
Lecture 11. Software industry

Informal and unedited notes, not for distribution. (c) Z. Stachniak, 2011-2015.

Note: in cases I were unable to find the primary source of an image used in these

notes or determine whether or not an image is copyrighted, I have specified the

source as ”unknown”. I will provide full information about images, obtain repro-

duction rights, or remove any such image when copyright information is available

to me.

Introduction

Computer software–the ”soul” of a computer–is rarely a subject of a pas-
sionate discussion of new trends in information technologies. When a new
smartphone is demonstrated, its amazing functionality is instinctively but
unfairly linked with pressing of keys or touching the screen– a physical sen-
sation connecting our experiences more with hardware than with ... yes, with
what?

What is exactly happening when a smartphone is turned on? Well, several
things are happening: the screen lights on, the radio is turned on, several
icons appear, information appears about received e-mails, text messages, up-
dates, and other information. The device begins to ”listen” to our requests:
screen touches, key presses, spoken commands. How is all of that accom-
plished?

When a new game is downloaded for, say the Microsoft’s Xbox360/Kinect
console, what exactly is being downloaded? how does the downloadable stuff
that constitutes a game look like? and how a click on the ”download game
now” link results in such a game finding its way onto a screen connected to
an Xbox?

1



The majority of computer and communication devices operate by following
instructions listed in the so-called program and stored in the device’s memory.
This applies to desktop computers and tablets as well as to game consoles and
smartphones. So, an operating system of a smartphone (or OS), such as the
Android (Google), iOS and (Apple), BlackBerry OS (RIM), Windows Phone
(Microsoft) Tizen OS (Samsung) are programs, and so are Xbox games.

Without programs, computers and other computing and information de-
vices would be as useless as a book with empty pages or a game console
without games. Without software your computer would be a very expensive
paperweight. The next time you send an email or play Star Wars Kinect
(LucasArts Entertainment) or NHL 15 (EA Sports) take a moment to think
about software engineers that made all of that possible.

Hardware – Software

Computer hardware: computers, their components and peripherals.

Fig. 1. (Personal) computer hardware.

Source: http://www.mastercoolequipmentsecurity.com/computer-hardware-28-999.htm

2



Computer software: computer programs and associated data that deter-
mine a computer’s operating environment and provide users with applications
by commanding the hardware to perform specific tasks.

Computer software is delivered to a computer for execution in the form of
a sequence of instructions written in a specific programming language and
translated into machine instructions. A computer is following these instruc-
tions in the order given in the program. The following example illustrates
this idea with a little program written in the language called BASIC (see
Figure 2). Can you guess what this program instructs a computer to do?

Fig. 2. Sample BASIC program (left) and its execution (right).

Types of computer software

Though there are many distinct categories of computer software (e.g. com-
puter games, operating systems, spreadsheets, databases, text editors, etc.),
most of them fall into two main categories: systems software and applications
software.

Systems software takes care of a computer’s functionality. When a com-
puter or a smartphone is turned on, a certain kind of software is executed
to perform many functions (e.g. initialization of devices such as screen, key-
board, mouse, and audio card). Another kind of systems software, called an
operating system, enables a user to communicate with a computer and its
peripherals, and to request the execution of other programs such as launch-

3



ing a Web browser, a text editor, or a computer game. An operating system
is ”watching” a user, reacting to keyboard presses, mouse position, screen
touches, and other input data. Other types of systems programs are those
used by software engineers to design and debug software.

Applications software is a large class of programs that are used (exe-
cuted) by users to directly accomplish some tasks such as the creation and
editing of text documents, playing multimedia content and games, or surfing
the Web. This class also includes the apps developed for mobile devices.

4



Who invented software?

As discussed earlier, a computer program is a list of commands instructing a
computer and its peripherals about the operations that they should perform.

It is not difficult to see that similar programs can be designed to instruct
not only computers but other machines such as simple robotic equipment at
a manufacturing plant that is to drill a few holes in specified places of what
would be a chair or a table, or to command a set of mechanical instruments
in a mechanical orchestra box (more about this below).

Since Renaissance (and culminating with the Industrial Revolution) mechan-
ical devices with built-in ”software” flourished. We have already discussed
one of such ”programmed” marvel – the mechanical monk or the Clockwork
Prayer (see Fig. 3).

The main challenge faced by the designers of these complicated machines
was how to provide an automaton with instructions that it would follow to
take appropriate actions such as, in the case of the mechanical monk: walk-
ing in a square, striking his chest with his right arm, kissing the cross, raising
and lowering a wooden cross and rosary in his left hand, turning and nodding
his head, rolling his eyes, and mouthing silent obsequies.

5



Fig. 3. Mechanical monk, ”undressed” to reveal its design. National Museum of American

History, Smithsonian Institution, Washington, DC. Source: [4].

But looking inside the mechanical monk it is difficult to point out to ”soft-
ware”. What we see is an assembly of iron cams and levers of various shapes,
powered by a spiral spring (see [4]). The monk could not be re-programmed
to exhibit a different behaviour.

6



Early ”reprogrammable” automata

We begin our search for early ”re-programmable” mechanical devices in
rather unusual places – art galleries. Let us take a look at the following two
paintings, one by Jean Simeon Chardin and the other by William Hogarth.
Let us look at the common themes in the paintings: a wooden ”instrument”,
a bird in a cage, a person operating the instrument while looking at the bird.

Fig. 4. J.B.S. Chardin, Lady with a ?? c. 1753, The Frick Collection, New York.

7



Fig. 5. William Hogarth, The Graham Children, 1754, National Gallery, London.

8



Fig. 6. Bird Organs as depicted in the

18th century paintings.

These mysterious-looking boxes are Bird Organs – mechanical devices ca-
pable of reproducing birds’ songs. In both pictures, a woman and a boy
”play” an instrument hoping to teach the bird in a cage a new ”bird song”.

To see what these Bird Organs have to do with the history of software,
let us look inside one of them.

9



Fig. 7. This ”bird organ, a popular novelty of the 18th and 19th centuries ... [was] a

sophisticated automaton capable of imitating the sound and movements of a real bird: the

wing flaps, the head turns, and the beak moves to the accompaniment of assorted bird

whistles.” Photo and quote from [3].

10



Fig. 8. A design of a typical bird organ mechanism. ”Two metal cams control the bird’s

voice: the far cam controls the pitch piston (located in the body of the head whistle), and

the near cam controls the volume valve (located inside the wind chest).” Diagram and

quote from [3].

The cams used in the above design store data and ”instructions” to raise
or lower the pitch, or increase or reduce the volume. When the cams were
replaced by another pair, the bird would be ”re-programmed” and sing a
different song.

11



Jacquard loom

Early computers and computer designs used another media and technique
for storing data and instructions: punch cards and paper tapes. At that
time, they provided the most convenient way of entering programs and data.
Their use explicitly separated data and programs from the device they sup-
posed to control.

To search for the first uses of punch cards one has to go to the early 19th
century France and look at the development of the textile industry. In 1801,
a French man Joseph Marie Jacquard invented a new type of loom (i.e. a
machine used to weave cloth) which, in a fully mechanical way, could manu-
facture textiles with complex patterns. Without getting into details concern-
ing loom’s designs and weaving principles, let us only mention that weaving
is done row by row along the so-called warp threads and that each row is
”completed” by passing weaving material between selected warp threads.

Fig. 9. Weaving is done row by row along the so-called warp threads...

12



In Jacquard’s loom, the design pattern of each row was stored as a row of
punched holes in a wooden ”card”. The many cards that composed the entire
design of the textile were strung together in order. In short, Jacquard loom’s
operations were under the control of ”software” stored on punched cards.
(Jacquard adopted the use of punch cards to control looms from Frenchmen
Basile Bouchon, 1725, Jean Baptiste Falcon, 1728, and Jacques Vaucanson,
1740).

Simple, repeating designs could be encoded on a single or a few cards.

Fig. 10. Jacquard loom. Source: unknown

13



More complex patterns required several, sometimes hundreds of cards.

Fig. 11. Hundreds of punch cards for a Jacquard loom. Photograph by Lars Olaussen.

14



Apparently, a silk print of Jacquard produced on one of his looms (and de-
picted in Figure 12) used 10,000 punch cards (see [1], p. 64).

Fig. 12. Portrait of J.M. Jacquard woven in silk, c. 1839. Source: unknown.

The enormous success and impact of the fully automated looms reminds
us that ”there is a high technology in every age, not just in our own. The
technology of electronics is merely the latest link in a continuous chain of
technological developments spanning 20,000 years.” [3]

15



Fig. 13. A visit to a Jacquard loom woven in silk, by M. Carquillat 1844.

Source: http://www.duke.edu/web/isis/gessler/collections/jacquard.htm.

16



Since the 18th century, punch cards were also used to store data and in-
structions other than those used by textile industry. Another significant
application area for these cards were mechanical musical instruments such as
this impressive French orchestra box depicted in Fig. 14, made in the 19th
century and still in perfect operational order when photographed in 2008.

As in the Bird Organ, the hand cranked punch card reader of the mechanical
orchestra transfers information about pitch and volume values for various
wind instruments placed inside the box.

Fig. 14. El Bucanero band playing traditional Cuban music to the accompaniment of a

mechanical orchestra. Photographs by Z. Stachniak

17



Software after Babbage

Charles Babbage was the first inventor of computing devices to use punch
cards for storage of data and program instructions. His Analytical Engine
(1834, see lecture 3) was to be operated under the control of a program sup-
plied to the machine on punched cards.

Fig. 15. A stack of punched cards for Babbage Analytical Engine. Source: photo by cog-

dogblog, http://www.flickr.com/photos/cogdog/4905713747

18



Punch cards reappeared in the late 19th century again when Herman Hol-
lerith used them to store data destined for his Card Tabulating Machine (see
lecture 6). Punch cards would continue to be used by Hollerith’s Tabulating
Machine Company and, after the formation of IBM, by the new company,
until 1970s.

Fig. 16. An original Tabulating Machine Company’s punched card (top) and an IBM 360

card (bottom). Sources: York University Computer Museum and Tao Shi,

http://taoshistat.wordpress.com/2011/10/21/computers-and-statistics

19



Software in the age of mainframes

In the early era of mainframe computers there was no software industry. A
computer owner had only two sources to acquire software. The first was
the computer manufacturer which provided its computer with some general
purpose software and ”bundled” its price with the price of hardware. The
manufacturer was offering no additional software.

A mainframe computer user in need of additional software dealing, say, with
specific business applications (e.g. payroll, inventory management, banking,
file management, or report generation utilities) had no choice but either to
develop its own software in-house from scratch or by hiring the services of a
programming firm that would develop required software under contract, typ-
ically a single copy for each customer. In both cases, obtaining such software
was very expensive.

Since the 1960s, the production and distribution of software has changed
dramatically (see [5,6]). Just a few at first, then thousands of software firms
began to sell multiple copies of software to multiple customers.

These firms increasingly found opportunities to package the soft-
ware they had already written and deliver it to multiple cus-
tomers, a situation that promised potentially high profits given
the low cost to reproduce already developed software. [6]

John Cullinane, who founded his own software company in 1968, described
this process in the following way

The idea of software products as a business came to me when I
was working with Philip Hankis Inc., a traditional contract pro-
gramming firm in the 1960s. We designed and implemented a
payroll system for a bank in New Orleans. ... Then we designed
and implemented a similar payroll system for a bank in Connecti-
cut... Then we received a contract from Marine Midland Bank in
Buffalo... for another payroll system... About the same time that
we finished that payroll system, a bank in New Jersey called and
wanted a similar payroll system for the same computer configu-
ration. Why not sell them a system we had just finished rather
than reinventing the wheel? [6]

20



By the mid-1960s, the software industry selling application packages was
already established. An application package contained the software itself,
some manuals, and a licence agreement allowing, among other things, some
customer support. All of that placed in a box and shrink wrapped. The
software itself was delivered on a variety of media: punched cards and paper
tape, or on magnetic tapes.

Fig. 17. Magnetic tape equipment attached to a Bendix G-15 computer. Several of such

computers were installed at the University of Manitoba. Source: Keith Smillie,

http://webdocs.cs.ualberta.ca/ smillie/ComputerAndMe/Part14.html

Software was stored for execution in a computer’s internal memory imple-
mented as magnetic drums, core memory, and (since 1956) on hard drives.

21



Fig. 18. The first hard drive developed by IBM in 1956 for its Ramac 305 computer

had just 5 Mega bytes (Mb) of storage capacity (or 5 million characters). Source: Kyle

VanHemert,

http://www.gruponeva.es/blog/noticia/7331/el-disco-duro-de-5-mb-lanzado-por-ibm-en-1956-

que-pesaba-mas-de-una-tonelada-fotos-retro.html

22



Today, little smartphone SDM cards and flush drives have storage capacity
equivalent to thousands of Ramac 305’s hard drives!! For instance, the lit-
tle SDM card in Figure 19 can store 6,400 times more data (its capacity is
32GB) while 128GB flush drives are storage-equivalent to 25,600 of Ramac
305’s hard drives!!

Fig. 19. 32GM SDM card from Samsung. Source: Samsung.

By the end of the 1960s, the software industry was established as an in-
dependent economic entity.

23



The microcomputer software explosion

Since the emergence of the computer industry in the early 1950s, every decade
or so, a new computing paradigm is introduced which is immediately reflected
in the way software is designed, distributed, and used.

What these new computing paradigms bring to the world of software is not
necessarily the elimination of the old forms of software design and delivery
but their novel forms. The bundled and packaged software introduced in the
1950s and 60s are offered for this day (e.g. smartphone software is bundled
with hardware, and new operating systems, such as the coming Microsoft
Windows 8, will be also available in a packaged form).

The appearance of the first microcomputers and, soon after, personal and
home computers in the second half of the 1970s, resulted in the rapid ex-
pansion of the software industry that had to supply millions of new type
of computers with all kinds of software from operating systems and pro-
gramming languages to applications. The formation of the microcomputer
software industry introduced:

• new forms of distribution: computer stores, electronic distribution, free
software,

• new software categories (e.g. computer games, home economics, educa-
tional software, electronic spreadsheet programs), with bestsellers such
as the CP/M operating system (1974, Digital Research), Microsoft BA-
SIC (1975, Microsoft), Microchess (1976, P. Jenings), VisiCalc (1979,
Personal Software), or Flight Simulator game (1976, Bruce Artwick,
subLOGIC Corporation);

• new forms of software advertising: in dedicated microcomputer mag-
azines, catalogs, and newsletters published by computer stores and
computer clubs, during computer events (such as exhibits, shows, and
fests), even in popular press, on television, and radio (in general-interest
programs dedicated to computing).

24



Microcomputing and electronic delivery of software

Today, a large number of software products are purchased and delivered not
in a physical packaged form but electronically, on-line. With a click of the
computer mouse or a touch of an icon on a smartphone, a software is down-
loaded and installed.

The electronic delivery of software dates back to the rapid development of
home and personal computer industries in the late 1970s and early 1980s. It
was based on the idea of the delivery of software directly to home microcom-
puters, game consoles, and other dedicated microprocessor-based hardware
(I will refer to all that hardware as software players) via a standard common
communications network such as phone and cable TV networks or using FM
radio waves.

For a small monthly fee, the owner of a software player could subscribe
to a service that would offer an electronic access to software and data. This
was a cost-effective alternative to microcomputer packaged software offered
on ROM cartridges, audio cassettes, and floppy diskettes and distributed
through variety computer stores, large departmental stores, and hardware
manufacturers’ outlets (e.g. Radio Shack). Some of the early electronic mi-
crocomputer software delivery services are listed in Table 1.

System Company Country software delivery In
player method operation

Telesoftware Ceefax UK BBC micro TV, VBI 1983-89

Telesoftware Prestel UK multi telephone 1981-?
platform

PlayCable Jerrold USA Mattel CATV 1980-83
Mattel Intellivision

GameLine Control USA Atari 2600 CATV 1983-83
Video Corp

The Games The Games USA Window CATV 1983-84
Network Network game

console

NABU Nabu Mfc. Canada Nabu PC CATV 1983-86
Network

Figure 1: Early commercial microprocessor software delivery systems.

25



Fig. 20. NABU Network software selection menus (1984). Source: York University Com-

puter Museum.

Fig. 21. Sample NABU Network application software Source: York University Computer

Museum.

26



Fig. 22. Two Ceefax Telesoftware screen shots.

27



BBS systems and downloadable software

Thanks to inexpensive modems, computer bulletin board systems (BBS)
grew in popularity and began offering an electronic exchange (download-
ing and uploading) of non-commercial software.

Computer enthusiasts flocking around BBS systems created the first vir-
tual communities. A BBS user could download programs written in popular
languages such as BASIC, PASCAL, or C. These programs could then be
executed on a user’s hardware either directly (when the program was written
in an interpreted language) or after compilation. In either case, the down-
loaded software could also be stored on an external media owned by the user.

The following pages contain screenshots of two BBS introduction pages.

28



Fig. 23. TRS 80 BBS welcome page.

29



Fig. 24. Cracked Ice BBS welcome page.

30



Computing in the clouds

Presently, a number of corporations, companies, and individual users no
longer buy application software or store corporate data on their own com-
puters. Instead, they subscribe to software and data storage resources, they
access and use application software on-line and store data, over a network
(typically the Internet), on remote computers. In this computing paradigm,
software is a service provided remotely by ”cloud computing” companies.
This, in essence, is what is now called cloud computing.

Is cloud computing a new concept? Not exactly. As with electronic de-
livery of software, such remote software services were tried before and were
particularly popular forms of the so-called time-sharing services in the 1970s
and 80s. A customer could login into a time-sharing service (i.e. a remote
computer providing software, databases, and storage resources) using a dumb
terminal connected, typically, to a phone line, and could execute a range of
software tools and application programs.

A Toronto-based software and communications firm I.P. Sharp Associates
Ltd. (IPSA) was one of such companies. Since mid 1970s, IPSA offered its
communications capability, its on-line SHARP APL software and application
program environment as well as private and public databases and libraries
via its world-wide communications network – IPSANET.

By the end of the 1980s, IPSANET was linking over 800 cities in 80 countries
and territories. The company maintained one of the world’s largest collec-
tions of on-line business-oriented data.

For a number of customers, electronic access to software represented the
easiest and most effective way to satisfy their computing needs, being free
from problems associated with software installations, updates, and patches.
In this model of software use and access, a user was neither owning software
nor retaining it after terminating the time-sharing session.

After twenty years, cloud computing re-emerged again on the strength and
world-wide reach of the Internet. The example of cloud computing illustrates
a profound rule of inventing and advancement according to which they are
just steps in a complex chain of preceding findings and inventions leading us

31



into even more profound discoveries.

Conclusions

Computer and Information technologies involve both hardware and software.
It is hardware that determines what kind of applications, as defined by soft-
ware, are possible. It is software that determines how useful and user-friendly
a device (hardware) is.

The future we are building is based more and more on software. The in-
fluence of software in all areas of industry, economy, and in ordinary life will
likely persist over the next few decades. The demand for software of ever-
increasing degree of complex will continue and so will debates concerning
privacy, security, and sharing of software.

References

1. S. Augarten, Bit by Bit, An Illustrated History of Computing, Ticknor
& Fields, 1984.

2. JP. Ganapati, Jacquard’s Loom Will Weave a Durable Web, Wired
Magazine, July 7, 2009. http://www.wired.com/thisdayintech/2009/07/dayintech 0707/

3. J.M. Williams, Antique Mechanical Computers. Byte, July 1978, pp.
48–58.

4. E. King, Clockwork Prayer
http://www.blackbird.vcu.edu/v1n1/nonfiction/king e/prayer introduction.htm
(follow the links on the bottom).

5. E.W. Pugh, Origins of Software Bundling, IEEE Annals of the History
of Computing, January-March 2002, pp. 57–58.

6. L. Johnson, Creating the Software Industry, IEEE Annals of the His-
tory of Computing, January-March 2002, pp. 14–42.

32


