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Abstract. Estimating the result size of a join is an important query optimization
problem as it determines the choice of a good query evaluation strategy. Yet, there
are few efficient techniques that solve this problem. We propose a new approach
to join selectivity estimation. Our strategy relies on information extracted from
stored data in the form of empty joins which represent portions of the two joined
tables that produce an empty result. We present experimental results indicating
that empty joins are common in real data sets and propose a simple strategy that
uses information about empty joins for an improved join selectivity estimation.

1.1 Introduction

A join of relations in real databases is usually much smaller than their Carte-
sian product. For example, the OLAP Benchmark [2] with a star schema of
six dimension tables with, respectively, 12, 15, 16, 86, 1000, and 10,000 tuples,
has a fact table of the size of 2.4 millions tuples. The size of the fact table is
thus 0.00009% of the size of the Cartesian product of the dimension tables.
This rather trivial observation about the relative size of the join and the
respective Cartesian product, gives rise to the following questions: Can the
non-joining portions of the tables (which we call empty joins in this paper)
be characterized in an interesting way? If so, can this knowledge be useful in
query processing? Consider the following example.

Example 1. Consider Lineitem and Order tables in TPC-H [18]. The o or-

der-date attribute in the Order table stores information about the time an
item was ordered, the l shipdate attribute in the Lineitem table stores
information about the time an item was shipped. The two attributes are
correlated: an item cannot be shipped before it is ordered and it is likely to
be shipped within a short period of time after it is ordered. Assume that an
item is always shipped within a year from the time it is ordered. Thus, for
a given range of o orderdate, only the tuples from that range extended by
one year of l shipdate will be in the join of Lineitem and Order. None
of the crossproduct between the remaining portions of the tables will appear
together in the join result. Call any query that involves a join and that
evaluates to the empty table an empty join.

Now, consider the following query over TPC-H.



select sum(l totalprice)
from lineitem l, order o
where l orderkey = o orderkey AND

o orderdate BETWEEN ‘1995.01.01’ AND ‘1996.01.01’

Since there is no predicate (except for the join) placed on the lineitem
table, it seems that any tuple from that table can potentially appear in
the answer. With this assumption, a database optimizer would vastly over-
estimate the cardinality of the join result. Given the correlation described
above, however, we can infer that only the tuples satisfying the condition
l shipdate BETWEEN ‘1995.01.01’ AND ‘1997.01.01’ can appear in the join.
This knowledge can be used to provide a more exact estimate of the join se-
lectivity.

An empty join can be characterized in different ways. The most straight-
forward way is to describe it negatively by defining a correlation between
data points that do join. Thus, for the two attributes from Example 1 we can
specify their relationship as a linear correlation: l shipdate = o orderdate +
[0, 1] year, where [0, 1] year is the correlation error. We explored this idea
in [5] and showed how such correlations can be used in query optimization.
We also learned, however, that such correlations are rare in the real data that
we explored. Real data is likely to be distributed more randomly, yet not uni-
formly. In this paper, we are proposing an alternative, but complementary
approach to characterizing empty joins as ranges of attributes that do not
appear together in the join. For example, there are no tuples with l orderdate
> ‘1995.01.01’ and l shipdate < ‘1995.01.01’ in the join of Lineitem and
Order. In other words, the join of Lineitem and Order with thus specified
ranges of l orderdate and l shipdate is empty. To maximize the use of empty
joins knowledge, our goal is to not only to find empty joins in the data, but
to characterize fully that empty space. Specifically, we discover the set of all
maximal empty joins in a two dimensional data set. Maximal empty joins
represent the ranges of the two attributes for which the join is empty and
such that they cannot be extended without making the join non-empty. An
efficient algorithm for dicovering maximal empty joins is presented in [3].

In this paper, we show how the knowledge of empty joins can be used
for improved join selectivity estimates. Prediciting the size of a join is one of
the most difficult tasks in query optimization and can be widely inaccurate
in commercial database systems (with disastrous consequences for selecting
a query evaluation plan). The technique we propose here is a straightforward
generalization of Example 1. We show this technique to be useful in practice
by experimental verification of the following two claims. First, real data sets
contain a large number of empty joins, some of which are themselves very
large. This is important as the value of our technique increases as the data
is more skewed in that sense. Second, the estimates we provide are almost
uniformly more accuarate than estimates based on an assumption of uniform
data distribution or histograms. Last but not least, we develop this technique



with a possible commercial implementation in mind. We show how the ex-
isting tools in DB2 can be used to implement the technique. Our solution
therefore has the highly desirable property that it provides new optimization
method without requiring any change to the underlying query optimization
and processing engine.

The paper is organized as follows. Related work is described in Section 1.2.
In Section 1.3, we describe a technique illustrating how knowledge of empty
joins can be used in join size estimation. In Section 1.4 we present the results
of experiments performed on real data, showing the nature and quantity of
empty joins that can occur in large, real databases and evaluate the quality
of estimates. We discuss maintanance issues in Section 1.5. Conclusions and
future work are presented in Section 1.6.

1.2 Related Work

Query optimizer makes heavy use of the statistical information in cardinality
estimation. There are two ways to store such information in the database:
parametric and non-parametric [11] . In the parametric approach, the ac-
tual value distribution is approximated by a parameterized mathematical
distribution. This technique requires little overhead, but it is typically inac-
curate because real data does not usually follow any known distribution. Non-
parametric approach is often histogram-based. [15,14] present histograms on
single attribute. [13] presents an algorithm for generating equi-depth his-
tograms. They show that equi-depth histograms work well for range queries
only when the data distribution has low skew. [8] focuses on how to choose for
each relation the histogram that is optimal for a self-join query. [12] proposes
wavelet-based histograms, and their algorithm requires the domain size to
be power of 2, which is too restrictive in real-life databases. Statistics for a
combination of multiple attributes are studied in [15,6]. While a histogram is
adequate for one attribute on a base table, [9] shows that a histogram is not
practically efficient for multiple columns because of high storage overhead
and high error rates. Current commercial database systems usually maintain
histograms only for individual columns on base tables.

A query joining two or more tables with multiple columns referenced
makes the situation more complex. To estimate the size of such queries, the
optimizers need to assume independence between attributes and predicates,
and errors in the estimates may increase exponentially with the number of
joins [15]. The problem is typically caused by propagating statistical infor-
mation through the query plan. As a result, the optimizers often return low-
quality execution plans for complex join queries. We are thus motivated to
propose building new statistics over non base-relations for better estimates
of join cardinality. To the best of our knowledge, there is no in depth effort
so far to address this type of problem. [1] presents join synopses based on
sampling for approximating query processing, and the technique is restricted



to be foreign-key joins. In contrast, we focus on estimating query cardinality.
We are not histogram-based or sample-based, and we place no restriction on
the type of joins.

1.3 The Strategy

Most commercial database systems adopt the uniform distribution assump-
tion (UDA) [16] for estimating query result size. This assumption is often
incorrect even for a single attribute and is almost never true for a joint data
ditribution of two or more attributes in a relation. This non-uniformity be-
comes extreme when the attributes come from different relations and appear
together in a join result. Histograms have been shown to be an effective tool
in estimating query selectivity independently of data distribution. However,
their use has been mostly limited to single attribute queries; multidimensional
histograms are expensive to construct and maintain.

We are proposing a new technique (we call it SIEQE for Statistics in
Empty Query Expression) for selectivity estimation of joins which provides
much better prediction quality over UDA without the overhead associated
with histograms. Our strategy is to discover and maintain several large empty
joins and use information about them to improve the estimates of query
selectivity. Although our techniques can be applied to distributions of several
dimensions, we only consider two dimensional queries in this paper.

Let R and S be two relations and R.A and S.B be two attributes refer-
enced in range predicates. The first step of the technique consists in mining
the join R 1 S for empty joins with respect to attributes A and B. Only
the largest of the empty joins are maintained.1 Next, we compute the to-
tal area covered by the empty joins and adjust the ”density” of the data
points in the remaining area. Let N be a number of tuples in R 1 S and
< a1, an > and < b1, bm > be the ranges of A and B respectively. The den-
sity of data points (which is assumed to be uniform by UDA) can be defined
as D = N

(an−a1)∗(bm−b1)
. Let Empty be the total area covered by empty joins.

Then the density of data points in the remaining are should be adjusted to
be D′ = N

(an−a1)∗(bm−b1)−Empty
. Once a query is submitted, its overlap with

the empty joins is determined and the size of non-empty area calculated.
The number of data points in the non-empty area is then estimated from the
adjusted density D′. We illustrate the technique on following example.

Example 2. Let the range of both A and B be < 0, 100 > and the join contain
N = 10, 000 tuples. Assume that two empty joins have been discovered, one
for 20 < A < 40 and 20 < B < 80, and the second one with 30 < A < 80 and
40 < B < 60 as shown in Figure 1.1. Thus, the empty joins cover 2,000 units
of the entire (two-dimensional) domain. With UDA, the density D would be

1 The decision as to how many of the empty joins to maintain is application de-
pendent; just as the decision on the number of buckets in a histogram.
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Fig. 1.1. Empty joins and queries for Example 2.

eqal to 1 tuple per square unit. With the information about the empty areas,
we can infer that the density is in fact larger in the non-empty areas and
equal to: D′ = 10,000

(100−0)∗(100−0)−2,000 = 1.25. Let the first query Q1, shown in

Figure 1.1, be:

select *
from R, S

where R.X = S.X and 50 < A < 70 and 50 < B < 70

Since only half of the query is within the region containing any data
points, we can estimate the number of tuples in the result to be: 1

2 ∗ (70 −

50) ∗ (70 − 50) ∗ 1.25 = 250. With UDA, the number of tuples would have
been overestimated to be 400.

On the other hand, queries that do not overlap with empty regions would
have their selectivities underestimated as the density of tuples would have
been assumed to be lower. Consider query Q2:

select *
from R, S

where R.X = S.X and 10 < A < 30 and 70 < B < 90

With UDA, the estimated number of tuples would have been 400. How-
ever, given the existence of empty joins and consequently higher density of
tuples outside the empty areas, that number should be estimated to be 500.

1.4 Experiments

1.4.1 Characteristics of Empty Joins

We would expect real data sets to exhibit different characteristics than syn-
thetic data sets such as the TPC-H benchmark. Hence, to characterize empty



Test NE Size of largest 5 empty joins
measured (in %) by metric S

1 269 74 73 69 7 7
2 29,323 68 58 40 37 28
3 13,850 91.6 91.6 91.3 91.3 83.1
4 7 8.8 2.1 1.2 0.6 0.3
5 25,307 39.9 39.8 24 20 20

Table 1.1. Number and Sizes of Empty Joins

joins we used two real databases: the first, an insurance database; and the
second, a department of motor vehicles database. We ran the empty joins
mining algorithm on 12 pairs of attributes. The pairs of attributes came from
the workload queries provided with the databases. These were the attributes
frequently referenced together in the queries (one from one table, and the
other from a second table, and the tables are joined). For conciseness, we only
present the results of five representative tests here.2 For all reported tests the
mining algorithm ran in less than 2 minutes (on a single-user 67MHz IBM
RISC System/6000 machine with 512 MB RAM).

Table 1.1 contains the mining results: the number of discovered maximal
empty joins NE and the sizes of the 5 largest empty joins measured by metric
S. The metric S defines the size of an empty join as the area it covers with
respect to the domains of values of the two attributes. It is defined formally
in the following way.

Let E be an empty join with the coordinates (x0, y0), (x1, y1) over at-
tributes A and B with sets of distinct values X and Y respectively in tables
R and S respectively. The relative size of the join with respect to the covered
area, S(E), is defined as:

S(E) =
(x1 − x0) ∗ (y1 − y0)

[max(X) − min(X)] ∗ [max(Y ) − min(Y )]
(1.1)

The number of empty joins discovered in the tested data sets is very large.
In some cases (see Test 3) it is on the order of magnitude of the theoretical
limit of the possible number of empty joins [3]. In virtually all tests, extremely
large empty joins were discovered. Usually, however, only a few are very
large and the sizes drop dramatically to a fraction of a percentage point for
the others. The empty joins overlap substantially. The five largest empty
joins from Test 1 overlap with, respectively, 7, 11, 16, 7, and 8 other empty
joins discovered in that data set. These overlaps are a consequence of our
decision to find all maximal empty joins. They also cover a large area of the

2 They are representative in the sense that they cover the spectrum of results in
terms of the number and sizes of the discovered empty joins.



join matrix; that is, the combination of values from the domains of the two
attributes.

We also performed experiments on attribute pairs from joins in TPC-D
workload [18]. Unfortunately, the type of data distribution in TPC-D is not
representative of a real data set. The data is synthetically generated, and the
distribution of the attribute values tends to be uniform (except, of course,
when certain constraints have to be satisfied). In all cases the results were
very different from what we discovered in real data sets. Although the number
of empty joins was large, they all were very small.

1.4.2 Estimate Quality

We performed experiments on 8 query templates3 from the workload de-
scribed in Section 1.4.1. Each query template contained a join and two range
selections. For each query template, we selected randomly 100 sets of end-
points for the ranges of the two attributes and estimated the result sizes of
each such query. We mined for and maintained only five largest empty joins
for each pair of attributes tested.

One difficulty we faced in comparing errors produced by SIEQE and UDA
was the fact that for queries which fall entirely within empty regions the error
is either 0 or infinite. Thus, whenever the actual number of tuples was 0, we
computed the error as if the number of tuples were equal to .01. Figure 1.2
shows the results. Except for one query template, SIEQE’s estimates are or-
ders of magnitude better than UDA’s. Even if the empty queries are ignored,
SIEQE still performs better than UDA.
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Fig. 1.2. Average estimate error for eight query templates (all queries - left; non-
empty queries - right) for SIEQE (white bars) and UDA (black bars).

The observed errors (even after empty queries are eliminated) are quite
large.4 The reason is that the data distribution outside of the empty areas is

3 The workload queries did not contain actual values for the attribute ranges.
4 We emphasize again that the number of maintained empty joins was very small

(less than 5); the errors can be easily reduced by increasing that number.



far from being uniform and there are a few queries for which the errors are
enormous. However, for most of the queries the errors produced by SIEQE
are acceptable. Figure 1.3 shows the proportion of queries for which the error
(produced both by SIEQE as well as UDA) was less than a given limit. For
over 70% of queries, SIEQE predicted their cardinality with less than 10%
error; UDA achieved it only for 34% of the queries.
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Fig. 1.3. Number of queries for which the error was less than a given limit.

In the last experiment we tested how the estimate accuracy depends on
the overlap of a query with an empty region. Figure 1.4 shows the errors for
UDA and SIEQE respectively with an increasing overlap of a query with an
empty region. For UDA, the error is underestimated for small overlaps and
overestimated for large ones. This is consistent with the observation we made
in Example 2. For SIEQE, there is no evident correlation, which is due to
skewed distribution outside of the empty regions. We note that each point
in the two figures may represent more than one query. In fact, many queries
are represented by a single point (100% overlap and 0% error) in the right
graph of Figure 1.4. On the other hand, none of the points representing these
queries can be shown in the left graph of Figure 1.4 as the error is infinite
for them.
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size of an overlap of a query and an empty region.



1.5 Selection and Maintenance of Empty Joins

Since the number of empty joins discovered in real datasets is large, they
cannot all be maintained. The decision on which joins to maintain depends
primarily on the stability of the query workload and the frequency of updates.
In an environment with a stable workload of queries and frequent updates,
only a few empty joins which are most often referenced in workload queries
should be kept. In [4], we proposed that empty joins be modeled as materi-
alized views. The idea is to define views that represent exactly the queries
covering the empty areas. Represented in this way, empty joins will not take
space to store (except for their descriptions). However, just as with mate-
rialized views, there is an associated maintenance cost. The good news is
that the techniques developed for the maintenance of materialized views [7]
can be applied here as well. Since empty joins are a special case of mate-
rialized views, even more efficient maintenance techniques can be devised
for them [4]. For example, empty joins are immune to deletions (they may
become non-maximal, but they still correctly describe empty regions). Inser-
tions are a problem only if they fall within a range of an empty rectangle.
But even then, it is enough to keep track of the number of such insertions
until they reach some unacceptable treshold. At that point, the algorithm for
discovering empty joins will have to be executed again.

We believe that our technique has important advantages over multidi-
mensional histograms. First, as we argued above, it allows for an incremantal
maintenance of empty joins. The only algorithm for dynamic maintenance
of multidimenional histograms that we are aware of [17] does not apply to
queries over joins. In the absence of incremental maintanance, multidimen-
sional histograms have to be recomputed statically from the data. Our ap-
proach is also superior to histograms on that issue: constructing multidimen-
sional histograms incurs a substantial cost in addition to computing the join
(which is the input to the construction algorithm) [13,15]. The algorithm for
empty join discovery requires only a single scan of the join result.

1.6 Conclusions and Future Work

We presented a new technique for estimating join result size. Our approach
provides a substantial improvement in the quality of estimates over UDA, a
standard assumption in database systems. We also showed that our technique
is superior to multidimensional histograms with respect to construction and
maintenance.

Our next step in this work is to implement the technique in DB2. DB2
already supports the so-called twinning mechanism which allows adding a
new predicate to a query to let the optimizer choose between alternate forms
of predicates. For example, an IN predicate could be written as a set of
OR predicates. We can use this mechanism to add a new predicate that re-
duces the ranges of predicates in a query that overlaps with an empty join.



The optimizer can then use the new predicate to get a better estimate of
the query result cardinality. The maintanance of empty joins should also be
straightforward as DB2 already supports deferred maintanance of material-
ized views [10].
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