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1 Introduction

Universal algebra has underpinned the modern research in formal logic since Gar-
rett Birkoff’s pioneering work in the 1930’s and 1940’s. Since the early 1970’s,
the entanglement of logic and algebra has been successfully exploited in many ar-
eas of computer science from the theory of computation to Artificial Intelligence
(AI).

The scientific outcome of the interplay between logic and universal algebra
in computer science is rich and vast (cf. [2]). In this presentation I shall discuss
some applications of universal algebra in AI with an emphasis on Knowledge
Representation and Reasoning (KRR).

A brief survey, such as this, of possible ways in which the universal algebra
theory could be employed in research on KRR systems, has to be necessarily in-
complete. It is primarily for this reason that I shall concentrate almost exclusively
on propositional KRR systems. But there are other reasons too. The outburst of
research activities on stochastic local search for propositional satisfiability that
followed the seminal paper A New Method for Solving Hard Satisfiability Prob-
lems by Selman, Levesque, and Mitchel (cf. [11]), provides some evidence that
propositional techniques could be surprisingly effective in finding solutions to
‘realistic’ instances of hard problems.

2 Propositional KRR Systems

One of the main objectives of Knowledge Representation is the development
of adequate and, preferably, tractable formal representational frameworks for
modeling intelligent behaviors of AI agents.

In symbolic approach to knowledge representation, a KRR system consists of
at least a formal knowledge representational language L and of an inference op-
eration ` on L. Such a system may involve additional operations and relations
besides ` (such as plan generation and evaluation, belief revision, or diagno-
sis); for some domains, some of these additional operations can be defined or
implemented in terms of ‘basic’ logical operations: logical inference, consistency
verification, and satisfiability checking. Representing reasoning tasks as instances
of logical inference, consistency, and satisfiability problems is discussed below.



Syntax. In the propositional case, a representational language L, defined by
a set of propositional variables V ar and logical connectives f0, . . . , fn, can be
viewed as a term algebra (or Lindenbaum’s algebra of formulas)

〈Terms(V ar), f0, . . . , fn〉,

generated by V ar, where Terms(V ar) denotes the set of all well-formed formu-
las of L. Syntactically richer languages can be adequately modeled using, for
instance, partial and many-sorted term algebras.

Inference Systems. Given a propositional language L, a relation ` between
sets of formulas of L and formulas of L is called an inference operationon on L,
if for every set X of formulas:

(c1) X ⊆ C(X) (inclusion);
(c2) C(C(X)) ⊆ C(X) (idempotence);

where C(X) = {β : X ` β}. An inference system on L is a pair 〈L,`〉, where
` is an inference operation on L. Further conditions on ` can be imposed: for
every X, Y ⊆ Terms(V ar),

(c3) X ⊆ Y ⊆ C(X) implies C(X) = C(Y ) (cumulativity);
(c4) X ⊆ Y implies C(X) ⊆ C(Y ) (monotonicity);
(c5) for every endomorphism e of L, e(C(X)) ⊆ C(e(X)) (structurality).

Every inference system satisfying (c1)–(c5) is called a propositional logic. Since
Tarski’s axiomatization of the concept of a consequence operation in formalized
languages, algebraic properties of monotonic and non-monotonic inference oper-
ations have been extensively studied in the literature. (cf. [1,10,13,16]).

Matrix Semantics. The central idea behind classical matrix semantics is to
view algebras similar to a language L as models of L. Interpretations of formulas
of L in an algebra A similar to L are homomorphisms of L into A. When A is
augmented with a subset d of the universe of A, the resulting structure

M = 〈A, d〉,

called a logical matrix for L, determines the inference operation `M defined in
the following way: for every set X ∪ {α} of formulas of L,

X `M α iff for every homomorphism h of L into A, if h(X) ⊆ d then h(α) ∈ d.

The research on logical matrices has been strongly influenced by universal alge-
bra and model theory. Wójcicki’s monograph [16] contains a detailed account of
the development of matrix semantics since its inception in the early 20th century.
In AI, matrix semantics (and a closely related discipline of many-valued logics)
has been successfully exploited in the areas of Automated Reasoning, KRR, and
Logic Programming (cf. [3,4,5,6,9,13,15]).



Monotone Calculi. The inference opeartion `M defined by a logical matrix
M satisfies not only (c1)–(c3) but also (c4) and (c5). Furthermore, for every
propositional calculus 〈L,`〉 there exists a class K of logical matrices for L such
that `=

⋂
{`M: M ∈ K}.

Beyond Structurality: Admissible Valuations. One way of extending ma-
trix semantics to cover non-structural inference systems is to define the semantic
entailment in terms of ‘admissible interpretations’, i.e., to consider generalized
matrices of the form 〈A, d,H〉, where A and d are as above, and H is a subset
of the set of all interpretations of L into A. In this semantic framework, every
inference operation that satisfies (c1)–(c4) can be defined by a class of gener-
alized matrices. A similar approach of admitting only some interpretations to
model non-structural nonmonotonic inference systems has been also developed
for preferential model semantics (cf. [7]).

Beyond Monotonicity: Preferential Matrices The notion of cumulativ-
ity arose as a result of the search for desired and natural formal properties of
nonmonotonic inference systems. A desired ‘degree’ of nonmonotonicity can be
semantically modeled in terms of logical matrices of the form M = 〈A,D,H,≺〉,
where A and H are as in a generalized matrix, D is a family of subsets of the uni-
verse of A, and ≺ is a binary (preference) relation on D. The inference operation
`M is defined as follows:

X `M α iff for every h ∈ H and every d ∈ D, if d is a minimal element of D
(with respect to ≺) such that h(X) ⊆ d, then h(α) ∈ d.

Preferential matrices have the same semantic scope as preferential model struc-
tures (cf. [8,14]).

Logical Matrices with Completion. It is not essential to interpret the under-
lying algebra A of a logical matrix M for a language L as a space of truth-values
for the formulas of L. The elements of A can be interpreted as propositions,
events, and even infons of the Situation Theory of Barwise and Perry. If one
views subsets of the universe of A as situations (partial or complete), then pref-
erential matrices can be replaced by structures of the form M = 〈A,H, ̂〉 called
matrices with completion, where A, and H are as above and ̂ is a function that

maps 2|A| into 2|A| such that for every B ⊆ |A|, B ⊆ B̂ =
̂̂
B. In the language of

universal algebra, ̂ is a closure operator on A. This operation can be thought
of as a completion function that assigns an actual and complete situation B̂ to
a (possibly partial) situation B which is a part of B̂. The inference operation
`M associated with such a matrix is defined as follows: for every set X ∪ {α} of
formulas,

X `M α iff for every h ∈ H, h(α) ∈ ĥ(X).

Matrices with completion can be used to semantically model cumulativity with-
out any explicit reference to preference.



Beyond Matrix Semantics. The interplay between logic and universal algebra
goes far beyond Matrix Semantics; a wealth of results harvested in disciplines
such as type theory, term rewriting, algebraic logic, or fuzzy logic, and subjects
such as bilattices, dynamic logics, or unification, have had and will continue to
have a significant impact on AI research.

3 Problem Solving as Consistency Verification

Automated Reasoning deals with the development and application of computer
programs to perform a variety of reasoning tasks frequently represented as in-
stances of consistency verification problem.

Refutational Principle. Refutational theorem proving methods, such as reso-
lution, rely on a correspondence between valid inferences and finite inconsistent
sets. The refutational principle for an inference system P = 〈L,`〉 states that
there is an algorithm that transformes every finite set X ∪ {α} of formulas into
another finite set Xα of formulas in such a way that

(ref) X ` α iff Xα is inconsistent in P (i.e., for every formula β, Xα ` β).

In the light of (ref), a refutational automated reasoning system answers a query
X ` α by determining the consistency status of Xα.

Resolution Algebras. Let L = 〈Terms(V ar), f0, . . . , fn〉 be a propositional
language (let us assume that the disjunction, denoted by ∨, is among the con-
nectives of L). A resolution algebra for L is a finite algebra of the form

Rs = 〈〈{v0, . . . , vk}, f0, . . . , fn〉,F〉

where: {v0, . . . , vk} is a set of formulas of L called verifiers, for every i ≤ n, fi

and the corresponding connective fi are of the same arity, and F is a subset of
V . Rs defines two types of inference rules. The resolution rule

α0(p), . . . , αk(p)
α0(p/v0) ∨ . . . ∨ αk(p/vk)

is the case analysis on truth of a common variable p expressed using verifiers.
The other inference rules are the simplification rules defined by the operations
f0, . . . , fn (see [13]). A set X of formulas is refutable in Rs if and only if one of
the verifiers from F can be derived from X using the inference rules defined by
Rs.

Resolution Logics. A propositional logic P = 〈L,`〉 is said to be a resolu-
tion logic if there exists a resolution algebra Rs such that for every finite set X
of formulas (which do not share variables with the verifiers),

X is inconsistent in P iff X is refutable in Rs.



Additional conditions to guarantee the soundness of the refutation process should
also be imposed (cf. [13]). The class of resolution logics consists of those calculi
which are indistinguishable on inconsistent sets from logics defined by finite ma-
trices. Furthermore, resolution algebras for logics defined by finite logical matri-
ces can be effectively constructed from the defining matrices (cf. [13]).

Lattices of Resolution Logics. For a logic P = 〈L,`〉, let KP denote the
class of all logics on L which have the same inconsistent sets as P . KP is a
bounded lattice under the ordering ≤ defined as follows: if Pi = 〈L,`i〉, i = 0, 1,
then P0 ≤ P1 iff P1 is inferentially at least as strong as P0. The lattice 〈KP ,≤〉 is
a convenient tool to discuss the scope of the resolution method defined in terms
of resolution algebras: if P is a resolution logic, then so are all the logics in KP .
From the logical standpoint, the systems in KP can be quite different; from the
refutational point of view, they can all be defined by the same resolution algebra.

Nonmonotonic Resolution Logics. Resolution algebras can also be used to
implement some nonmonotonic inference systems. Let P = 〈L,`〉 be an arbi-
trary cumulative inference system. The monotone base of P is the greatest logic
PB on L (with respect to ≤) such that PB ≤ P . The monotone bases of the
so-called supraclassical inference systems is classical propositional logic (cf. [8]).

The consistency preservation property limits the inference power by which P
and PB can differ (cf. [8,13]). It states that both P and PB have to have the same
inconsistent sets of formulas. Every cumulative, structural, and proper inference
system satisfies the consistency preservation property. Hence, every such system
can be provided with a resolution algebra based proof system, provided that its
monotone base is a resolution logic.

4 Problem Solving as Satisfiability

A reasoning task, such as a planning problem, can be solved by, first, expressing
it as a satisfiability problem in some logical matrix M and, then, by solving it
using one of the satisfiability solvers for M. In spite of the fact that for many
finite matrices 〈A, d〉, the satisfiability problem:

(SATM) for every formula α, determine whether or not there exists an inter-
pretation h such that h(α) ∈ d

is NP-complete, a number of complete and incomplete SATM solvers have been
developed and their good performance in finding solutions to instances of many
problems in real-world domains empirically demonstrated.

Searching for Satisfying Interpretation. Given a matrix M = 〈A, d〉 for
a language L, a stochastic local search algorithm for satisfiability in M starts
by generating a random interpretation h restricted to the variables of an input
formula α. Then, it locally modifies h by selecting a variable p of α, using some
selection heuristic select var(α, h), and changing its truth-value from h(p) to



some new truth-value using another selection heuristic select val(α, p, h). Such
selections of variables and such changes of their truth-values are repeated until
either h(α) ∈ d or the allocated time to modify h into a satisfying valuation has
elapsed. The process is repeated (if needed) up to a specified number of times.

The above procedure defines informally an incomplete SATM solver (clearly,
it cannot be used to determine unsatisfiability of a formula).

Polarity and SATM. The classical notion of polarity of a variable p in a
formula α(p) captures the monotonic behavior of the term operation fα(p) in-
duced by α(p) over p in a partially ordered algebra of truth-values. The selection
heuristics select var(α, h) and select val(α, p, h) of an SATM solver can be de-
fined in terms of polarity. This is done in the non-clausal solver polSAT for
classical propositional logic as well as in its extensions to finitely-valued logics
(cf. [12]).

Improving the Efficiency of Resolution with SATM Solvers. An unre-
stricted use of the resolution rule during the deductive process may very quickly
result in combinatoric explosion of the set of deduced resolvents making the
completion of a reasoning task unattainable in an acceptable amount of time. In
an efficient resolution-based reasoning program the generation of resolvents that
would evidently have no impact on the completion of a reasoning task must be
blocked. Tautological resolvents are just that sort of formulas.

For many resolution logics the tautology problem is coNP-complete. For some
of these logics, SATM solvers can be used to guide the search for refutation so
that the use of tautologies during the refutation process is unlikely. At the same
time the refutational completeness of the deductive process is preserved.
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