An Introduction to PVS Metamodelling with PVS

Richard Paige
Department of Computer Science
University of York, York, U.K.
paige@cs.york.ac.uk

and

Department of Computer Science
York University, Toronto, Canada.
PVS: What Is It?

A verification system with
- a general-purpose formal specification language, associated with a \textit{theorem prover, model checker,} and related tools (browser, doc. generator).

Freely distributed by SRI, currently on v2.4
- Runs on Solaris and Linux, UI based on Emacs and Tcl/Tk
- Used in both academia and industry
- Rich specification language, powerful prover, expressive libraries, wealth of support.

\textbf{Applications}: safety critical systems, hardware, mathematics, distributed algorithms
Overview

- Introduction to the PVS specification language
- Look-and-feel of the prover.
 - Some key prover commands.
- Several little examples.
- Using PVS for
 - meta-modelling
 - expressing object-oriented models (particularly BON)
 - conformance and consistency checking
PVS Specification Language

... is an enriched typed λ-calculus.

- If you’re comfortable with functional programming, you’ll be comfortable with PVS.
- Key aspects:
 - Type constructors for restricting the domain and range of operations.
 - Rich expression language.
 - Parameterized and hierarchical specification.
Types

Base types: eg., `bool, int, nat`
Function types, eg., `[int -> [bool -> int]]`
Enumeration types `{a,b,c}`
Tuple types `[A,B]`
Record types `[#a:A, b:B #]`
Mutually recursive data types (ADTs).

Predicate subtypes:
- \(A: \text{TYPE} = \{ x:B \mid p(x) \} \)
- \(A: \text{TYPE} = (p) \)
More on Types

Lots of predefined subtypes, eg.,

\[
\text{nat: TYPE} = \{ n: \text{int} \mid n \geq 0 \}
\]

\[
\text{subrange (n,m: int): TYPE} = \{ i: \text{int} \mid n \leq i \& i \leq m \}
\]

Dependent types allow later types to depend on earlier ones.

\[
\text{date: TYPE} =
\]
\[
[\# \text{ month: subrange (1,12)}, \]
\]
\[
\text{day: subrange (1, num_of_days (month))}
\]
\[
\#
\]

Predicate subtypes are used to constrain domain/range of operations and to define partial functions.
Expressions

- Higher-order logic (\&, OR, =>, ..., FORALL, EXISTS)
- Conditionals
 - IF c THEN e1 ELSE e2 ENDIF
 - COND c1->e1, c2->e2, c3->e3 ENDCOND
- Record overriding
 - id WITH [(0):=42, (1):=12]
- Recursive functions
 \[\text{fac}(n:\text{nat}) : \text{RECURSIVE} \text{ nat} = \]
 \[\begin{align*}
 &\text{IF } n=0 \text{ THEN } 1 \text{ ELSE } n*\text{fac}(n-1) \text{ ENDIF} \\
 &\text{MEASURE } n
 \end{align*} \]
- Inductive definitions, tables
Type Correctness Conditions (TCCs)

- PVS must check that the expressions that you write are well-typed.

\[
\text{fac}(n:\text{nat}) : \text{RECURSIVE} \text{ nat } = \\
\text{IF } n=0 \text{ THEN 1 ELSE } n * \text{fac}(n-1) \text{ ENDIF}
\]

MEASURE \(n \)

Function \(\text{fac} \) is well-typed if

- \(n/=0 \Rightarrow n-1\geq0 \) (the argument is a nat)
- \(n/=0 \Rightarrow n-1<n \) (termination).

The type checker (M-x tc) generates type correctness conditions (TCCs)
Example TCCs for factorial

fac_TCC1: OBLIGATION
 FORALL (n:nat): n/=0 => n-1 >= 0

fac_TCC2: OBLIGATION
 FORALL (n:nat): n/=0 => n-1 < n
TCCs (Continued)

Expressions are only considered to be well-typed after all TCCs have been proven.

- Type checking in PVS is **undecidable** (because of predicate subtypes).
+ The PVS prover will automatically discharge most TCCs that crop up in practice.

Why aren’t there more TCCs in preceding, eg., for \(n \times \text{fac}(n-1) \) of type \(\text{nat} \)?
Suppressing TCC Generation

The type checker “knows” that

\[
\text{JUDGEMENT} \ast (i, j) \text{ HAS_TYPE} \text{ nat}
\]

\[
\text{JUDGEMENT} 1 \text{ HAS_TYPE} \text{ posint}
\]

Judgements are a means for controlling the generation of TCCs.

Inference is carried out behind-the-scenes.

Judgements can be arbitrarily complex and useful.

\[
\text{JUDGEMENT} \text{ inverse}(f: (\text{bijective?}[D,R]))
\]

\[
\text{HAS_TYPE} (\text{bijective?}[R,D])
\]

\[
\text{JUDGEMENT} \text{ union}(a: (\text{nonempty?}), b: \text{set})
\]

\[
\text{HAS_TYPE} (\text{nonempty?})
\]
Theories

- Specifications are built from *theories*.
- Declarations introduce types, variables, constants, formulae, etc.

```plaintext
div: THEORY % natural division
BEGIN
  posnat: TYPE = { n:nat | n>0 }
  a: VAR nat; b: VAR posnat
  below(b): TYPE = { n:nat | n<b }
  div(a,b): [ nat, below(b) ] % tuple

  divchar: AXIOM
  LET (q,r) = div(a,b) IN a=q*b+r
END div
```
Theories (II)

- Theories may be parametric in types, constants, and functions.
 \[
 \text{wf_induction}[\text{T}:\text{TYPE},<:(\text{well_founded}?[\text{T}])]: \text{THEORY}
 \]
- Theories are hierarchical and can import others.
 \[
 \text{IMPORTING \text{wf_induction}[\text{nat}, <]}
 \]
- The built-in prelude and loadable libraries provide standard specs and proven facts for a large number of theories.
Example: Division Algorithm

euclid: THEORY
BEGIN
 div(a:nat, b:nat): RECURSIVE [nat,below(b)] =
 IF a<b THEN (0,a)
 ELSE LET (q,r)=div(a-b,b) IN (q+1,r)
 ENDIF
 MEASURE a
END euclid

➢ Type checking (M-x tcp) yields two TCCs
% proved - complete
div_TCC1: OBLIGATION FORALL (a,b:nat)
 a>=b IMPLIES a-b>=0;
% unfinished
div_TCC2: OBLIGATION FORALL (a,b:nat)
 a>=b IMPLIES a-b<a;
Division Algorithm (Corrected)

euclid: THEORY
BEGIN
 div(a:nat, b:posnat): RECURSIVE [nat,below(b)] =
 IF a<b THEN (0,a)
 ELSE LET (q,r)=div(a-b,b) IN (q+1,r)
 ENDIF
 MEASURE a
END euclid

➢ Type checking yields
 2 TCCs, 2 proved, 0 unproved
which does not necessarily mean div is correct!
Division
Alternative Specification

div: THEORY
BEGIN
a: VAR nat; b: VAR posnat; q: VAR nat
rem(a,b,q): TYPE =
{ r:below(b) | a=q*b+r }
div(a,b): RECURSIVE
[# q:nat, r: rem(a,b,q) #] =
IF a<b THEN
 (# q:=0, r:=a #)
ELSE
 LET rec=div(a-b,b) IN
 (# q:=rec’q+1, r:=rec’r #)
ENDIF
MEASURE a
END div
Division TCCs

\texttt{div_TCC1: OBLIGATION}\n\begin{equation*}
\text{FORALL (a,b): a<b IMPLIES a<b AND a=a}
\end{equation*}

\texttt{div_TCC2: OBLIGATION}\n\begin{equation*}
\text{FORALL (a,b): a>=b IMPLIES a-b >= 0}
\end{equation*}

\texttt{div_TCC3: OBLIGATION}\n\begin{equation*}
\text{FORALL (a,b): a>=b IMPLIES a-b<a}
\end{equation*}

\begin{itemize}
\item All TCCs are proved automatically by the typechecker.
\end{itemize}
Animation

- Instead of doing full verification, functions can be validated in PVS via execution:
 - M-x pvs-ground-evaluator

```
<GndEval> "div(234565123,23123543)"
; cpu time (total) 0 msec user, 0 msec system
==> (# q:=101, r:= 10167280 #)
```

- **Question**: is this useful in metamodel validation?
Design Elements in the PVS Prover

- Heuristic automation for “obvious” cases.
- Leave the human free to concentrate on and direct steps that require real insight.
- Sequent calculus presentation

 \[
 \begin{array}{l}
 \{ -1 \} & A \\
 \{ -2 \} & B \\
 [-3] & C \\
 | \hline
 [1] & S \\
 \{2\} & T \\
 \end{array}
 \]

- Intuitive interpretation: \(A \land B \land C \rightarrow S \lor T \)
- PVS maintains proof tree of sequents.
Interaction

- Basic tactics exist to manipulate these sequents.
- Propositional rules
 - (flatten), (split), (lift-if)
- Quantifier rules
 - (skolem), (inst)
- Tactic language (try), (then), (repeat) for defining higher-level proof strategies.

(defstep prop ()
 (try (flatten) (prop) (try (split) (prop) (skip))) ...)

20
Automation

- Automate (almost) everything that is decidable!
- Propositional calculus \((\text{prop}), \ (\text{bddsimp})\)
- Equality reasoning with uninterpreted function symbols
 \[x= y \land f(f(f(x))) = f(x) \Rightarrow f(f(f(f(f(f(f(x))))))) = f(x) \]
- Model checking \((\text{model-check})\)
- Automated instantiation and skolemization \((\text{skosimp})\)
- Workhorse: \((\text{grind})\)
 - combination of simplifications, rewriting, propositional reasoning,
 decision procedures, quantifier reasoning.
- Induction strategies.
Prover Infrastructure

- Browsing facilities locate and display definitions and find formulae that reference a name.
- Proof replay, stepping, editing.
- Graphical display of proof trees.
- Lemmas can be proved in any order.
- Introduce/modify lemmas on the fly.
- Proof chain analysis keeps you honest!
Metamodelling

- A modelling language (eg., BON, UML, OCL) consists of
 - a notation (syntax and presentation style)
 - a metamodel: well-formedness constraints
- A metamodel captures the rules that “good” (well-formed) models in the language must obey.

Examples:
- Associations are directed between from a class or cluster to a class or cluster.
- Classes cannot inherit from themselves.
Metamodelling

- Distinction between well-formedness rules (semantic/contextual analysis) and syntactic rules (grammar/tokens) is fuzzy.
- 2uworks.org RFP for UML 2.0 includes both abstract syntax and contextual analysis rules in metamodel.
- If a metamodel is viewed as a specification to be given to tool builders, then this is not unreasonable.
- ...but it can make your metamodel much larger and thus in need of better structuring mechanisms.
Metamodelling with PVS

- Using a tool like PVS to express a metamodel has a number of benefits:
 - Machine-checkable syntax.
 - Type checker.
 - Prover can be used to validate metamodel.
 - Ground evaluator can be used for testing.
 - Built-in theories can simplify the process of expressing the metamodel.

- But metamodels are usually expressed in OO languages ... and PVS is not OO!
Typical Metamodel for BON

MODEL

NONE

rels: SET[RELATIONSHIP]
closure: SET[INHERITANCE]
covariant(f1,f2:FEATURE): BOOLEAN

inv

variant

disjoint_clusters;
inh_wo_cycles;
unique_abstraction_names;
no_bidir_agg;
objects.Typed;
parameters_named;
labels_unique;
unique_root_class;
single_inst_of_root;
model_c covariance;
primitives

abs: SET[...]

RELATIONSHIPS

ABSTRACTIONS
Relationships Cluster

- **RELATIONSHIP***
 - source, target: ABSTRACTION

 - **STATIC_RELATIONSHIP***
 - source++, target++: STATIC_ABSTRACTION

 - **MESSAGE***
 - source++, target++: DYNAMIC_ABSTRACTION

 - **INHERITANCE***
 - invariant
 - source /= target

 - **CLIENT_SUPPLIER***
 - label: STRING

 - **AGGREGATION***
 - invariant
 - source /= target

 - **ASSOCIATION***
Expressing the BON Metamodel in PVS

- Easiest approach: map the BON specification of the metamodel directly into PVS.
- Key questions to answer:
 - How to represent classes and objects in PVS?
 - How to represent client-supplier and inheritance?
 - How to represent the class invariants?
 - How to represent clusters?
 - How to represent features of classes?
- Answering such questions will let us represent not only the BON metamodel in PVS, but BON models as well!
- **Question**: how does an instantiated metamodel compare with a model in PVS for reasoning?
Basic Approach

- Specify class hierarchies as PVS types and subtypes.

 ABSTRACTION: TYPE+
 STATICABS, DYNABS: TYPE+ FROM ABSTRACTION
 CLUSTER, CLASS: TYPE+ FROM STATICABS

 OBJECT, OBJECTCLUSTER: TYPE+ FROM DYNABS

- Features of BON classes become functions:

 - `deferred_class`: [CLASS -> bool]
 - `class_features`: [CLASS -> set[FEATURE]]
 - `feature_frame`: [FEATURE -> set[QUERY]]
What is a BON Model?

- A BON model, in PVS, is just a record.

```
MODEL: TYPE+ =
    [# abst: set[ABS], rels: set[REL] #]
```

- Note that all abstractions (static and dynamic) are combined into one set.
- Projections from this to produce different views.
Clusters and Invariants

- Note that the BON metamodel has a number of clusters (Abstractions and Relationships).
- These are mapped to PVS theories.
 - Is there any need to parameterize these theories?
- What about the invariant clauses of classes in the metamodel?
- These can be mapped to PVS axioms.
 - In general, we’d like to avoid axioms when possible since they can introduce inconsistency.
 - Use definitions if possible.
Example Axioms

% Inheritance relations cannot be from an abstraction to itself.
% A class cannot be its own parent.

inh_ax: AXIOM
(FORALL (i:INH): not (inh_source(i) = inh_target(i)))

% Clusters cannot contain themselves.

no_nesting_of_clusters: AXIOM
(FORALL (cl:CLUSTER) : not member(cl,cluster_contents(cl)))

% A deferred feature cannot also be effective.

deferred_not_effective: AXIOM
(FORALL (c:CLASS): (FORALL (f:FEATURE):
 (NOT (deferred_feature(c,f) IFF effective_feature(c,f)))))
% All feature calls that appear in a precondition obey the
% information hiding model.

valid_precondition_calls: AXIOM
(FORALL (c:CLASS):
 (FORALL (f:FEATURE):
 member(f, class_features(c)) IMPLIES
 (FORALL (call:CALL): member(call, calls_in_pre(f))
 IMPLIES
 QUERY_pred(f(call)) AND
 call_isinvalid(f(call)))))
Type and Conformance Checking

- Running the type checker over the existing metamodel theories generates approximately 7 TCCs that are automatically proved.
- Earlier versions did not type check and revealed errors and omissions.
- What can we now do with the metamodel?
 - Conformance checking
 - Extension to view consistency checking.
Conformance Checking

- *Does a BON model satisfy the metamodel constraints?*
 - In practice this is implemented via a constrained GUI and by suitable algorithms (e.g., no cycles in inheritance graph -> cycle detection algorithm).
 - In practice and *in general* it cannot be implemented fully automatically.

- **Approach 1:** express a BON model in PVS and check that it satisfies the axioms.
 - If it does not, counterexamples will be generated, though sometimes they will be difficult to interpret.

- **Approach 2:** express that a BON model cannot exist, and show that fails to satisfy an axiom. (Often easier.)
Example
PVS Theory

info2: THEORY
BEGIN

IMPORTING metamodel
a, b, c: VAR CLASS
h, w, m: VAR QUERY
ea, eb, ec: VAR ENTITY
xm: VAR MODEL
call1, call2, call_anon: VAR DIRECT_CALL
call3: VAR CHAINED_CALL

test_info_hiding: CONJECTURE
(NOT (EXISTS (xm:MODEL)): EXISTS (a,b,c: CLASS):
EXISTS (h,w,m: QUERY): (EXISTS (ea,eb,ec:ENTITY):
EXISTS (call1, call2, call_anon: DIRECT_CALL):
EXISTS (call3: CHAINED_CALL):
member(c, accessor(h)) AND member(a,accessors(w)) AND
empty?(accessors(m)) AND call_entity(call12)=ec AND
call_entity(call12) = ec AND call_entity(call_anon)=eb AND
call_entity(call3) = ea AND member(call1,calls_in_pre(m)) AND
member(call3, calls_in_pre(m)) AND
member(call_anon, calls_in_pre(m)) AND
member(call2, calls_in_inv(b))))
END info2
View Consistency

- BON provides two views of systems:
 - *static* (architectural) view, represented using class diagrams and contracts.
 - *dynamic* (message-passing) view, represented using collaboration diagrams.
- The views may be constructed separately and thus may be inconsistent.
- Examples:
 - object in dynamic view has no class in static view
 - message in dynamic view is not enabled (precondition of routine in static view is not true)
BON Dynamic Diagrams

Scenario: Unknown

1. Customer calls call centre
2. Call centre asks for order
3. Customer replies with request
4. Call centre does DB lookup
5. Call centre replies with results
Extension of Metamodel

- In general, checking view consistency will require theorem proving support.
- **Key check**: prove that message i in the dynamic view has its precondition enabled by preceding messages $1, \ldots, i-1$.
- Effectively we want to show that for a collaboration diagram cd with sequence of calls $cd.calls$,

\[
\forall i:2,\ldots,cd.calls.length \; \exists \; cd.occurs \bullet \\
(init; cd.calls(1).spec \; ; \; \ldots \; ; cd.calls(i-1).spec \Rightarrow cd.calls(i).pre)
\]
Expression in PVS

- ... is non-trivial.
- Need the following:
 - formalization of specifications (pre- and poststate) as new PVS type **SPECTYPE**
 - formalization of sequencing ;
 - formalization of specification state
- Add extra functions to the metamodel:
 - projection of static and dynamic views
 - sequence of routine calls in dynamic view
Specifications and Routines

- Each routine is formalized as a SPECTYPE.

\[\text{SPECTYPE: TYPE} = \]
\[\begin{array}{l}
\text{[# old_state: set[ENTITY], new_state: set[ENTITY],}
\text{value: [set[ENTITY], set[ENTITY] -> bool]} \\
\end{array} \]

- Given a routine and its pre/poststate we can produce a SPECTYPE using function

\[\text{spec: [ROUTINE, set[ENTITY], set[ENTITY] -> SPECTYPE } \]

- Axiom needed to combine pre/postcondition of the routine into a single predicate.
Two functions are needed:

- `seqspecs`: the sequential composition of two `SPECTYPE`s
- `seqspecsn`: lifted version of `seqspecs` to finite sequences

```plaintext
seqspecs(s1,s2:SPECTYPE): SPECTYPE =
  (# old_state := old_state(s1),
   new_state := new_state(s2),
   value := (LAMBDA (o:{p1:set[ENTITY] | p1=old_state(s1)}),
             (n:{p2:set[ENTITY] | p2=new_state(s2)}):
             (EXISTS (i: set[ENTITY]):
               value(s1)(o,i) AND value(s2)(i,n)))
  #)
```
View Consistency Axiom

views_consistent_ax2: AXIOM

(FORALL (mod1:MODEL): FORALL (c:CLASS):
 (FORALL (i:{j:nat|0<j & j<length(calls_model(mod1))}):)
 LET
 loc_spec:SPECTYPE =
 seq(spec(init(mod1)(c),oldstate(init(mod1)(c)),
 newstate(init(mod1)(c)),
 (seqspecsn(convert(sequence_model(mod1)^{(0,i-1)}))))
 IN
 (value(loc_spec)(old_state(loc_spec),new_state(loc_spec))
 IMPLIES
 feature_pre(calls_model(mod1)(i),
 oldstate(calls_model(mod1)(i),
 object_class(msg_target(sequence_model(mod1)(i))))))
... there is a small example of a consistency checking attempt in PVS in