph in Figure 2 to the
time scale based on the above calculation, we obtain the
graph in Figure 4 for the case where p = 0.75. The graph
shows that the malware can infect half of the population
in roughly two and a half days (63 hours), and the whole
network in 10 days.

Experiment 2. We repeated Experiment 1 using the
equivalent random graph whose parameters are listed in Ta­
ble 1. The results are shown in Figure 5. As in the previous
case, the higher the probability p, the more infections ob­
served in the network. For example, after the 15, oooth visit,
the total number of infections is 3,897 for p = 0.75 and 1,978
for p = 0.25.

To compare the propagation speed of the malware in the
original OSN and the ERG, we transfered the curves from
Figure 2 and Figure 5 for p = 0.75 to Figure 6. The com-
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Figure 6: Comparing ERG vs. OSN for p = 0.75

bined graph shows that the malware propagates faster in the
ERG network than in the original OSN. For example, after
the 15,000th visit, the total number of infected profiles is
2,975 in the original OSN, while this number is 3,897 in the
ERG network. We came to the same conclusion when com­
paring the number of infections in the original OSN to that
in the ERG network for other p values. That is, the ERG
network enables a malware to spread faster than a real OSN.
The reason is that the ERG has a lower clustering coefficient
than the original OSN graph, 0.06 vs. 0.6. A higher clus­
tering coefficient implies that a message will circulate for a
while in a community among friends before reaching to other
parts of the OSN, slowing down the malware propagation.

6. CONCLUSION
We discuss an implementation of clickjacking worms that
exploit social network features such as Like and Share to
propagate themselves. We present simulations results that
demonstrate that user behaviours have an impact on the
propagation of clickjacking malware: the more cautious users
are about unknown links, the more slowly clickjacking mal­
ware propagates. Furthermore, the high clustering structure
of social networks helps to slow down the propagation of
such malware. In our future work, we will investigate coun-



termeasures against clickjacking worms in OSNs as well as
resource-efficient detection mechanisms.
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