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Spacetime Texture Representation and
Recognition Based on a Spatiotemporal

Orientation Analysis
Konstantinos G. Derpanis and Richard P. Wildes

Abstract—This paper is concerned with the representation and recognition of the observed dynamics (i.e., excluding purely
spatial appearance cues) of spacetime texture based on a spatiotemporal orientation analysis. The term “spacetime texture” is
taken to refer to patterns in visual spacetime, (x, y, t), that primarily are characterized by the aggregate dynamic properties of
elements or local measurements accumulated over a region of spatiotemporal support, rather than in terms of the dynamics
of individual constituents. Examples include image sequences of natural processes that exhibit stochastic dynamics (e.g., fire,
water and windblown vegetation) as well as images of simpler dynamics when analyzed in terms of aggregate region properties
(e.g., uniform motion of elements in imagery, such as pedestrians and vehicular traffic). Spacetime texture representation and
recognition is important as it provides an early means of capturing the structure of an ensuing image stream in a meaningful
fashion. Toward such ends, a novel approach to spacetime texture representation and an associated recognition method are
described based on distributions (histograms) of spacetime orientation structure. Empirical evaluation on both standard and
original image data sets show the promise of the approach, including significant improvement over alternative state-of-the-art
approaches in recognizing the same pattern from different viewpoints.

Index Terms—Spacetime texture, image motion, dynamic texture, temporal texture, time-varying texture, textured motion,
turbulent flow, stochastic dynamics, distributed representation, spatiotemporal orientation
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1 INTRODUCTION

1.1 Motivation

Many commonly encountered visual patterns are best
characterized in terms of the aggregate dynamics of
a set of constituent elements, rather than in terms of
the dynamics of the individuals. Several examples of
such patterns are shown in Fig. 1. In the computer
vision literature, these patterns have appeared col-
lectively under various names, including, turbulent
flow/motion [1], temporal textures [2], time-varying
textures [3], dynamic textures [4], and textured mo-
tion [5]. Typically, these terms have been used with
reference to image sequences of natural processes that
exhibit stochastic dynamics (e.g., fire, turbulent water
and windblown vegetation). In the present work,
the broader class that includes stochastic as well as
simpler phenomena (e.g., orderly pedestrian crowds,
vehicular traffic, and even scenes containing purely
translating surfaces) when viewed on a regional basis
is considered in a unified fashion. The term “space-
time texture” is used herein in reference to this broad
set to avoid confusion with previous terms that fo-
cused on various subsets and thus grouped dynamic
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Fig. 1. Examples of spacetime textures in the real
world. (left-to-right, top-to-bottom) Forest fire, crowd
of people running, vehicular traffic, waterfall, dynamic
water and flock of birds in flight.

patterns (e.g., smooth and stochastic patterns) in an
artificially disjoint manner.

The ability to discern dynamic patterns based on
visual processing is of significance to a number of
applications. In the context of surveillance, the ability
to recognize dynamic patterns can serve to isolate ac-
tivities of interest (e.g., biological movement and fire)
from distracting background clutter (e.g., windblown
vegetation and changes in scene illumination). Fur-
ther, pattern dynamics can serve as complementary
cues to spatial appearance-based ones to support the
indexing and retrieval of video. Also, in the context
of guiding the decisions of intelligent agents, the
ability to discern certain critical dynamic patterns may
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serve to trigger corresponding reactive behaviours
(e.g., flight and pursuit).

The goal of the present paper is the introduction of
a unified approach to representing and recognizing
a diverse set of dynamic patterns with robustness to
viewpoint and with ability to encompass recognition
in terms of semantic categories (e.g., recognition of
fluttering vegetation without being tied to a specific
view of a specific bush). Toward that end, an approach
is developed that is based primarily on observed
dynamics (i.e., excluding purely spatial appearance
cues). For such purposes, local spatiotemporal ori-
entation is of fundamental descriptive power, as it
captures the first-order correlation structure of the
data irrespective of its origin (i.e., irrespective of
the underlying visual phenomena), even while dis-
tinguishing a wide range of dynamic patterns of
interest (e.g., flicker, single motion, multiple motions
and scintillation). Correspondingly, each dynamic pat-
tern is associated with a distribution (histogram) of
measurements that indicates the relative presence of
a particular set of 3D orientations in visual spacetime,
(x, y, t), as captured by a bank of spatiotemporal
filters and recognition is performed by matching such
distributions. In computing these distributions, the
local measurements are aggregated over the region
of concern, consistent with considerations of homo-
geneity often invoked in visual texture analysis [6].
Owing to this aggregation, the spatiotemporal layout
of pattern structure is ignored.

1.2 Related work

Various representations have been proposed for char-
acterizing spacetime textures for the purpose of recog-
nition [7]. One strand of research explores physics-
based approaches, e.g., [8]. These methods derive
models for specific dynamic patterns (e.g., water)
based on a first-principles analysis of the generating
process. With the model recovered from input im-
agery, the underlying model parameters can be used
to drive inference. Beyond computational issues, the
main disadvantage of this type of approach is that
the derived models are highly focused on specific
patterns, and thus lack generalization to other classes.

Motivated by successes in spatial texture research,
approaches have been proposed that uniformly treat
a diverse set of dynamic patterns based on aggre-
gate statistics of local descriptors. A seminal example
of this approach was based on extracting first- and
second-order statistics of motion flow field-based fea-
tures, assumed to be captured by estimated normal
flow [2]. This work was followed-up by numerous
proposed variations of normal flow, e.g., [9], and
optical flow-based features, e.g., [10]. There are two
main drawbacks related to this strand of research.
First, normal flow is correlated with spacetime tex-
ture spatial appearance [11]. Thus, in contrast to the

goal of the present work, recognition is highly tuned
to a particular spatial appearance. Second, optical
flow and its normal flow component are predicated
on assumptions like brightness constancy and local
smoothness, which are generally difficult to justify for
stochastic dynamics. Rather than capturing dynamic
information alone, others have proposed aggregate
measurements of local thresholded values to capture
the joint photometric-dynamic pattern structure [12].

A recent research trend is the use of statistical
generative models to jointly capture the spatial ap-
pearance and dynamics of a pattern. Recognition is
realized by comparing the similarity between the
estimated model parameters. Several variants of this
approach have appeared, including: autoregressive
(AR) models [13], [14], [15], [5] and multi-resolution
schemes [1], [3]. By far the most popular of these
approaches for recognition is the joint photometric-
dynamic, AR-based Linear Dynamic System (LDS)
model, proposed in [14], which has formed the basis
for several recognition schemes [4], [16], [17], [18].
Although impressive recognition rates have been re-
ported (∼90%), most previous efforts have limited
experimentation to cases where the pattern samples
are taken from the exact same viewpoint. As a result,
much of the performance is highly tied to the spatial
appearance captured by these models rather than
the underlying dynamics [16], [17]. To address issues
with variability in viewpoint, the joint photometric-
dynamic LDS model has also been formulated within
the bag-of-features framework [18]. Most closely re-
lated to the present paper are the LDS variants that
have eschewed the appearance component of the
model altogether and have instead restricted atten-
tion to the dynamic component for recognition [16],
[17], as captured by the hidden state space. Signifi-
cantly, a comparative study of many of the proposed
LDS approaches, both joint photometric-dynamic and
dynamic-only, showed that when applied to image
sequences with non-overlapping views of the same
scene (“shift-invariant” recognition), all yield signifi-
cantly lower recognition rates (∼20%), whether using
joint spatial-dynamic or only the dynamic portion of
the LDS model [17].

In the current work, spatiotemporal oriented energy
filters serve in defining the representation of observed
dynamics. Previous research has used similar oper-
ators for image sequence analysis toward various
ends, including optical flow estimation [19], [20], [21],
activity recognition [22], [23], [24], [25], low-level pat-
tern categorization [26], tracking [27], spacetime stereo
[28] and grouping [29], [30]. Further, distributions of
purely spatially oriented measurements have played
a prominent role in the analysis of static visual texture
[6], [31] and form the basis of state-of-the-art recogni-
tion methods [32], [33], [34]. Moreover, psychophysi-
cal evidence suggests that spacetime orientation plays
a role in human discrimination of temporally stochas-
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tic visual patterns [35], [36]. Psychophysical investi-
gations also have shed light on spatiotemporal per-
ceptual metamers, where physically distinct dynamic
patterns are not distinguished by humans [37]. Never-
theless, it appears that the present work is the first to
use spatiotemporal orientation as the computational
basis for the representation and recognition of space-
time texture. A preliminary version of this research
appeared previously [38].

1.3 Contributions

In the light of previous research, the contributions
of the present work are as follows. First, a broad
set of dynamic patterns are considered that subsume
those generally considered disjointly, including both
motion and more irregular, stochastic spatiotemporal
patterns. This broader set is termed “spacetime tex-
ture”. The key unifying attribute of these patterns is
that they can be distinguished by their underlying
spacetime orientation structure. Second, a particu-
lar spatiotemporal filtering formulation is developed
for measuring spatiotemporal oriented energy and
is used for representing and recognizing spacetime
textures based primarily on their underlying dynam-
ics. While spacetime filters have been used before
for analyzing image sequences, they have not been
applied to the recognition of spacetime textures in the
manner proposed. Third, empirical evaluation on a
standard data set shows that the proposed approach
achieves superior performance over state-of-the-art
methods. Fourth, to evaluate the proposed approach
on the wider set of patterns encompassed by space-
time textures, a new data set is introduced containing
610 challenging natural videos. The experiments on
this data set further demonstrates the efficacy of the
proposed approach to modeling and recognition.

2 TECHNICAL APPROACH

2.1 Orientation in visual spacetime

The local orientation (or lack thereof) of a pattern
is a salient characteristic. Figure 2 (top and middle
rows) illustrates the significance of this structure in
terms of describing a range of dynamic patterns in
image sequence data (cf. [26]). With reference to Fig.
2, image velocity corresponds to a three-dimensional
orientation in (x, y, t) [39], [40], [41], [19], [20]; indeed,
motion represents a prominent instance of dominant
oriented patterns with static patterns corresponding
to the special case of zero velocity. In the frequency
domain, the energy of these patterns correspond to
a plane through the origin, with the planar surface
slant indicative of velocity. A lesser known instance
of a (approximately) single oriented pattern are image
sequences of rain and hard snow streaks [42], [43].
Here, spacetime orientation lies perpendicular to the
temporal axis with the spatial orientation component
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Fig. 2. Spacetime texture spectrum. The top and mid-
dle rows depict prototypical patterns of spacetime tex-
tures in the frequency and spacetime domains, resp.
The horizontal axis indicates the amount of spacetime
oriented structure superimposed in a pattern, with in-
creasing amounts given along the rightward direction.
The bottom row depicts the distribution (i.e., seven bin
histogram) of the relative spacetime oriented structure
(or lack thereof) present in each pattern. The first
histogram bin captures lack of structure. The remaining
histogram bins from left-to-right correspond to space-
time orientations selective for static, rightward motion,
upward motion, leftward motion, downward motion and
flicker structure. In practice, a larger set of orientations
are employed; in this figure, a reduced set is presented
for the sake of compact illustration.

corresponding to the streaks’ spatial orientation [42].
In the frequency domain, the energy of these patterns
lies approximately on a plane through the temporal
frequency axis, where the orientation of the spectral
plane is related to the spatial orientation of the streaks
[43]; for an illustration of the visual pattern induced
by rain in the frequency domain, see Fig. 3 [43].

Beginning with a single spacetime oriented pattern
and superimposing spacetime orientations spanning a
narrow range about the initial oriented pattern yields
“optical snow” [44] and “nowhere-static” [15]. Optical
snow arises in many natural situations where the im-
aged scene elements are restricted to a single direction
of motion but vary in speed (e.g., camera translating
across a static scene containing a range of depths and
vehicular traffic scenes [45], where the speeds may
vary but the direction of motion is generally uniform).
In the frequency domain, the energy approximately
corresponds to a “bow tie” signature formed by the
superposition of planes. In contrast, “nowhere-static”
patterns do not impose such local directionality con-
straints (e.g., camera translating over a scene exhibit-
ing stochastic movement, such as windblown flowers
and cheering crowds). In the frequency domain, one
can think of the energy as corresponding to the super-
position of several “bow ties”, each sharing a common
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central spacetime orientation. These two patterns and
single oriented patterns are collectively referred to as
“dominant oriented” patterns herein.

To the left of the dominant oriented pattern reside
two degenerate cases corresponding to patterns where
the recovery of spacetime orientation is undercon-
strained (e.g., the aperture problem and pure temporal
luminance flicker) and completely unconstrained (e.g.,
blank wall). In the frequency domain, the energy
of the partially specified case corresponds to a line
through the origin; in the case of the aperture prob-
lem, the spectral line orientation is a function of both
the spatial appearance and dynamics [46], given by
the component of the pattern velocity along the spatial
gradient, while for flicker, the line lies strictly along
the temporal frequency axis [26]. In the limit, a region
can totally lack any spatiotemporal contrast (uncon-
strained case) and the frequency domain correlate is
isolated in the low-frequency portion of the spectrum
(ideally consisting of a DC component only).

Starting again from a single spacetime oriented
pattern and superimposing an additional spacetime
orientation yields a multi-dominant oriented pattern
(e.g., semi-transparency [46] and translucency [47]).
Here, two spacetime orientations dominate the pat-
tern description. In the frequency domain, the energy
corresponds to two planes, each representative of
its respective spacetime orientation. Continuing the
superposition process to the limit, yields the special
case of isotropic structure (e.g., “television snow”),
where no discernable orientations dominate the local
region [26]; nevertheless, significant spatiotemporal
contrast is present. In the frequency domain, the
energy of this pattern corresponds to an isotropic
response throughout. In between the cases of multi-
dominant and isotropic structure lie various compli-
cated phenomena that arise as multiple spacetime
oriented structures (e.g., motions) are composited; as
noted in Sec. 1.1, these patterns have been called
temporal texture [2], dynamic texture [14] and various
other terms. Occurrences in the world that give arise
to such visual phenomena include those governed
by turbulence and other stochastic processes (e.g.,
dynamic water, windblown vegetation, smoke and
fire). These patterns are collectively referred to as
“heterogeneous oriented” herein.

As illustrated above, the local spacetime orientation
of a visual pattern captures significant, meaningful
aspects of its dynamic structure; therefore, a spa-
tiotemporal oriented decomposition of an input pat-
tern is an appropriate basis for local representation. By
extension, in the remainder of this paper an attempt
is made to recognize and categorize visual spacetime
texture using the outputs of local orientation opera-
tors aggregated over a region of interest.

2.2 Distributed spacetime orientation

The desired spacetime orientation decomposition is
realized using a bank of broadly tuned 3D Gaussian
third derivative filters, G3θ̂

≡ ∂3k exp[−(x2 + y2 +

t2)]/∂θ̂3, with the unit vector θ̂ capturing the 3D
direction of the filter symmetry axis and k a nor-
malization factor. (Filtering details are provided else-
where [48].) The responses of the image data to this
filter are pointwise rectified (squared) and integrated
(summed) over a spacetime region, Ω, that covers
the entire spacetime texture sample under analysis,
to yield the following energy measurement for the
region

Eθ̂ =
∑

(x,y,t)∈Ω

(G3θ̂
∗ I)2, (1)

where I ≡ I(x, y, t) denotes the input imagery and ∗
convolution. Notice that while the employed Gaussian
derivative filter is phase-sensitive, summation over
the support region ameliorates this sensitivity to yield
a measurement of signal energy at orientation θ̂. More
specifically, this follows from Parseval’s theorem [49]
that specifies the phase-independent signal energy in
the frequency passband of the Gaussian derivative:

Eθ̂ ∝
∑

(ωx,ωy,ωt)

|F{G3θ̂
∗ I}(ωx, ωy, ωt)|2, (2)

where (ωx, ωy, ωt) denotes the spatiotemporal fre-
quency coordinate, and F the Fourier transform1.

Each oriented energy measurement, (1), is con-
founded with spatial orientation. Consequently, in
cases where the spatial structure varies widely about
an otherwise coherent dynamic region (e.g., single
motion across a region with varying spatial texture),
the responses of the ensemble of oriented energies
will reflect this behaviour and thereby are spatial
appearance dependent; whereas, a description of pure
pattern dynamics is sought. To remove this difficulty,
the spatial orientation component is discounted by
“marginalization” of this attribute, as follows.

In general, a pattern exhibiting a single spacetime
orientation (e.g., image velocity) manifests itself as
a plane through the origin in the frequency domain
[40]. Correspondingly, summation across a set of x-
y-t-oriented energy measurements consistent with a
single frequency domain plane through the origin is
indicative of energy along the associated spacetime
orientation, independent of purely spatial orientation.
Since Gaussian derivative filters of order N = 3 are
used in the oriented filtering, (1), it is appropriate
to consider N + 1 = 4 equally spaced directions
along each frequency domain plane of interest, as
N + 1 directions are needed to span orientation in a
plane with Gaussian derivative filters of order N [50].
Let each plane be parameterized in terms of its unit

1. Strictly, Parseval’s theorem is stated with infinite frequency
domain support on summation.
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normal, n̂; a set of equally spaced N + 1 directions
within the plane are given as

θ̂i = cos

(
πi

N + 1

)
θ̂a(n̂) + sin

(
πi

N + 1

)
θ̂b(n̂), (3)

with

θ̂a(n̂) = n̂× êx/‖n̂× êx‖ θ̂b(n̂) = n̂× θ̂a(n̂) (4)

where êx denotes the unit vector along the ωx-axis2

and 0 ≤ i ≤ N . In the case where the spacetime orien-
tation is defined by image velocity (ux, uy)>, the nor-
mal vector is given by n̂ = (ux, uy, 1)>/‖(ux, uy, 1)>‖.

Now, energy along a frequency domain plane with
normal n̂ and spatial orientation discounted through
marginalization, is given by summation across the set
of measurements, Eθ̂i , as

Ẽn̂ =

N∑
i=0

Eθ̂i , (5)

with θ̂i one of N + 1 = 4 directions, (3), and each
Eθ̂i calculated via the oriented energy filtering, (1).
Note that the discounting of spatial appearance pre-
sented here differs from that used elsewhere in using
spatiotemporal oriented filtering for optical flow esti-
mation [19], which employs a nonlinear optimization.

In the present implementation, 27 different space-
time orientations, as specified by n̂, are made ex-
plicit, corresponding to static (no motion/orientation
orthogonal to the image plane), slow (half pixel/frame
movement), medium (one pixel/frame movement)
and fast (two pixel/frame movement) motion in the
directions leftward, rightward, upward, downward
and the four diagonals, and flicker/infinite vertical
and horizontal motion (orientation orthogonal to the
temporal axis); although, due to the relatively broad
tuning of the filters employed, responses arise to a
range of orientations about the peak tunings.

Finally, the marginalized energy measurements, (5),
are confounded by the local contrast of the signal
and as a result increase monotonically with contrast.
This makes it impossible to determine whether a
high response for a particular spacetime orientation is
indicative of its presence or is indeed a low match that
yields a high response due to significant contrast in
the signal. To arrive at a purer measure of spacetime
orientation, the energy measures are normalized by
the sum of consort planar energy responses,

Ên̂i = Ẽn̂i/

( M∑
j=1

Ẽn̂j + ε

)
, (6)

where M denotes the number of spacetime orienta-
tions considered and ε is a constant introduced as a
noise floor. As applied to the 27 oriented, appearance

2. Depending on the spacetime orientation sought, êx can be
replaced with another axis to avoid the case of an undefined vector.

marginalized energy measurements, (5), Eq. (6) pro-
duces a corresponding set of 27 normalized, marginal-
ized oriented energy measurements. To this set an
additional measurement is included that explicitly
captures lack of structure via normalized ε,

Êε(x) = ε/

( M∑
j=1

Ẽn̂j (x) + ε

)
, (7)

to yield a 28 dimensional feature vector. (Note that for
regions where oriented structure is less apparent, the
summation in (7) will tend to 0; hence, Êε approaches
1 and thereby indicates relative lack of structure.)
This ensemble of (normalized) energy measurements,
{Ên̂i} ∪ Êε, is taken as a distribution with spatiotem-
poral orientation, n̂i, as variable. In practice, the set
of measurements are maintained as a histogram.

Figure 2 (bottom) illustrates a set of idealized his-
togram signatures realized from (1) - (7). Uncon-
strained orientation regions (i.e., regions devoid of
structure) give rise to a peak response in Êε. Under-
constrained orientation regions can yield a variety of
signatures. Regions containing pure flicker (shown),
give rise to a peak response in the orientation se-
lective for flicker/infinite motion. In the case of the
aperture problem (not shown), significant responses
in multiple orientations will arise in the distribution,
since multiple planes are consistent with the spectral
line structure of this pattern. Furthermore, this distri-
bution will depend on both the dynamics and spatial
appearance of the pattern (i.e., the velocity component
along the spatial gradient). Dominant orientation re-
gions (e.g., motion) gives rise to a significant response
in only one component of the decomposition, corre-
sponding to a particular orientation. Multi-dominant
oriented regions (e.g., semi-transparency and translu-
cency) give rise to significant responses in multiple
components of the decomposition, corresponding to
the individual single oriented patterns superimposed.
Heterogeneously oriented regions (not shown) give
rise to a wide variety of distributions, depending
on the particulars of the observed phenomena (e.g.,
fire vs. water vs. fluttering leaves). Finally, isotropic
regions give rise to an approximatively equal magni-
tude across all spacetime orientation components.

The constructed representation enjoys a number of
attributes that are worth emphasizing. First, owing
to the bandpass nature of the Gaussian derivative
filters (1), the representation is invariant to additive
photometric bias in the input signal. Second, owing
to the divisive normalization (6), the representation
is invariant to multiplicative photometric bias. Third,
owing to the marginalization (5), the representation is
invariant to changes in appearance manifest as spatial
orientation variation. Overall, these three invariances
allow abstractions to be robust to pattern changes that
do not correspond to dynamic pattern variation, even
while making explicit local orientation structure that
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arises with temporal variation (motion, flicker, etc.).
Fourth, owing to the broad tuning of the filters, a
parsimonious covering of the spacetime orientation
space is made possible. More specifically, while the
filters have peak responses for particular spacetime
orientations and scales, they remain responsive to
intermediate instances of these parameters. As a re-
sult, the representation is tolerant to small degrees of
viewpoint change that manifest as shifts in spacetime
orientation and scale. Finally, the representation is ef-
ficiently realized via linear (separable convolution and
pointwise addition) and pointwise non-linear (squar-
ing and division) operations; thus, efficient computa-
tions are realized [48], including real-time realizations
on GPUs [25].

2.3 Spacetime orientation distribution similarity

Given the spacetime oriented energy distributions of
a query and database with entries represented in like
fashion, the final step of the approach is recognition.
To compare two histograms, denoted x and y, there
are a variety of similarity measures that can be used
[51]. In evaluation, the L1, L2, Earth Mover’s Distance
(EMD) [51] (with L1 and L2 ground distances) and
Bhattacharyya coefficient [52] were considered.

Finally, for any given distance measure, a method
must be defined to determine the classification of a
given probe relative to the database entries. To make
the results between the proposed approach and the
various recognition results reported elsewhere [17],
[18] comparable, the same Nearest-Neighbour (NN)
classifier [53] was used in the experiments to be pre-
sented. Although not state-of-the-art, the NN classifier
has been shown to yield competitive results relative
to the state-of-the-art Support Vector Machine (SVM)
classifier [54] for dynamic texture classification [55]
and thus provides a useful lower-bound on perfor-
mance. Another motivation for this choice of simple
classifier is the desire to evaluate the utility of the pro-
posed representational substrate without confounding
performance with classifier sophistication.

3 EMPIRICAL EVALUATION

3.1 Data sets

The performance of the proposed approach to space-
time texture recognition is evaluated on two data
sets capturing various subsets of spacetime textures.
The first is a standard data set that captures the
heterogeneous pattern subset of spacetime textures,
as defined in Sec. 2.1. The second is a new data set
that captures a diverse set of spacetime textures con-
taining both motion and non-motion-related dynamic
patterns, including heterogeneous textures.

Fig. 3. Sample frames from the UCLA data set. (left-to-
right, top-to-bottom) Candle, fire, rising smoke, boiling
water, fountain, spurting spray style fountain, waterfall
and windblown vegetation.

TABLE 1
YUVL spacetime texture data set summary. The

number of samples per category are given in
parentheses. N/A denotes not applicable.

Basic-Level Subordinate-Level
unconstrained (16) N/A

underconstrained (77) flicker (45)
aperture problem (32)

dominant (293) single oriented (229)
non-single oriented (64)

multi-dominant (85) N/A

heterogeneous and isotropic (139) wavy fluid (35)
stochastic (104)

3.1.1 UCLA data set
For the purpose of evaluating the proposed approach
on the heterogeneous pattern subset of spacetime
textures, recognition performance was tested on the
standard UCLA data set [4], which concentrates on
exactly this subset as it has been the focus of much
previous work in the area. The data set is comprised
of 50 scenes, including, boiling water, fire, fountains,
rippling water and windblown vegetation. Each scene
is represented by four greyscale image sequences.
Critically, all four scene exemplars are captured at a
single camera viewpoint, as a result the same area
of the scene is captured in each sequence. In total
there are 200 sequences, each sequence consisting of
75 frames of size 110 × 160. Figure 3 shows sample
frames from the data set.

3.1.2 York University Vision Lab (YUVL) spacetime
texture data set
To evaluate the proposed approach on spacetime tex-
tures, a new data set3 was collected for each of the
categories of spacetime texture described in Sec. 2.1
and illustrated in Fig. 2. The data set contains a total
of 610 spacetime texture samples. The videos were ob-
tained from various sources, including a Canon HF10
camcorder and the “BBC Motion Gallery” (www.
bbcmotiongallery.com) and “Getty Images” (www.
gettyimages.com) online video repositories; the videos
vary widely in their resolution, temporal extents and
capture frame rates. Owing to the diversity within

3. This data set is available at: http://www.cse.yorku.ca/vision/
research/spacetime-texture.

www.bbcmotiongallery.com
www.bbcmotiongallery.com
www.gettyimages.com
www.gettyimages.com
http://www.cse.yorku.ca/vision/research/spacetime-texture
http://www.cse.yorku.ca/vision/research/spacetime-texture
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and across the video sources, the videos generally
contain significant differences in scene appearance,
scale, illumination conditions and camera viewpoint.
Also, for the stochastic patterns, variations in the
underlying physical processes ensure large intra-class
variations.

The data set is partitioned in two ways: (i) basic-
level and (ii) subordinate-level, by analogy to termi-
nology for capturing the hierarchical nature of human
categorical perception [56]. The basic-level partition,
summarized in Table 1 (left column), is based on the
number of spacetime orientations present in a given
pattern; for a detailed description of these categories,
see Section 2.1. For the multi-dominant category, sam-
ples were limited to two superimposed structures
(e.g., rain over a stationary background). Note, the
basic-level partition is not arbitrary, it follows from the
systematic enumeration of dynamic patterns based
on their spacetime oriented structure presented in
Sec. 2.1. Furthermore, each of these categories have
been central to research regarding the representation
of image-related dynamics, typically considered on a
case-by-case basis, as referenced in Sec. 2.1.

To demonstrate the proposed approach’s ability
to make finer categorical distinctions, several of the
basic-level categories were further partitioned into
subordinate-levels. This partition, summarized in Ta-
ble 1 (right column), is based on the particular space-
time orientations present in a given pattern. Beyond
the basic-level categorization of an unconstrained ori-
ented pattern (i.e., unstructured), no further subdi-
vision based on pattern dynamics is possible. Un-
derconstrained cases arise naturally as the aperture
problem and pure temporal variation (i.e., flicker).
Dominant oriented patterns can be distinguished by
whether there is a single orientation that describes
a pattern (e.g., motion) or a narrow range of space-
time orientations distributed about a given orienta-
tion (e.g., “nowhere-static” and “optical snow”). Note
that further distinctions might be made based, for
example, on the velocity of motion (e.g., stationary
vs. rightward motion vs. leftward motion). In the
case of multi-dominant oriented patterns, the initial
choice of restricting patterns to two components to
populate the database precludes further meaningful
parsing. The heterogeneous and isotropic basic cate-
gory was partitioned into wavy fluid and those more
generally stochastic in nature. Further parsing within
the heterogeneous and isotropic basic-level category
is possible akin to the semantic categorization exper-
iment based on the UCLA data set discussed later
(see Section 3.2.3). Since this more granular partition
is considered in the UCLA data set, in the YUVL data
set only a two-way subdivision of the heterogeneous
and isotropic basic-level category is considered.

Figure 4 illustrates the overall organization of the
YUVL spacetime texture data set in terms of the basic-
and subordinate-level categories.

3.2 Heterogeneous spacetime classification

3.2.1 Viewpoint specific classification
The first experiment largely followed the standard
protocol set forth in conjunction with the original
investigation of the UCLA data set [4]. The only differ-
ence is that unlike [4], where careful manual (spatial)
cropping was necessary to reduce computational load
in processing, such issues are not a concern in the
proposed approach and thus cropping was avoided.
(Note that the actual windows used in the original
experiments [4] were not reported other than to say
that they were selected to, “include key statistical
and dynamic features”.) As in [4], a leave-one-out
classification procedure was used, where a correct
classification for a given texture sequence was defined
as having one of the three remaining sequences of its
scene as its nearest-neighbour. Thus, the recognition
that is tested is viewpoint specific in that the correct
answer arises as a match between two acquired se-
quences of the same scene from the same view.

Results are presented in Fig. 5. The highest recogni-
tion rate achieved using the proposed spatiotemporal
oriented energy approach was 81% with the L2 and
Bhattacharyya measures. Considering the closest five
matches, classification improved to 92.5%. Although,
below the state-of-the-art NN benchmark of 89.5%
using cropped input imagery [4] (and higher rate
reported using a SVM classifier, 97.5% [55], again with
cropped input), the current results are competitive
given that the benchmark setting AR-LDS approaches
are based on a joint photometric-dynamic model, with
the photometric portion playing a pivotal role [16],
[17]; whereas, the proposed approach focuses on pat-
tern dynamics due to the spatial appearance marginal-
ization step in the construction of the representation,
(5). More specifically, given that the image sequences
of each scene in the UCLA database were captured
from the exact same viewpoint and that the scenes
are visually distinctive based on image stills alone, it
has been conjectured that much of the early reported
recognition performance was driven mainly by spatial
appearance [16]. Subsequently, this conjecture was
supported by showing that using the mean frame of
each sequence in combination with a NN classifier
yielded a 60% classification rate [17], which is well
above the performance of random guessing (about
1%). In the experiments to follow, it will be shown that
there are distinct advantages to eschewing the purely
spatial appearance attributes as one moves beyond
viewpoint specific recognition.

3.2.2 Shift-invariant classification
To remove the effect of identical viewpoint, and thus
the appearance bias in the data set, it was pro-
posed that each sequence in the data set be cropped
into non-overlapping pairs, with subsequent compar-
isons only performed between different crop locations
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Fig. 4. Organization of the YUVL spacetime texture data set with sample frames for each category.
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Fig. 5. Viewpoint specific recognition results based
on the UCLA data set. EMD L1,2, L1,2 and Bhat-
tacharyya correspond to the results of the proposed
approach with respective distance measures. “Mean
frame” refers to using the mean frame of each image
sequence with an NN classifier [17]. The previous
state-of-the-art result is denoted by LDS as reported
in [4]; this result is based on a NN classifier, SVM
classifier-based results, as reported in [55], are slightly
higher. Previous evaluations do not report matching
beyond top 1 [4].

[17]. Recognition rates under this evaluation proto-
col showed dramatic reduction in the state-of-the-art
LDS-based approaches from approximately 90% to
15% [17]; chance performance was ≈1%. Further, in-
troduction of several novel distance measures yielded
slightly improved recognition rates of ≈20% [17]. Re-
stricting comparisons between non-overlapping por-
tions of the original image sequence data tests shift-
invariant recognition in that the “view” between in-
stances is spatially shifted. As a practical point, shift-
invariant recognition arguably is of more importance
than viewpoint specific, as real-world imaging scenar-
ios are unlikely to capture a scene from exactly the
same view across two different acquisitions.

The second experiment reported here closely fol-
lows previous shift-invariant experiments using the
UCLA data set, as described above [17]. Each se-
quence was spatially partitioned into left and right
halves (window pairs), with a few exceptions. (In
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Fig. 6. Shift-invariant recognition results based on the
UCLA data set. EMD L1,2, L1,2 and Bhattacharyya
correspond to the results of the proposed approach
with respective distance measures. Chance refers to
performance based on random guessing. Martin, cep-
stral univariate, Chernoff and KL divergence results
are taken from [17]. Previous evaluations do not report
matching beyond top 1 [17].

contrast, [17] manually cropped sequences into 48×48
subsequences; again, the location of the crop windows
were not reported.) The exceptions arise as several of
the imaged scenes are not spatially stationary; there-
fore, the cropping regimen described above would
result in left and right views of different textures for
these cases. For instance, in several of the fire and can-
dle samples, one view captures a static background,
while the other captures the flame. Previous shift-
invariant experiments elected to neglect these cases,
resulting in a total of 39 scenes [17]. In the present
evaluation, all cases in the data set were retained
with special manual cropping introduced to the non-
stationary cases to include their key dynamic fea-
tures; for crop documentation see: www.cse.yorku.ca/
vision/research/spacetime-texture. (In experimenta-
tion, it was found that dropping these special cases
entirely had negligible impact on the overall result.)

Overall, the current experimental design yielded a
total of 400 sequences, as each of the original 200
sequences were divided into two non-overlapping
portions (views). Comparisons were performed only

www.cse.yorku.ca/vision/research/spacetime-texture
www.cse.yorku.ca/vision/research/spacetime-texture
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Fig. 8. Examples of several misclassifications from the
shift-invariant recognition experiment. From a semantic
perspective, the inputs and their respective nearest
match are equivalent. The text below each figure,
indicating the scene, refers to the filename prefix used
in the UCLA data set.

between non-overlapping views. A correct detection
for a given texture sequence was defined as having
one of the four sequences from the other views of its
scene as its nearest-neighbour.

The results for the second experiment are presented
in Fig. 6. In this scenario the proposed approach
achieved its top classification rate of 42.3% with the
Bhattacharyya measure, significantly outperforming
the best result of 20% reported elsewhere [17]. Con-
sidering the closest five matches, classification im-
proved to ≈60%. This strong performance owes to the
proposed spatiotemporal oriented energy representa-
tion’s ability to capture dynamic properties of visual
spacetime without being tied to the specifics of spa-
tial appearance. Figure 7 provides several successful
classification examples.

Interestingly, close inspection of the results shows
that many of the misclassifications for the proposed
approach arise between different scenes of seman-
tically the same material, especially from the per-
spective of visual dynamics. Figure 8 shows several
illustrative cases. For example, the most common
“confusion” arises from strong matches between two
different scenes of fluttering vegetation. Indeed, veg-
etation dominates the data set and consequently has
a great impact on the overall classification rate.

Finally, recall that the results reported elsewhere
[17] used carefully chosen windows of spatial size
48 × 48; whereas, the results reported here for the
proposed approach are based on simply splitting the
full size textures in half. To control against the impact
of additional spatiotemporal support, the proposed
approach was also evaluated on cropped windows of
similar size to previous evaluations [17]. This manip-
ulation was found to have negligible impact on the
recognition results.

3.2.3 Semantic category classification
Examining the UCLA data set, one finds that many
of the scenes (50 in total) are capturing semantically

TABLE 2
Summary of semantic reorganization of UCLA data
set. “filename prefix” refers to the filename prefix of

the original scenes in the UCLA data set. The number
of samples per category are given in parentheses.

Category Filename Prefix Description

flames (16) candle, fire flames
fountain (8) fountain-c spurting fountain

smoke (8) smoke smoke
water boiling, turbulent

turbulence (40) water water dynamics
water waves (24) sea wave dynamics

waterfalls fountain-{a,b}, water flowing
(64) wfalls down surfaces

windblown flower, fluttering
vegetation (240) plant vegetation

TABLE 3
Confusion matrix for seven semantic categories of

heterogeneous spacetime texture. Results are based
on the Bhattacharyya coefficient.

Classified

fla
m

es

fo
un

ta
in

sm
ok

e

w
.t

ur
bu

le
nc

e

w
at

er
w

av
es

w
at

er
fa

ll

w
.v

eg
et

at
io

n

A
ct

ua
l

flames (total 16) 12 1 2 1
fountain (8) 8

smoke (8) 2 6
w. turbulence (40) 34 6

water waves (24) 24
waterfall (64) 2 51 11

w. vegetation (240) 3 1 2 234

equivalent categories. As examples, different scenes
of fluttering vegetation share fundamental dynamic
similarities, as do different scenes of water waves vs.
fire, etc.; indeed, these similarities are readily apparent
during visual inspection of the data set as well as the
shift-invariant confusions shown in Fig. 8. In contrast,
the usual experimental use of the UCLA data set relies
on distinctions made on the basis of particular scenes,
emphasizing their spatial appearance attributes (e.g.,
flower-c vs. plant-c vs. plant-s) and the video capture
viewpoint (i.e., near, medium and far). This parcel-
ing of the data set overlooks the fact that there are
fundamental similarities between different scenes and
views of the same semantic category rooted in their
exhibited image dynamics.

In response to the observations above, the next
experiment reorganizes the UCLA data set into the
seven semantic categories summarized in Table 2
(reorganization done by authors). Evaluation on this
data set was conducted using the same procedure
outlined for the shift-invariant experiment to yield
semantic category recognition.

The semantic category recognition results based on
the closest match are shown as a confusion table in
Table 3. The overall classification rate in this scenario
is 92.3% with the Bhattacharyya measure. As with
the previous experiment, inspection of the confusions
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Input

Nearest Match

Scene fire smoke boiling-b-near plant-d-near sea-a-mid wfalls-d-near

Fig. 7. Example correct classifications for shift-invariant recognition experiment. In each subfigure, the first
row shows an example frame from an input sequence and the second row shows an example frame from the
corresponding nearest match in the database. The text below each row indicates the scene and corresponds to
the filename prefix used in the UCLA data set.

reveals that they typically are consistent with their
apparent dynamic similarities (e.g., waterfall and tur-
bulence confusions, smoke and flames confusions).

While the presented partitioning is reasonably con-
sistent with the semantics of the depicted patterns,
alternative categorical organizations might be consid-
ered. Elsewhere, an eight class semantic partition of
the UCLA data set was presented with focus on evalu-
ating viewpoint invariance [18]. This partitioning only
considered 88 hand selected video sequences from
the data set taken from different viewpoints (50% for
training and 50% for testing). Under this alternative
partitioning, the proposed approach achieved an over-
all correct classification rate of 73%. The number of ex-
amplars per category correctly classified are as follows
(number of testing examplars given on right): boiling
water 0/4, fire 4/4, flowers 6/6, fountain 5/8, sea 2/6,
smoke 2/2 water 5/6 and waterfall 8/8. Inspection of
the confusions reveals that they typically are consis-
tent with their apparent dynamic similarities (e.g., all
cases of boiling water misclassified as water and all
fountain and sea misclassifications confused amongst
each other). In comparison, approaches that capture
joint photometric-dynamic aspects of heterogeneous
spacetime texture, both holistically [4] and within a
bag-of-features framework [18], have been reported
elsewhere [18] to achieve between 52% and 70% on
this partitioning using the same nearest-neighbour
classifier considered here.

The results on the two semantic partitions col-
lectively provide strong evidence that the proposed
approach is extracting information relevant for delin-
eating heterogeneous spacetime textures along seman-
tically meaningful lines while the spatial appearance
and viewpoint of the pattern may vary; moreover,
that such distinctions can be made based on dynamic
information without inclusion of spatial appearance.

3.3 Spacetime texture classification
3.3.1 Basic-level classification
As with the previous set of evaluations on hetero-
geneous spacetime texture classification performance,

TABLE 4
Confusion matrix for the five basic-level categories of

spacetime texture. Results are based on the
Bhattacharyya coefficient.
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unconstrained (total 16) 16
underconstrained (77) 76 1

dominant (293) 1 278 5 9
multi-dominant (85) 2 6 71 6

heterogeneous and isotropic (139) 1 3 3 132

the same leave-one-out classification procedure was
used to evaluate the performance of the proposed
spacetime texture recognition approach using the
YUVL spacetime texture data set. Overall results are
presented in Fig. 10 (a). The highest recognition rate
achieved using the proposed spacetime oriented en-
ergy approach was 94% with the L1, L2 and Bhat-
tacharyya similarity measures. In the remainder of
this section, discussion will be limited to results
based on the Bhattacharyya coefficient measure; re-
sults based on the alternative distance measures are
generally slightly lower. Considering the closest three
matches, classification improved to 98.9%. Class-by-
class results are presented in Fig. 10 (b) and Table
4. In the case of the class-by-class results, nearest-
neighbour recognition rates ranged between 83.5% to
100%. Considering the closest three matches, recogni-
tion rates improved, ranging between 96.5% to 100%.
Figure 9 provides an example correct classification for
each basic-level category.

Figure 11 provides several representative examples
of common misclassifications. The corn field was clas-
sified as underconstrained, rather than dominant ori-
ented, as labeled in the ground truth. From the figure
it is clear that the rows of corn form a nearly vertical
spatial pattern (similar to the wooden fence in the
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Input

night sky stationary panning down heavy snow cheering crowd
striped pillow building over street silhouette

Nearest Match

clear stationary panning down heavy snow cheering
day sky car grille cityscape over Kremlin crowd

Basic-Level unconstrained underconstrained dominant multi-dominant heterogeneous orientation

Category orientation orientation and
isotropic structure

Fig. 9. Example correct classifications for basic-level categorization. In each subfigure, the first row shows a
frame from an input sequence and the second row shows the corresponding nearest match in the database. The
text under each frame provides a description of the video.

nearest match) and thus could also be considered an
instance of the aperture problem (underconstrained).
The scene of the people walking down the street was
misclassified as heterogeneous oriented, rather than
dominant oriented, as labeled. In the input, although
there is a small amount of vertical motion downward
due to the walking motion, there is also a significant
component of bobbing which is visually similar to
the nearest match. The corn field and people walking
examples highlight the often ambiguous nature of
providing ground truth class labels. The scene con-
sisting of falling leaves with a stationary backdrop
was misclassified as dominant oriented rather than
multi-oriented, as labeled. In this example, the ori-
entation of the nearest sample matched one of the
orientation components of the misclassified input. In
this case, one of the orientation components of the
multi-oriented sequence may lie beyond the resolu-
tion (scale) of the filters used; recall that the current
analysis is restricted to a single spatiotemporal scale.
Such confusions may be addressed via the use of
multiple scales of analysis, which is an interesting
direction for future research.

3.3.2 Subordinate-level classification

The previous experiment demonstrated strong recog-
nition performance in the context of fairly broad
structural categories. This experiment considered finer
categorical distinctions using the subordinate-level
partition of the YUVL spacetime texture data set.
Evaluation on this data (including the unpartitioned
categories of “unconstrained” and “multi-dominant”)
was conducted using the same leave-one-out proce-
dure outlined for the basic-level experiment above.
The subordinate-level recognition results are shown in
Fig. 12. Considering only the first nearest-neighbour,
class-by-class results ranged between 81.3% to 100%.
Considering the closest three matches, recognition
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Fig. 10. Spacetime texture basic-level recognition re-
sults. Results for (a) correspond to the proposed ap-
proach under various distance measures and (b) to the
proposed approach with the Bhattacharyya measure.

rates improved, ranging between 95.3% to 100%. Fig-
ure 13 provides an example correct classification for
each subordinate-level category.

Figure 14 provides two representative examples of
common misclassifications. In the case of the suburb
flyover, both the input and nearest match contain
roughly the same dominant orientation (same veloc-
ity) corresponding to upward motion yet the rising
bubbles contain additional deviations. Two possible
sources for this misclassification are: (i) the orientation
deviations in the rising bubbles sequence are beyond
the resolution of the current instantiation of the rep-
resentation and (ii) the orientation deviations in the
bubble sequence are significant, yet the data set does
not contain a single-oriented pattern that matches
closely with the input (i.e., has the same dominant
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Input

stationary flashing text people riding wavy busy
picket fence emergency light scrolling upward bicycles ocean trading floor

Nearest Match

stationary lightning panning crowd wavy commotion
striped wall camera walking fluid of people

Subordinate- aperture flicker single non-single wavy stochasticLevel Category problem oriented oriented fluid

Fig. 13. Example correct classifications for subordinate-level categorization. In each subfigure, the first row
shows a frame from an input sequence and the second row shows the corresponding nearest match in the
database. The text under each frame provides a description of the video.
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Fig. 11. Example misclassifications for basic-level
categorization. In each subfigure, the first row shows
a frame from an input sequence and the second
row shows the corresponding nearest match in the
database. The text under each frame provides a de-
scription of the video and basic-level label.
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Fig. 12. Spacetime texture subordinate-level recogni-
tion results. Class-by-class subordinate-level category
results. Results correspond to the proposed approach
under the Bhattacharyya measure.

image velocity component). The traffic scene was
misclassified as non-single oriented, rather than single
oriented, as labeled. One could argue that the traffic
scene should also have been labeled as non-single
oriented in the ground truth. More generally, most of
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(single oriented) (single oriented)
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rising bubbles marathon moving downward
(non-single oriented) (non-single oriented)

Fig. 14. Example misclassifications for subordinate-
level categorization. In each subfigure, the first row
shows a frame from an input sequence and the sec-
ond row shows the corresponding nearest match in
the database. The text under each frame provides a
description of the video and subordinate-level label.

the misclassifications are of this type (i.e., correspond
to matches to “neighbouring” categories). Again, this
demonstrates the ambiguous nature of the ground
truth labeling task.

Taken together with the results from the basic-
level category experiment, the results provide strong
evidence that the proposed approach is extracting
relevant structural dynamic information to delineate
the spectrum of spacetime textures. In particular,
the approach is able to represent and recognize pat-
terns encompassing those that traditionally have been
treated separately (e.g., motion, dynamic texture, as
well as other image dynamics) when considered as
aggregate measurements over a region.

4 DISCUSSION AND SUMMARY

There are two main contributions in this paper. First,
the definition of texture in the context of dynamics has
been broadened to uniformly capture a wide range
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of visual spacetime phenomena ranging from deter-
ministic patterns such as motion to more stochastic
patterns. The key unifying principle is their under-
lying first-order spacetime correlation structure. Sec-
ond, although the application of spacetime oriented
filters is well documented in the literature for patterns
readily characterized as single motion [40], [41], [19],
[20] and semi-transparent motion [46], [20], [57], [58],
its application to analyzing more complicated phe-
nomena as manifest in heterogeneous dynamic pat-
terns, where dominant oriented structure can break
down, has received no previous attention. Through
empirical evaluation it has been shown that this tack
yields a strong approach to shift-invariant, viewpoint-
invariant and semantic category-based recognition in
application to a standard data set. Moreover, similar
strong performance was demonstrated in application
to a novel spacetime texture data set that encompasses
a wider range of dynamic phenomena.

In this contribution, the dynamic portion of a tex-
ture pattern has been factored out from the purely
spatial appearance portion for subsequent recogni-
tion. In contrast, state-of-the-art LDS-based recogni-
tion approaches generally have considered the spatial
appearance and dynamic components jointly, which
appears to limit performance in significant ways (e.g.,
weak performance on shift-invariant recognition rela-
tive to the proposed approach). Furthermore, restrict-
ing analysis to the dynamic portion of the LDS model
also appears to limit performance significantly. These
observations motivate the future investigation of com-
bining a state-of-the-art appearance-based scheme
with the proposed approach to recognizing pattern
dynamics. The emphasis in comparison has been on
the LDS model and its variants (joint photometric-
dynamic, dynamics only and bags of LDS) that form
the state-of-the-art and that have been evaluated on
the common UCLA data set; however, future work
can consider additional comparisons, including com-
bination of the proposed approach with appearance
and comparison to additional approaches that in-
clude both appearance and dynamics). Significantly,
the ability to tease apart the spatial appearance and
dynamic components of a pattern, rather than jointly
(e.g., [4], [12], [18]), is a worthy pursuit in its own
right. This approach allows for a compact vocabulary
of appearance- and dynamic-only descriptions that
can be combined in a variety of ways to realize a rich
pattern description.

Although the proposed representation has been
presented in terms of oriented filters tuned to a
single spatiotemporal scale (i.e., radial frequency),
it is an obvious candidate for multi-scale treatment
[59]. This extension may serve to support finer cat-
egorical distinctions due to characteristic signatures
manifesting across scale. Another possible direction of
research concerns the use of combinations of second-
and higher-order statistics. Higher-order features may

be useful in characterizing pattern dynamics whose
oriented structure varies spatiotemporally (i.e., non-
stationary spatiotemporal statistics), such as affine
motion (varying across space) and acceleration (vary-
ing across time); nonetheless, it has been demon-
strated that the current approach based on first-order
statistics has successfully captured a broad and im-
portant set of dynamic patterns.

In summary, this paper has presented a unified
approach to representing and recognizing spacetime
textures from the underlying pattern dynamics. The
approach is based on a distributed characterization of
visual spacetime in terms of 3D, (x, y, t), spatiotempo-
ral orientation. Empirical evaluation on both standard
and original image data sets, including quantitative
comparisons with state-of-the-art methods, demon-
strates the potential of the proposed approach.
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